
Lecture 16:
Inverted Index & RTree

Logistics
• Canvas scores have been updated

§ Rough estimate only! Need to curve participation score.
§ More emphasis for exam and extra credit project components.

• Programming assignment 3 (B+Tree) due on Nov 2

• Two-page project updates due on Oct 29 (extra credit)

Recap
• Trie
• Binary Patricia Trie

Lecture Overview
• Inverted Index
• Web-Scale Search
• RTree

Inverted Index

• Map words to the locations in which they appear in a document.

Inverted Index

Word Line ID
russia 10, 20

napolean 40
spoke 15, 20, 30
with 20, 30, 40

• Find documents where word1 is within k words of word2.

Proximity Search

Word Line ID, Position within Line
russia (10, 5), (20, 10)

napoleon (40, 5)
spoke (15, 5), (20, 15), (30, 5)
with (20, 10), (30, 10), (40, 5)

• Map words to the documents in which they appear.

Library Search

Word Book ID, Line ID, Position
russia (1, 10, 5), (1, 20, 10)

napoleon (1, 40, 5), (2, 15, 5)
spoke (1, 15, 5), (1, 20, 15), (1, 30, 5)
with (1, 20, 10), (1, 30, 10), (1, 40, 5)

• Unlike a hash table or a B+tree, an inverted index can handle text data and supports
operations like phrase queries and proximity searches.

• Internally, inverted index might be built on top of a hash table.

Why Inverted Index?

• The index stores terms as keys, and for each term, it stores the document ID(s)
where the term occurs and the positions within those documents.

• Key: Word (string).

• Value: A map from document IDs to a list of positions where the term occurs.

Structure of an Inverted Index

“russia" → {docID: [positions]}

std::unordered_map<std::string,
std::unordered_map<int, std::vector<int>>>

Core Functions

addDocument getDocuments proximitySearch

• Add the word to the unordered_map, mapping it to the document ID and word
position. Convert document content to lowercase if needed.

Adding Documents to the Inverted Index

void addDocument(int docID, const std::string &content) {
documents.push_back(content);
std::vector<std::string> words = split(toLower(content));
for (size_t i = 0; i < words.size(); ++i) {

index[words[i]][docID].push_back(i);
}

}

• Converts the search word to lowercase for case-insensitive matching.

• Returns the list of document IDs as an unordered_set<int>.

Retrieving Documents Containing a Term

std::unordered_set<int> getDocuments(const std::string &word) {
std::string lowerWord = toLower(word);
if (index.find(lowerWord) != index.end()) {

std::unordered_set<int> docIDs;
for (const auto &entry : index[lowerWord]) {

docIDs.insert(entry.first);
}
return docIDs;

}
return {};

}

Proximity Search: Finding Words Near Each Other
std::unordered_set<int> proximitySearch(

const std::string &word1, const std::string &word2, int k) {
…
if (index.find(lowerWord1) != index.end() && index.find(lowerWord2) != index.end()) {

for (const auto &entry1 : index[lowerWord1]) {
int docID = entry1.first;
if (index[lowerWord2].find(docID) != index[lowerWord2].end()) {

const auto &positions1 = entry1.second;
const auto &positions2 = index[lowerWord2].at(docID);
for (int pos1 : positions1) { for (int pos2 : positions2) {

if (std::abs(pos1 - pos2) <= k) { result.insert(docID); break; }
}

…
return result;

}

• Fast lookups for individual terms.

• Supports complex queries like proximity search, boolean AND/OR queries, etc.

• Scales well with large document collections (used in search engines).

Efficiency of Inverted Index

Search for "apple AND orange”:
retrieves documents that contain both terms,
combining the document sets for "apple" and "orange."

• Need to store positions for each occurrence of a word.

• Compression techniques (like delta encoding) can reduce storage requirements.

• Disk-based storage for handling very large datasets.

Challenges with Inverted Index

Web Scale Search

Héctor García-Molina
Larry Page
Sergey Brin

Stanford Digital Library Project (1995)

• Garcia-Molina focused on organizing large digital datasets for efficient retrieval.

• Influenced early web search engine development by advancing information retrieval
in distributed systems.

• Advised Larry Page and Sergey Brin, when they were doing their Ph.D. at Stanford,
leading to Google.

Stanford Digital Library Project (1995)

• While our example operates on a small dataset (e.g., lines from a text file), web-
scale inverted index is distributed across thousands of servers and handles billions
of documents.

• Optimizations include:

• Sharding (dividing the index into smaller pieces)

• Replication (storing multiple copies of the index) to handle the massive scale of the
web.

