| ecture 23:
\Vectorized Execution &
Lourse Retrospective

Logistics

* In-class presentations on Nov 21

Recap

» Columnar Storage
» Compression

» Compressed Columnar Storage

Lecture Overview

e VVectorized Execution

» Course Retrospective

Limitations of Tuple-at-a-time Processing

« Each tuple incurs the cost of:

-unction calls between operators.

Deserializing, interpreting, and processing the tuples.

Doesn't leverage the CPU's ability to process batches of data efficiently.

Results In frequent pipeline stalls and cache misses.

Vector-at-a-time Processing

* Process a vector of tuples at a time to reduce overhead of function calls etc.
« Use SIMD (Single Instruction, Multiple Data) instructions

A single instruction operates on multiple data points simultaneously.

18 40 25 15

> 20

SIMD in Query Execution

* SIMD Use Cases:
- Filtering (e.g., select rows within a range).
- Aggregations (e.g., sum, average).
. Compression (e.g., decoding bit-packed data).

« Key SIMD Operations
» Vector Loads: Load multiple data points.
« Masks: Apply conditions to filter data.
« Horizontal Reduction: Sum vector elements.

Filter timestamps using SIMD

* Load data in batches using vid1qg_s32.
« Perform vectorized comparisons using vcgeq_s32 and vcleq_s32.

« Combine results with a bitwise AND using vandq_u32.

int32x4_t ts_vec = vldl1g_s32(&data.timestamps[i]); // Load timestamps
uint32x4_t mask = vandg_u32(vcgeg_s32(ts_vec, 1),
vcleq_s32(ts_vec, end)); // Mask for range

Filter timestamps using SIMD

vld1q_s32 18 40 25 15

vcgeq_s32
vcleq_s32

vandq_u32

> 20

<30

> 20 AND < 30

Scalar vs SIMD Execution

 Scalar Execution:
Processes one data element per cycle.
Repeated instruction fetch, decode, and execute for each element.

« SIMD Execution:

Processes multiple data elements per cycle by leveraging wide registers.
Executes the same operation on an entire vector (batch) with a single instruction.

Benefits of SIMD Execution

 Instruction-Level Efficiency
Fewer instructions due to vectorized operations.
Scalar processing requires N instructions for N data points.
SIMD requires N / W instructions, where W i1s the width of the SIMD vector.

« Cache and Memory Efficiency
Contiguous memory access aligns with cache lines.
SIMD operates on contiguous memory (columnar layouts align well with SIMD).
Cache lines are fully utilized, reducing memory latency.

Benefits of SIMD Execution

« Minimized Control Overhead:
« SIMD minimizes branching by applying the same operation to all elements in a vector.
« With scalar execution, pipeline stalls if the branch prediction is incorrect.
« With SIMD execution, masks handle conditional operations, avoiding pipeline stalls.

« Hardware Support:
Modern CPUs have dedicated SIMD execution units optimized for throughput.

History of SIMD

« 1960s-1970s: Supercomputers and Scientific Computing
- SIMD first appeared in systems like ILLIAC IV for scientific workloads.

- Allowed simultaneous operations on multiple data points (e.g., matrix rows).

« 1980s-1990s: Multimedia Processing

- MMX (Intel, 1996): Integer operations for multimedia.
- Example: Increase the brightness of an image's pixels by a constant value.

Pixels 100 120 140 160

120 140 160 180

+ 20

Modern SIMD in General-Purpose Computing

« 2000s: Integration in General-Purpose CPUs
. SIMD became a standard in consumer CPUs.
- SSE/AVX (Intel): Wide registers for floats and integers.
- NEON (ARM): Optimized for embedded and mobile devices.

« 2010s-Present: Acceleration for Analytical Workloads
- SIMD now powers modern databases and big data systems.
. Vectorized query execution (e.g., Apache Arrow).

