
Lecture 16:
ND RTree

Logistics
• Two-page project updates due on Oct 29 (extra credit)
• Programming assignment 3 (B+Tree) due on Nov 2

Recap
• Inverted Index
• Web-Scale Search

Lecture Overview
• RTree
• ND RTree

RTree

• B+ trees are designed for single-dimensional indexing.
• When we create a composite key, such as an index on <salary,

age>, we linearize the 2-dimensional space by sorting first by
salary, and then by age.

Limitations of B+Tree

60 X X
50 X
40 X
30
20 X X

100 K 150 K 200 K 250 K 300 K

AGE

SALARY

• RTree groups the multi-dimensional keys in a way that takes
advantage of their ”nearness" in multiple dimensions.

RTree: A Multidimensional Index

60 X X
50 X
40 X
30
20 X X

100 K 150 K 200 K 250 K 300 K

AGE

SALARY

SPATIAL CLUSTERS

• A hierarchical, multi-dimensional indexing structure that is used
to efficiently manage spatial data (e.g., points, lines, rectangles).

RTree: A Multidimensional Index

Antonin Guttman (1984)
Berkeley

• Spatial queries (GIS, CAD)
§ Find all hotels within a radius of 5 miles from Georgia Tech
§ Find the city with a population of 1,000,000 or more that is nearest to Atlanta
§ Find all cities that lie along the Chattahoochee River in Georgia

• Nearest neighbor queries (content-based retrieval)
§ Given a face, find the five most similar faces.

RTree: A Multidimensional Index

• Like B+ Trees, R-Trees are balanced, for efficient search
operations.

• Partitions space using bounding rectangles instead of splitting
at specific values, as in B-Trees.

Key Characteristics

AGE

SALARY

.
.. .
.. .

ROOT

. .

• Point: A 2D coordinate representing a location in space.

• Rectangle: Defines a bounding box that encloses points or other rectangles.

• R-Tree Node:
• Leaf Node: Contains points and is the smallest level of the tree.
• Inner Node: Contains child nodes and their bounding rectangles.
• Root Node: The top-most node of the R-Tree, which points to internal nodes or leaves.

RTree Structure

R1
R4 R5

R3

R6 R7

R2

R17

RTree Structure

R15
R16

R18

R19

R13

R14

R11

R12

R9

R10R8

Leaf Node

Inner Node

Spatial Object

RTree Structure

R1 R2

R3 R4 R5 R6 R7

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

• Represents a location in 2D space (x, y).

Point

struct Point {
float x, y;
Point(float x, float y) : x(x), y(y) {}

};

• Defines a bounding box using its minimum and maximum coordinates.

Rectangle

struct Rectangle {
float minX, minY, maxX, maxY;
Rectangle(float minX, float minY, float maxX, float maxY)

: minX(minX), minY(minY), maxX(maxX), maxY(maxY) {}

bool contains(const Point& p);
bool intersects(const Rectangle& other) const;

};

• Check if a point lies inside the rectangle.

Rectangle: Contains

bool contains(const Point& p) const {
return (p.x >= minX && p.x <= maxX && p.y >= minY && p.y <= maxY);

}

. .
(minX, minY)

(maxX, maxY)

• Determine if two rectangles overlap.

Rectangle: Intersection

bool intersects(const Rectangle& other) const {
return !(other.minX > maxX || other.maxX < minX ||

other.minY > maxY || other.maxY < minY);
}

• For internal nodes, recursively find the best child node (based on minimal
enlargement) to insert the point.

Inserting Points into the R-Tree

void insert(RTreeNode* node, const Point& point, const Rectangle& rect) {
…
else {

int bestChild = chooseBestChild(node, rect);
insert(node->children[bestChild], point, rect);
node->childrenRectangles[bestChild].expand(rect); // Update bounding rectangle

}
}

• Choose the child node whose bounding rectangle needs the smallest enlargement
to accommodate the new rectangle, so that the R-tree remains more compact.

Best Child with Least Enlargement

int chooseBestChild(RTreeNode* node, const Rectangle& rect) {
int bestChild = 0;
for (size_t i = 0; i < node->children.size(); ++i) {

Rectangle enlarged = node->childrenRectangles[i];
enlarged.expand(rect);
float enlargement = …
if (enlargement < minEnlargement) {

minEnlargement = enlargement; bestChild = i;
}

}
return bestChild;

}

• Insert the point into the leaf node. If the leaf node is full, split the node into two,
ensuring the tree stays balanced.

Inserting Points into the R-Tree

void insert(RTreeNode* node, const Point& point, const Rectangle& rect) {
if (node->isLeaf) {

node->points.push_back(point);
if (node->points.size() > maxPoints) {

split(node); // Split the node if it exceeds max points
}

}
…

}

• Quadratic Split Algorithm:

• When a node exceeds the maximum number of points, the node is split into two
new nodes.