Web-Scale Search

• Word-Based Sharding

Distributed Inverted Index

Shards (subset of Words) Replicas
Shard 1 (Words 1…100) Servers A, B
Shard 2 (Words 101 … 200) Servers C, D
Shard 3 (Words 201 .. 300) Servers E, F

... …

• Document-Based Sharding

Distributed Inverted Index

Shards (subset of Docs) Replicas
Shard 1 (Docs 1…10) Servers A, B
Shard 2 (Docs 11 … 20) Servers C, D
Shard 3 (Docs 21 .. 30) Servers E, F

... …

• After retrieving all relevant documents from the inverted index, we can use ranking
algorithms to rank documents based on relevance.

• Ranking Algorithms: PageRank or machine learning models etc.

• Although ranking is not a part of the basic inverted index, the index is the first step
in narrowing down the list of potentially relevant documents.

Web-Scale Search

• The challenge for the next generation is to improve how we store, retrieve, and
make sense of the world’s data.

The Future

RTree

• B+ trees are designed for single-dimensional indexing.
• When we create a composite key, such as an index on <salary,

age>, we linearize the 2-dimensional space by sorting first by
salary, and then by age.

Limitations of B+Tree

60 X X
50 X
40 X
30
20 X X

100 K 150 K 200 K 250 K 300 K

AGE

SALARY

• RTree groups the multi-dimensional keys in a way that takes
advantage of their ”nearness" in multiple dimensions.

RTree: A Multidimensional Index

60 X X
50 X
40 X
30
20 X X

100 K 150 K 200 K 250 K 300 K

AGE

SALARY

SPATIAL CLUSTERS

• A hierarchical, multi-dimensional indexing structure that is used
to efficiently manage spatial data (e.g., points, lines, rectangles).

RTree: A Multidimensional Index

Antonin Guttman (1984)
Berkeley

• Spatial queries (GIS, CAD)
§ Find all hotels within a radius of 5 miles from Georgia Tech
§ Find the city with a population of 1,000,000 or more that is nearest to Atlanta
§ Find all cities that lie along the Chattahoochee River in Georgia

• Nearest neighbor queries (content-based retrieval)
§ Given a face, find the five most similar faces.

RTree: A Multidimensional Index

• Like B+ Trees, R-Trees are balanced, for efficient search
operations.

• Partitions space using bounding rectangles instead of splitting
at specific values, as in B-Trees.

Key Characteristics

AGE

SALARY

.
.. .
.. .

ROOT

. .

• Point: A 2D coordinate representing a location in space.

• Rectangle: Defines a bounding box that encloses points or other rectangles.

• R-Tree Node:
• Leaf Node: Contains points and is the smallest level of the tree.
• Inner Node: Contains child nodes and their bounding rectangles.
• Root Node: The top-most node of the R-Tree, which points to internal nodes or leaves.

RTree Structure

R1
R4 R5

R3

R6 R7

R2

R17

RTree Structure

R15
R16

R18

R19

R13

R14

R11

R12

R9

R10R8

Leaf Node

Inner Node

Spatial Object

RTree Structure

R1 R2

R3 R4 R5 R6 R7

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

• Represents a location in 2D space (x, y).

Point

struct Point {
float x, y;
Point(float x, float y) : x(x), y(y) {}

};

• Defines a bounding box using its minimum and maximum coordinates.

Rectangle

struct Rectangle {
float minX, minY, maxX, maxY;
Rectangle(float minX, float minY, float maxX, float maxY)

: minX(minX), minY(minY), maxX(maxX), maxY(maxY) {}

bool contains(const Point& p);
bool intersects(const Rectangle& other) const;

};

• Check if a point lies inside the rectangle.

Rectangle: Contains

bool contains(const Point& p) const {
return (p.x >= minX && p.x <= maxX && p.y >= minY && p.y <= maxY);

}

. .
(minX, minY)

(maxX, maxY)

• Determine if two rectangles overlap.

Rectangle: Intersection

bool intersects(const Rectangle& other) const {
return !(other.minX > maxX || other.maxX < minX ||

other.minY > maxY || other.maxY < minY);
}

• For internal nodes, recursively find the best child node (based on minimal
enlargement) to insert the point.

Inserting Points into the R-Tree

void insert(RTreeNode* node, const Point& point, const Rectangle& rect) {
…
else {

int bestChild = chooseBestChild(node, rect);
insert(node->children[bestChild], point, rect);
node->childrenRectangles[bestChild].expand(rect); // Update bounding rectangle

}
}

• Choose the child node whose bounding rectangle needs the smallest enlargement
to accommodate the new rectangle, so that the R-tree remains more compact.

Best Child with Least Enlargement

int chooseBestChild(RTreeNode* node, const Rectangle& rect) {
int bestChild = 0;
for (size_t i = 0; i < node->children.size(); ++i) {

Rectangle enlarged = node->childrenRectangles[i];
enlarged.expand(rect);
float enlargement = …
if (enlargement < minEnlargement) {

minEnlargement = enlargement; bestChild = i;
}

}
return bestChild;

}

• Insert the point into the leaf node. If the leaf node is full, split the node into two,
ensuring the tree stays balanced.