Sensor Data Analysis

« Designed with SoA (Structure of Arrays) layout for SIMD.
« Ensures contiguous memory access for efficient vectorized operations.

struct SensorData {
int* timestamps; // Contiguous array of timestamps
float* temperatures; // Contiguous array of temperatures

SensorData(size_t count) {
timestamps = static_cast<int*>(aligned_alloc(16, sizeof(int) * count));
temperatures = static_cast<float*>(aligned_alloc(16, sizeof(float) * count));

Sensor Data Generation

« Create synthetic data with timestamps and temperatures.

void generateData(SensorData& data, int count) {
std: :random_device rd;
std::mt19937 gen(rd());
std: :normal_distribution<float> temp_dist(25.8, 5.0);
std::uniform_int_distribution<int> time_dist(1, 5);

int timestamp = START_TIMESTAMP;
for (int i = 8; i < count; ++i) {
data.timestamps[i] = timestamp;
data.temperatures[i] = temp_dist(gen);
timestamp += time_dist(gen); // Increment timestamp

SIMD Query

« Task: Calculate the average temperature within a timestamp range

Timestamps 1 2 5 7
Temperature 25.5 26.0 2(.2 28.3
> 2 0 1 1 0
<6 1 1 1 0
>2AND <6 0 1 1 0
Masked Temps O 26.0 27.2 0

Sum 53.2

SIMD Query: Loading Data

* Load 4 consecutive timestamps and temperatures into SIMD registers.

int32x4_t ts_vec = vldl1g_s32(&data.timestamps[i]); // Load 4 timestamps
float32x4_t temp_vec = vldlq_f32(&data.temperatures[i]); // Load 4 temperatures

SIMD Query: Filtering Timestamps

 Filter timestamps within the query range.
« Compare for Lower Bound: vcgeq_s32: Compares timestamps with startTimestamp.
« Compare for Upper Bound: vcleq_s32: Compares timestamps with endTimestamp.

« Combine Results: vandg_u32: Combines the two masks with a bitwise AND.

uint32x4_t in_range_mask = vandq_u32(vcgeq_s32(ts_vec, vdupg_n_s32(startTimestamp)),
vcleq_s32(ts_vec, vdupg_n_s32(endTimestamp)));

SIMD Query: Mask Application

» Apply the mask to the temperatures and sum up the valid values.
« vmulq_f32: Multiplies the mask with the temperature vector.
« Keeps valid temperatures, zeros out invalid ones.

« vaddq_f32: Adds the valid temperatures to the running sum.

float32x4_t masked_temps = vmulqg_f32(temp_vec, vcvtg_f32_u32(in_range_mask));
sum_vec = vaddq_f32(sum_vec, masked_temps);

SIMD Query: Final Steps

« Horizontal Reduction: Sum up all elements in the SIMD vector.

- Handle Remaining Scalar Elements: Process leftover elements not divisible by the
SIMD width.

float total_sum = vaddvg_f32(sum_vec);
for (int i = count - (count % 4); i < count; ++i) {
if (data.timestamps[i] >= startTimestamp && data.timestamps[i] <= endTimestamp) {
total_sum += data.temperatures[i];

SIMD Instruction Naming

« SIMD instruction names are structured to reflect:
Operation type: Add, multiply, compare, etc.
Data type: Integer, floating-point, or specialized formats.
Vector width: Number of data elements processed.

vaddq 32 Addltl(.)n 32-bit floating-point
Operation numbers
vcgeq_ s32 Compare Operates on signed

greater than or equal to 32-bit integers.

Quad-word
(4 floats)

64-bit vector
(2 integers)

Evolution of SIMD Widths Over Time

» Wider SIMD registers enable higher parallelism.

« 64-bit SIMD:
- Technologies: MMX (Intel, 1996).
- Operated on 64-bit registers (e.qg., 4 integers).

« 128-bit SIMD:.

- Technologies: SSE (Intel), NEON (ARM).
. Supported 4x32-bit floats or 2x64-bit doubles.

Evolution of SIMD Widths Over Time

« 256-bit SIMD:
- Technologies: AVX (Intel, 2010).
- Doubled vector width for 8x32-bit floats or 4x64-bit doubles.

« 512-bit SIMD:

- Technologies: AVX-512 (Intel, 2017).
. Supported 16x32-bit floats or 8x64-bit doubles in a single operation.

Advanced SIMD: Hash Join Algorithm

« Hash computation and comparison in parallel using SIMD masks.