• The split is based on finding the two most distant points (seeds), and then
assigning the remaining points to the node whose bounding box requires the least
enlargement.

Node Splitting in R-Tree

Node Splitting in R-Tree

.
.
. .

.
.
. .

SEEDS

Node Splitting in R-Tree

void chooseSeeds(const std::vector<Point>& points, int& seed1, int& seed2) {
float maxDistance = -1;
for (size_t i = 0; i < points.size(); ++i) {

for (size_t j = i + 1; j < points.size(); ++j) {
float distance = std::sqrt(std::pow(points[i].x - points[j].x, 2) +

std::pow(points[i].y - points[j].y, 2));
if (distance > maxDistance) {

maxDistance = distance;
seed1 = i;
seed2 = j;

}
}

}
}

• Multidimensional range queries: 40 < age < 60 AND 200K < salary < 300K

• Recursively checks all the nodes whose bounding rectangles intersect with the
query rectangle.

• For leaf nodes, it returns all points contained within the rectangle.

• For internal nodes, it recursively explores child nodes that may intersect the query.

Range Query in R-Tree

Range Query in R-Tree
void query(RTreeNode* node, const Rectangle& rect, std::vector<Point>& results) {

if (node->isLeaf) {
for (const Point& p : node->points) {

if (rect.contains(p)) {
results.push_back(p);

}
}

} else {
for (size_t i = 0; i < node->children.size(); ++i) {

if (rect.intersects(node->childrenRectangles[i])) {
query(node->children[i], rect, results);

}
}

}
}

• Purpose: Finds the k nearest neighbors of a point.

• Recursively computes the distance between the query point and bounding
rectangles.

• It prioritizes searching through nodes closer to the query point by using a priority
queue.

Nearest Neighbor Search

Nearest Neighbor Search (Internal Node)
void nearestNeighbor(RTreeNode* node, const Point& queryPoint, int k,

std::priority_queue<std::pair<float, Point>>& pq) {
…
else {

std::vector<std::pair<float, RTreeNode*>> childDistances;
for (size_t i = 0; i < node->children.size(); ++i) {

float distance = node->childrenRectangles[i].minDistance(queryPoint);
childDistances.push_back({distance, node->children[i]});

}
std::sort(childDistances.begin(), childDistances.end());
for (const auto& child : childDistances) {

nearestNeighbor(child.second, queryPoint, k, pq);
}

}
}

Nearest Neighbor Search (Leaf Node)
void nearestNeighbor(RTreeNode* node, const Point& queryPoint, int k,

std::priority_queue<std::pair<float, Point>>& pq) {
if (node->isLeaf) {

for (const Point& p : node->points) {
float distance = std::sqrt(std::pow(p.x - queryPoint.x, 2) + std::pow(p.y -

queryPoint.y, 2));
pq.push(std::make_pair(distance, p));
if (pq.size() > k) pq.pop();

}
}
…

}

• Like B+ Trees, R-Trees are balanced to ensure efficient search times (in the order of
O(log n)).

• Splitting and merging operations ensure that the tree remains balanced after
insertions or deletions.

Balancing in R-Trees

• The goal is to minimize the enlargement of the bounding rectangles when adding
new points.

• R-Trees use the quadratic split algorithm to ensure that nodes are split efficiently,
minimizing the overall area expansion.

Splitting in R-Trees

• Find nearby restaurants efficiently using spatial queries.

• Inserting Restaurants: Each restaurant can be represented as a Point in 2D space
(latitude, longitude).

• Range Queries: To find restaurants within a given radius of a user’s location, create
a Rectangle that represents the bounding box (search radius).

Restaurant Search on Maps

Point restaurant({latitude, longitude}, "RestaurantName");
tree.insert(restaurant);

Rectangle searchArea({min_latitude, min_longitude}, {max_latitude, max_longitude});
std::vector<Point> nearbyRestaurants = tree.query(searchArea);

• Match riders to the nearest available drivers.

• Inserting Driver Locations: Each driver’s location is represented as a Point in 2D
space.

• Nearest Neighbor Search: When a rider requests a ride, use the nearestNeighbor()
function to find the closest driver to the rider’s location.

Uber Ride Matching

Point driver({latitude, longitude}, "DriverID");
tree.insert(driver);

Point riderLocation({rider_latitude, rider_longitude}, "RiderLocation");
int k = 10; // We want the nearest drivers
std::vector<Point> nearestDrivers = tree.nearestNeighbor(riderLocation, k);

• Efficiently manage and query game objects in large open-world games.

• Inserting Game Objects: Game objects (e.g., player positions) are represented as
points in an N-dimensional space (e.g., 3D for X, Y, Z coordinates).

• Collision Detection / Range Queries: To check for collisions or visible objects,
retrieve all game objects within a bounding box (e.g., area around a player).