Inserting Points into the R-Tree

void insert(RTreeNode* node, const Point& point, const Rectangle& rect) {
if (node->isLeaf) {

node->points.push_back(point);
if (node->points.size() > maxPoints) {

split(node); // Split the node if it exceeds max points
}

}
…

}

• Quadratic Split Algorithm:

• When a node exceeds the maximum number of points, the node is split into two
new nodes.

• The split is based on finding the two most distant points (seeds), and then
assigning the remaining points to the node whose bounding box requires the least
enlargement.

Node Splitting in R-Tree

Node Splitting in R-Tree

.
.
. .

.
.
. .

SEEDS

Node Splitting in R-Tree

void chooseSeeds(const std::vector<Point>& points, int& seed1, int& seed2) {
float maxDistance = -1;
for (size_t i = 0; i < points.size(); ++i) {

for (size_t j = i + 1; j < points.size(); ++j) {
float distance = std::sqrt(std::pow(points[i].x - points[j].x, 2) +

std::pow(points[i].y - points[j].y, 2));
if (distance > maxDistance) {

maxDistance = distance;
seed1 = i;
seed2 = j;

}
}

}
}

• Multidimensional range queries: 40 < age < 60 AND 200K < salary < 300K

• Recursively checks all the nodes whose bounding rectangles intersect with the
query rectangle.

• For leaf nodes, it returns all points contained within the rectangle.

• For internal nodes, it recursively explores child nodes that may intersect the query.

Range Query in R-Tree

Range Query in R-Tree
void query(RTreeNode* node, const Rectangle& rect, std::vector<Point>& results) {

if (node->isLeaf) {
for (const Point& p : node->points) {

if (rect.contains(p)) {
results.push_back(p);

}
}

} else {
for (size_t i = 0; i < node->children.size(); ++i) {

if (rect.intersects(node->childrenRectangles[i])) {
query(node->children[i], rect, results);

}
}

}
}

• Purpose: Finds the k nearest neighbors of a point.

• Recursively computes the distance between the query point and bounding
rectangles.

• It prioritizes searching through nodes closer to the query point by using a priority
queue.

Nearest Neighbor Search

Nearest Neighbor Search (Internal Node)
void nearestNeighbor(RTreeNode* node, const Point& queryPoint, int k,

std::priority_queue<std::pair<float, Point>>& pq) {
…
else {

std::vector<std::pair<float, RTreeNode*>> childDistances;
for (size_t i = 0; i < node->children.size(); ++i) {

float distance = node->childrenRectangles[i].minDistance(queryPoint);
childDistances.push_back({distance, node->children[i]});

}
std::sort(childDistances.begin(), childDistances.end());
for (const auto& child : childDistances) {

nearestNeighbor(child.second, queryPoint, k, pq);
}

}
}

Nearest Neighbor Search (Leaf Node)
void nearestNeighbor(RTreeNode* node, const Point& queryPoint, int k,

std::priority_queue<std::pair<float, Point>>& pq) {
if (node->isLeaf) {

for (const Point& p : node->points) {
float distance = std::sqrt(std::pow(p.x - queryPoint.x, 2) + std::pow(p.y -

queryPoint.y, 2));
pq.push(std::make_pair(distance, p));
if (pq.size() > k) pq.pop();

}
}
…

}

• Like B+ Trees, R-Trees are balanced to ensure efficient search times (in the order of
O(log n)).

• Splitting and merging operations ensure that the tree remains balanced after
insertions or deletions.

Balancing in R-Trees

• The goal is to minimize the enlargement of the bounding rectangles when adding
new points.

• R-Trees use the quadratic split algorithm to ensure that nodes are split efficiently,
minimizing the overall area expansion.

Splitting in R-Trees

• Spatial Databases: Commonly used to index geographical data, including points of
interest, maps, and GPS data.

• GIS Systems: Geographic Information Systems use R-Trees for querying and
managing spatial data (e.g., finding nearby restaurants).

Applications of R-Trees

• Game Development: Used to manage objects in large 2D or 3D spaces for collision
detection and spatial queries.

• Ride Sharing: Applications like Uber use R-Trees to store and query ride locations
and find the nearest driver to a user.

Applications of R-Trees

• Efficient for both point and range queries.

• Supports dynamic data (inserts and deletions) while maintaining balance.

• Optimized for spatial queries.

Advantages

• The quadratic split algorithm can be computationally expensive.

• R-Trees can suffer from overlapping bounding boxes, which may increase search
time for large datasets.

• There are variants of this data structure that improve performance by better
handling splits and minimizing overlaps.

Challenges

• R-Trees are crucial for handling spatial data, supporting range queries and nearest
neighbor searches.

• They efficiently balance space usage and query performance using bounding
rectangles.

Conclusion

Conclusion
• Inverted Index
• Web-Scale Search
• RTree