« Hash table lookups may involve non-contiguous memory accesses

// Load probe keys

int32x4_t probe_keys = vld1q_s32(8&probe_table.keys[i]);

// Compute hash

int32x4_t hash_vec = vmodq_s32(vmulg_s32(probe_keys, hash_multiplier), hash_table_size);
// Gather hash table values

int32x4_t hash_table_vals = vld1g_s32(&hash_table[hash_vec]);

// Compare keys

uint32x4_t match_mask = vceqq_s32(probe_keys, hash_table_vals);

Takeaways from the Course

« Let's take a step back and reflect on what you've accomplished.

« Systems programming Is challenging.
Delving into internals teaches attention to detall.
It forces understanding of how things work under the hood.

* Foundational systems knowledge beyond databases.
- Threading, memory management, and |/0.
- You now have tools to approach any system-level problem.
- Reflect on how much you've learned and grown as a programmer.

Big Ideas from the Course

» Database Systems Are Awesome
- They solve real-world problems elegantly.
- But they are not magic.

» Abstractions Are Key
- Elegant abstractions are the "magic” enabling usability and
performance.
* Declarativity Rules
- Declarative query models make complex systems usable.
- Taken to the extreme -- Google search

Big Ideas from the Course

 Building Systems Is More Than Hacking:
- |t's about design, principles, and reusability.

* Recurring Patterns:
- Recognizing motifs like parallelism, caching, and transactions.

* Intellectual Contributions:
- Computer Science Is evolving, and you can contribute to its history.

Looking Ahead: What's Next?

« CS 6423 (Advanced Database Implementation)
» Query Optimization
- Concurrency Control
- Logging and Recovery

 Building on this course

- Deeper insights into how databases optimize for efficiency.
- Expanding your knowledge of system-level guarantees.

Looking Ahead: What's Next?

e CS 6423 (Advanced Database Implementation)
» Logging and Recovery
» Concurrency Control
« Query Optimization

 Building on this course

- Deeper insights into how databases optimize for efficiency.
- Expanding your knowledge of system-level guarantees.

Logging and Recovery

« Example: A system crash during a transfer:

UPDATE accounts SET balance = balance - 1680 WHERE id = 1;
UPDATE accounts SET balance = balance + 180 WHERE id = 2;

Logging and Recovery

« Mechanisms to restore the database to a consistent state after crashes.

 Write-Ahead Logging (WAL)
- Log changes before applying them.
« Checkpointing and Crash Recovery

- Periodically save the database state to reduce recovery time.

- Redo/Undo logs to reconstruct committed transactions and roll back
uncommitted ones.

 ARIES Algorithm
- Advanced Recovery Algorithm (Analysis, Redo, Undo).

Concurrency Control

« Example: Two users simultaneously trying to update the same row

UPDATE accounts SET balance = balance - 1680 WHERE id = 1;

Concurrency Control

« Ensuring correctness and consistency when multiple users access the
database simultaneously.

 Locks and Latches:
- Types of locks (shared, exclusive); Deadlock detection and prevention.

« Multi-Version Concurrency Control (MVCC)
- Readers don't block writers; writers don't block readers.

* |solation Levels:
- Read Committed, Repeatable Read, Serializable.

 Distributed Transactions:
- Two-phase commit (2PC), distributed locking.

Query Optimization

« Example: Push filters before the join. Use an indexed join if
available.

SELECT *
FROM orders
JOIN customers

ON orders.customer_id = customers.id
WHERE customers.city = 'Atlanta’;

Query Optimization

« Selecting the best execution plan for a query.
« Goal: Minimize execution cost (e.g., time, memory, 1/0).
« Execution Plans

- Logical vs. physical plans.

« Cost Models
- Estimating costs for different plans.

« Heuristics and Rules
. Simplifying query trees and reordering joins.

« Advanced Techniques
- Dynamic Programming (e.g., System R algorithm).
- Cardinality Estimation

Feedback and Project Presentations

 Please share your feedback via CIOS
« +1% extra credit for entire class if we get 80%+ participation
* In-class presentations on Nov 21

» Tentatively prepare a 5-minute presentation

Conclusion

e VVectorized Execution

» Course Retrospective

