L ecture 1¢:
Thread-dSafe Hash Table

Logistics

» Point Solutions App
= Session |ID: database

* Exam
= Max score will be lowered (curved)
= 6422 section: 200 points to 160 points (AVG: 133, MAX: 175)

= 4420 section: 165 points to 130 points (AVG: 110, MAX: 146)
= YOou can see your graded paper during office hours

Logistics

* One-page project proposals due on Oct 12 (extra credit)

= Rubric: 57 for most submissions, 10% for a small subset of submissions
= Subjective evaluation

« Topic should be related to database internals, preferably C++

= |[n-class presentations at the end of the semester

= Top three projects (picked by the students) will receive a prize!

Recap

e Hash Tables

e Hash Function

» Deletion and Position Tracking
» Quadratic Probing
* Double Hashing

Lecture Overview

e Parallel Index Construction
» Fine-Grained Locking
e Shared Mutex

« Simulation Framework

Parallel Index Construction

Thread 1 Thread 2

Shared
Hash Index

Page Assignment

Divide the total number of pages (hum_pages) by the number of available

threads (num_threads), assign each thread a specific range of pages to process.

void parallelProcessPages(size_t num_threads = 5) {

auto num_pages = buffer_manager.getNumPages();

size_t pages_per_thread = num_pages / num_threads;

std: :vector<std: :thread> threads;

for (size_t i = 8; i < num_threads; i++) {
size_t start_page = i * pages_per_thread;
size_t end_page =...; // Last thread gets any remaining pages
threads.emplace_back (&BuzzDB: :processPageRange, this, start_page, end_page);

Page Assignment

Thread Safety

Thread 1

Thread 2

Shared
Hash Index

Thread Safety

Thread 1: Insert (15, Fig) Thread 2: Insert (25, Pear)

HASH(KEY) = KEY % 10

Race Condition

Thread 1
HASH key 15
PROBE slot b

STORE key 15 in slot 5 S

Thread 2

HASH key 25
PROBE slot b

STORE key 25 in slot 5

std::mutex

Mutex "serlalizes"” access to the shared index structure.

Thread 1

std::lock_guard

lock_guard automatically acquires a lock on creation and releases 1t on destruction.

class HashIndex {
private:
mutable std::mutex indexMutex; // Mutex for thread-safe access

void insertOrUpdate(int key, int value) {

std::lock_guard<std::mutex> guard(indexMutex); // RAII-style mutex
management

// Perform thread-safe update on the index

}

Thread Safety with Mutex

Thread 1 Thread 2

Lock Index Mutex
HASH key 15

PROBE slot 5 WAIT on Index Mutex
STORE key 15 in slot b WAIT on Index Mutex
Unlock Index Mutex WAIT on Index Mutex
Lock Index Mutex
HASH key 25
PROBE slot 5 and see key 15
PROBE slot 6
STORE key 25 in slot 6
Unlock Index Mutex

1
2
3
4
5
6
7
8
9

AA
—_ O

Thread Safety with Mutex

Thread 1 Thread 2

Lock Index Mutex
HASH key 25

WAIT on Index Mutex PROBE slot 5
WAIT on Index Mutex STORE key 25 in slot b
WAIT on Index Mutex Unlock Index Mutex
Lock Index Mutex
HASH key 15
PROBE slot 5 and see key 25
PROBE slot 6
STORE key 15 in slot 6
Unlock Index Mutex

1
2
3
4
5
6
7
8
9

AA
—_ | O

Order of Thread Execution
Thread 1

Thread 2

Limited Concurrency

Using a single lock for the entire hash table severely limits parallelism.

Thread 1
Insert
(12, Fig)

Thread 2
Insert
(27, Pear)

Single Mutex g

Fine-Grained Locking

Using a lock for each slot increases parallelism.

Thread 1
Insert
(12, Fig)

=

T Y S Sl Ml

M6 M/ M8 ,
6

B 1 2 3 d b
S EE.
H EEE

Fine-Grained Locking

Each slot in the hash table has an associated mutex.

void insertOrUpdate(int key, int value) {

Eize_t index = hashFunction(key); // Determine the slot index for the
ey

do §

// Lock only the mutex for the specific slot
std::lock_guard<std: :mutex> lock(*mutexes[index]);
// Attempt to insert or update the slot

if (conditions_met) { // Insert or update logic }
// Handle collision and calculate next slot index
} while (not_inserted);

}

!

-

vector<mutex> vs vector<unique_ptr<mutex>>

Vector<element> requires element to be movable.

Mutex

NOT MOVABLE

Fine-Grained Locking

int getValue(int key) const {
size_t index = hashFunction(key);
size_t originallndex = index;

do §

// Lock only the specific slot's mutex

std: :1lock_guard<std: :mutex> lock(*mutexes[index]);
// Check if the key is inside the slot or not

// Calculate next slot index

} while (index != originallndex);

}

Benefits of Fine-Grained Locking

Increased
Parallelism

: 1 2
a——

Reduced Contention

— ——

Limitations of Fine-Grained Locking

Increased Lock Increased
Acquisition/ Lock Memory
Release Cost Consumption

Limitations of std::mutex

Q Thread 2 Thread 3

Find 15 Find 35

READ
B Thread 1

Insert (25, Fig)
WRITE

Shared
Data

Limitations of std::mutex

g Thread 2 Thread 3

Find 15 Find 35

READ
a Thread 1

Insert (25, Fig)
WRITE

std::shared _mutex

Shared
Data

std::unique_lock<std::shared_mutex

std::shared_mutex allows multiple threads to hold a read (shared) lock

simultaneously while ensuring exclusive access for write operations.