Game Engine Spatial Partitioning

Point gameObject({x, y, z}, "GameObjectID");
tree.insert(gameObject);

Rectangle collisionArea({minX, minY, minZ}, {maxX, maxY, maxZ});
std::vector<Point> nearbyObjects = tree.query(collisionArea);

• Efficient for both point and range queries.

• Supports dynamic data (inserts and deletions) while maintaining balance.

• Optimized for spatial queries.

Advantages

• The quadratic split algorithm can be computationally expensive.

• R-Trees can suffer from overlapping bounding boxes, which may increase search
time for large datasets.

• There are variants of this data structure that improve performance by better
handling splits and minimizing overlaps.

Challenges

• R-Trees are crucial for handling spatial data, supporting range queries and nearest
neighbor searches.

• They efficiently balance space usage and query performance using bounding
rectangles.

Conclusion

ND RTree

• R trees are designed for two-dimensional indexing.
• ND R-Tree is an extension of the R-Tree, supporting indexing in

arbitrary high-dimensional spaces.
• Real-world applications include:
• Image Recognition: Indexing feature vectors from neural

networks to efficiently find similar images.
• Recommendation Systems: Managing high-dimensional user-

item interaction data for content-based recommendations.

Limitations of RTree

• ND R-Tree efficiently manages data in hundreds of dimensions
(e.g., 128 or 512).

ND RTree: A Multidimensional Index

• Point: Represents a location in N-dimensional space with coordinates and an
optional label.

• Hyper-Rectangle: A bounding hyperrectangle in N-dimensional space to enclose
points or rectangles.

• R-Tree Node:
• Leaf Node: Contains points and is the smallest level of the tree.
• Inner Node: Contains child nodes and their bounding hyperrectangles.
• Root Node: The top-most node of the R-Tree, which points to internal nodes or leaves.

ND RTree Structure

• High-dimensional points (e.g., 512 dimensions).

• Example: A feature vector representing an image with 512 dimensions, where each
value is a descriptor of the image content.

Point

struct Point {
std::vector<float> coordinates;
std::string label;

};

• A bounding box that represents the minimum and maximum feature values for a
cluster of points in a high-dimensional space.

Rectangle

struct Rectangle {
std::vector<float> minCoords, maxCoords;
bool contains(const Point& p) const;

};

• Internal nodes use bounding hyper-rectangles to efficiently index child nodes.

Nodes

struct RTreeNode {
bool isLeaf;
std::vector<Point> points;
std::vector<Rectangle> childrenRectangles;
std::vector<RTreeNode*> children;

};

• Points are inserted into the ND R-Tree by navigating down the tree to find the best-
fit leaf node.

Inserting Points into the ND R-Tree

void insert(RTreeNode* node, const Point& point, const Rectangle& rect) {
…
else {

int bestChild = chooseBestChild(node, rect);
insert(node->children[bestChild], point, rect);
node->childrenRectangles[bestChild].expand(rect); // Update bounding rectangle

}
}

• Minimizes bounding hyperrectangle enlargement to maintain spatial locality.

Best Child with Least Enlargement

int chooseBestChild(RTreeNode* node, const Rectangle& rect) {
int bestChild = 0;
float minEnlargement = std::numeric_limits<float>::max();
for (size_t i = 0; i < node->children.size(); ++i) {

Rectangle enlarged = node->childrenRectangles[i];
enlarged.expand(rect);
float enlargement = enlarged.area() - node->childrenRectangles[i].area();
if (enlargement < minEnlargement) {

minEnlargement = enlargement;
bestChild = i;

}
}
return bestChild;

}

• If a node overflows, it is split using a quadratic algorithm that aims to minimize
bounding box overlap.

• Quadratic Split: Selects the two most distant points (seeds) and distributes the
remaining entries to minimize area enlargement.

Node Splitting in ND R-Tree

Node Splitting in ND R-Tree

.
.
. .

.
.
. .

SEEDS

Node Splitting in R-Tree

void chooseSeeds(const std::vector<Point>& points, int& seed1, int& seed2) {
float maxDistance = -1;
for (size_t i = 0; i < points.size(); ++i) {

for (size_t j = i + 1; j < points.size(); ++j) {
float distance = std::sqrt(std::pow(points[i].x - points[j].x, 2) +

std::pow(points[i].y - points[j].y, 2));
if (distance > maxDistance) {

maxDistance = distance;
seed1 = i;
seed2 = j;

}
}

}
}

• Purpose: Finds the k nearest neighbors of a point.

• Recursive Search Approach: Traverses nodes in increasing order of distance from
the query point, using a priority queue.