mutable std::shared_mutex mutexes[capacity];

std: :vector<std: :unique_ptr<std: :mutex>> mutexes;

void insertOrUpdate(int key, int value) {

size_t index = hashFunction(key); // Determine the slot index for the key
do {

// Exclusive lock for writing

std: :unique_lock<std::shared_mutex> lock(mutexes[index]);

// Attempt to insert or update the slot

if (conditions_met) { // Insert or update logic }

// Handle collision and calculate next slot index

} while (not_inserted);

}

std::unique_lock<std::shared_mutex

int getValue(int key) const {
size_t index = hashFunction(key);
size_t originallndex = index;

do {

// Shared lock for reading

std: :shared_lock<std: :shared_mutex> lock(mutexes[index]);
// Check if the key is inside the slot or not

// Calculate next slot index

} while (index != originallndex);

}

Exclusive Write Lock

Shared Resource

One Hash Table Slot

Mutex Type

std::unique_lock
<std::shared mutex>

Currently Accessing Threads

Thread 2 (WRITE)

Waiting Threads

Thread 1 (READ)
Thread 3 (READ)

Shared Read Lock

Shared Resource

One Hash Table Slot

Mutex Type

std::shared lock
<std::shared _mutex>

Currently Accessing Threads

Thread 1 (READ)
Thread 3 (READ)

Waiting Threads

Thread 2 (WRITE)

Fine-Grained Locking with Shared Mutex

Thread 1 Thread 3
Find 27 Find 47
READ

= :

SM@ SM1 SM2 SM3 =% SM4 SM5 = SM6 SM/

SM3 SM9

8 9

b 1 2 3 A 5 6 7

Need for Simulation

REAL THREADS & MUTEXES SIMULATED THREADS & MUTEXES

Too fast for qualitative analysis Controlled environment

Non-deterministic Deterministic

Real deal Only an approximation

Simulated Mutex

Allows only one thread to access the shared resource at a time.

def try_acquire(self):
if not self.is_locked:
self.is_locked = True
return 'acquired’
return 'waiting’

Simulated Shared Mutex

Allows multiple readers or a single writer.

try_acquire_read Grants read access unless a write lock is held

Grants write access if no reads or writes are

trv_acquire_write)
y-acq active

release_read Releases read lock

release_write Releases write lock

Concurrent Hash Table

Models a hash table with three concurrency control protocols:

GLOBAL MUTEX One mutex for entire table

MUTEX_PER_SLOT One mutex for each slot

SHARED_MUTEX_PER_SLOT One shared mutex for each slot

Protocol #2: mutex_per_slot

Thread 2
Insert (12, Fig)
WRITE

Thread 1
Find 27
READ

=

3 A b

8 9

b 1 2

6 7

-

Protocol #3: shared_mutex_per_slot

Thread 1 Thread 3
Find 27 Find 47
READ

:

SM@ SM1 SM2 SM3 =% SM4 SM5 = SMé6 SM/ SM3 SM9

8 | 1 | 2 |3 |45 8 | 9

6 7 :
s SEEE S8

SimulatedThread

Simulates a thread performing a series of operations on the hash table. Step function
manages the thread's operations based on its current state.

State Description

Lock Acquire lock

Find Read to current slot

Insert Write to current slot

Unlock Release lock

Unlock and_relock Release lock and move to next slot

Simulator

Thread-0: Attempt to lock for insert on slot 2 -
waiting

Thread-1: Key 25 found at slot 5

Thread-2: Released lock on slot 3 - released

Operation Trace

Each thread performs a sequence of operations:

Thread-8: insert (25, v25), find 25, find 15
Thread-1: find 35, insert (35, v35), and find
25

Thread-2: find 45, find 25

Logical Time Step Count

Comparing the total logical time steps taken by different concurrency control
protocols reveals insights into their efficiency for various operation traces.

GLOBAL MUTEX 30 steps

MUTEX_PER_SLOT 21 steps

SHARED MUTEX_PER_SLOT 15 steps

Global Mutex

Time Step: 15
Thread-1: Released lock on table - released
Thread-2: Attempt to lock table - waiting

Time Step: 16
Thread-1: Attempt to lock table - acquired
Thread-2: Attempt to lock table - waiting

Mutex Per Slot

Time Step: 7/

Thread-0: Attempt to lock slot 6 - acquired
Thread-1: Attempt to lock slot b - acquired
Thread-2: Attempt to lock slot 5 - waiting

Time Step: 8

Thread-0: Key 15 not found.

Thread-1: Found another key 25 at slot b
Thread-2: Attempt to lock slot 5 - waiting

Shared Mutex Per Slot

Time Step: 7/

Thread-0: Attempt to lock for find on slot 6 - acquired-read
Thread-1: Attempt to lock for insert on slot 5 — acquired_write
Thread-2: Attempt to lock for find on slot 6 - acuired_-read

Time Step: 8

Thread-0: Key 15 not found.

Thread-1: Found another key 25 at slot b
Thread-2: Key 45 not found.

Conclusion

e Parallel Index Construction
» Fine-Grained Locking
e Shared Mutex

« Simulation Framework