Nearest Neighbor Search

Nearest Neighbor Search (Internal Node)
void nearestNeighbor(RTreeNode* node, const Point& queryPoint, int k,

std::priority_queue<std::pair<float, Point>>& pq) {
if (node->isLeaf) { ..}
else {

std::vector<std::pair<float, RTreeNode*>> childDistances;
for (size_t i = 0; i < node->children.size(); ++i) {

float distance = node->childrenRectangles[i].minDistance(queryPoint);
childDistances.push_back(std::make_pair(distance, node->children[i]));

}
std::sort(childDistances.begin(), childDistances.end());
for (const auto& child : childDistances) {

nearestNeighbor(child.second, queryPoint, k, pq);
}

}
}

Nearest Neighbor Search (Leaf Node)
void nearestNeighbor(RTreeNode* node, const Point& queryPoint, int k,

std::priority_queue<std::pair<float, Point>>& pq) {
if (node->isLeaf) {

for (const Point& p : node->points) {
float distance = 0.0;
for (size_t i = 0; i < p.coordinates.size(); ++i) {

distance += std::pow(p.coordinates[i] - queryPoint.coordinates[i], 2);
}
distance = std::sqrt(distance);
pq.push(std::make_pair(distance, p));
if (pq.size() > static_cast<size_t>(k)) {

pq.pop();
}

}
} …

}

• ND R-Tree can efficiently perform multidimensional range queries, which are
common in high-dimensional datasets.

• The algorithm recursively traverses nodes whose bounding rectangles intersect
with the query region.

• For leaf nodes, it returns all points contained within the rectangle.

• For internal nodes, it recursively explores child nodes that may intersect the query.

Range Query in ND R-Tree

Range Query in R-Tree
void query(RTreeNode* node, const Rectangle& rect, std::vector<Point>& results) {

if (node->isLeaf) {
for (const Point& p : node->points) {

if (rect.contains(p)) {
results.push_back(p);

}
}

} else {
for (size_t i = 0; i < node->children.size(); ++i) {

if (rect.intersects(node->childrenRectangles[i])) {
query(node->children[i], rect, results);

}
}

}
}

• Goal: In computer vision, image features can be represented as high-dimensional
vectors. Use R-trees for efficient similarity search (e.g., finding similar images or
objects in a dataset based on feature vectors).

Image Retrieval in Computer Vision

std::vector<float> imageFeatureVector(512, 0.0f); // 512-dimensional feature vector
Point imagePoint(imageFeatureVector, "ImageID");
tree.insert(imagePoint);

Point queryImage(queryFeatureVector, "QueryImage");
int k = 5; // Find 5 most similar images
std::vector<Point> similarImages = tree.nearestNeighbor(queryImage, k);

• Perform multidimensional analysis on climate data, which typically involves
multiple factors (temperature, humidity, wind speed, etc.). R-trees can be used to
efficiently query and analyze multidimensional climate data.

Climate Data Analysis

std::vector<float> climateData = {temperature, humidity, windSpeed, ...};
Point climatePoint(climateData, "ClimateDataID");
tree.insert(climatePoint);

std::vector<float> minValues = {minTemp, minHumidity, minWindSpeed};
std::vector<float> maxValues = {maxTemp, maxHumidity, maxWindSpeed};
Rectangle queryRange(minValues, maxValues);
std::vector<Point> matchingClimateData = tree.query(queryRange);

• The key difficulty of ND R-tree is to build an efficient tree that:
§ On one hand is balanced (so the leaf nodes are at the same height)
§ On the other hand the rectangles do not cover too much empty space and do not overlap too

much (so that during search, fewer subtrees need to be processed).

Challenges

• As the number of dimensions (n) increases, the volume of space grows
exponentially.

• Data points become sparsely distributed, making it difficult for algorithms like R-
Trees to efficiently manage and query data.

• The intuitive notion of "closeness" in lower dimensions becomes less meaningful in
high-dimensional spaces.

Curse of Dimensionality in R-Trees

• Inefficiency in Node Splitting:

• In high-dimensional spaces, minimum bounding rectangles (MBRs) tend to overlap
significantly.

• Increased overlap makes it difficult for R-trees to prune search space efficiently,
leading to more nodes being visited during queries.

Curse of Dimensionality in R-Trees

• Increased Query Time:

• The expected number of node accesses grows as dimensionality increases, which
reduces the performance of range queries and nearest neighbor searches.

• R-trees perform well in 2D or 3D, but as the number of dimensions grows (e.g., >10),
their performance degrades.

Curse of Dimensionality in R-Trees

• Large Minimum Bounding Rectangle (MBR) Volumes:

• Minimum Bounding Rectangles expand disproportionately with additional
dimensions, causing them to enclose vast empty regions of space.

• Many queries will require searching through multiple large MBRs, even if relevant
data points are scarce in those areas.

Curse of Dimensionality in R-Trees

Conclusion
• Inverted Index
• Web-Scale Search
• RTree

