
Lecture 23: 
Vectorized Execution & 
Course Retrospective



Logistics
• In-class presentations on Nov 21



Recap
• Columnar Storage
• Compression
• Compressed Columnar Storage



Lecture Overview
• Vectorized Execution
• Course Retrospective



Vectorized Execution



• Each tuple incurs the cost of:
• Function calls between operators.
• Deserializing, interpreting, and processing the tuples.
• Doesn't leverage the CPU's ability to process batches of data efficiently.
• Results in frequent pipeline stalls and cache misses.

Limitations of Tuple-at-a-time Processing



• Process a vector of tuples at a time to reduce overhead of function calls etc.

• Use SIMD (Single Instruction, Multiple Data) instructions

• A single instruction operates on multiple data points simultaneously.

Vector-at-a-time Processing
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• SIMD Use Cases:
• Filtering (e.g., select rows within a range).
• Aggregations (e.g., sum, average).
• Compression (e.g., decoding bit-packed data).

• Key SIMD Operations
§ Vector Loads: Load multiple data points.
§ Masks: Apply conditions to filter data.
§ Horizontal Reduction: Sum vector elements.

SIMD in Query Execution



• Load data in batches using vld1q_s32.

• Perform vectorized comparisons using vcgeq_s32 and vcleq_s32.

• Combine results with a bitwise AND using vandq_u32.

Filter timestamps using SIMD

int32x4_t ts_vec = vld1q_s32(&data.timestamps[i]);  // Load timestamps
uint32x4_t mask = vandq_u32(vcgeq_s32(ts_vec, 1), 

vcleq_s32(ts_vec, end)); // Mask for range



Filter timestamps using SIMD

vld1q_s32 18 40 25 15

vcgeq_s32 > 20

0 1 1 1

vcleq_s32 < 30

1 0 1 1

vandq_u32 > 20 AND < 30

0 0 1 0



• Scalar Execution:
• Processes one data element per cycle.
• Repeated instruction fetch, decode, and execute for each element.

• SIMD Execution:
• Processes multiple data elements per cycle by leveraging wide registers.
• Executes the same operation on an entire vector (batch) with a single instruction.

Scalar vs SIMD Execution



• Instruction-Level Efficiency
• Fewer instructions due to vectorized operations.
• Scalar processing requires N instructions for N data points.
• SIMD requires N / W instructions, where W is the width of the SIMD vector.

• Cache and Memory Efficiency
• Contiguous memory access aligns with cache lines.
• SIMD operates on contiguous memory (columnar layouts align well with SIMD).
• Cache lines are fully utilized, reducing memory latency.

Benefits of SIMD Execution



• Minimized Control Overhead: 
§ SIMD minimizes branching by applying the same operation to all elements in a vector.
§ With scalar execution, pipeline stalls if the branch prediction is incorrect.
§ With SIMD execution, masks handle conditional operations, avoiding pipeline stalls.

• Hardware Support: 
• Modern CPUs have dedicated SIMD execution units optimized for throughput.

Benefits of SIMD Execution



• 1960s-1970s: Supercomputers and Scientific Computing
• SIMD first appeared in systems like ILLIAC IV for scientific workloads.
• Allowed simultaneous operations on multiple data points (e.g., matrix rows).

• 1980s-1990s: Multimedia Processing
• MMX (Intel, 1996): Integer operations for multimedia.
• Example: Increase the brightness of an image’s pixels by a constant value.

History of SIMD

Pixels 100 120 140 160

+ 20

120 140 160 180



• 2000s: Integration in General-Purpose CPUs
• SIMD became a standard in consumer CPUs.
• SSE/AVX (Intel): Wide registers for floats and integers.
• NEON (ARM): Optimized for embedded and mobile devices.

• 2010s-Present: Acceleration for Analytical Workloads
• SIMD now powers modern databases and big data systems.
• Vectorized query execution (e.g., Apache Arrow).

Modern SIMD in General-Purpose Computing



• Designed with SoA (Structure of Arrays) layout for SIMD.

• Ensures contiguous memory access for efficient vectorized operations.

Sensor Data Analysis

struct SensorData {
int* timestamps;    // Contiguous array of timestamps
float* temperatures; // Contiguous array of temperatures

SensorData(size_t count) {
timestamps = static_cast<int*>(aligned_alloc(16, sizeof(int) * count));
temperatures = static_cast<float*>(aligned_alloc(16, sizeof(float) * count));

}
};



• Create synthetic data with timestamps and temperatures.

Sensor Data Generation

void generateData(SensorData& data, int count) {
std::random_device rd;
std::mt19937 gen(rd());
std::normal_distribution<float> temp_dist(25.0, 5.0);
std::uniform_int_distribution<int> time_dist(1, 5);

int timestamp = START_TIMESTAMP;
for (int i = 0; i < count; ++i) {

data.timestamps[i] = timestamp;
data.temperatures[i] = temp_dist(gen);
timestamp += time_dist(gen);  // Increment timestamp

}
}



SIMD Query

• Task: Calculate the average temperature within a timestamp range

Timestamps 1 2 5 7
Temperature 25.5 26.0 27.2 28.3

> 2 0 1 1 0
< 6 1 1 1 0
> 2 AND < 6 0 1 1 0

Masked Temps 0 26.0 27.2 0
Sum 53.2



• Load 4 consecutive timestamps and temperatures into SIMD registers.

SIMD Query: Loading Data

int32x4_t ts_vec = vld1q_s32(&data.timestamps[i]);  // Load 4 timestamps
float32x4_t temp_vec = vld1q_f32(&data.temperatures[i]);  // Load 4 temperatures



• Filter timestamps within the query range.

• Compare for Lower Bound: vcgeq_s32: Compares timestamps with startTimestamp.

• Compare for Upper Bound: vcleq_s32: Compares timestamps with endTimestamp.

• Combine Results: vandq_u32: Combines the two masks with a bitwise AND.

SIMD Query: Filtering Timestamps

uint32x4_t in_range_mask = vandq_u32(vcgeq_s32(ts_vec, vdupq_n_s32(startTimestamp)),
vcleq_s32(ts_vec, vdupq_n_s32(endTimestamp)));



• Apply the mask to the temperatures and sum up the valid values.

• vmulq_f32: Multiplies the mask with the temperature vector.

• Keeps valid temperatures, zeros out invalid ones.

• vaddq_f32: Adds the valid temperatures to the running sum.

SIMD Query: Mask Application

float32x4_t masked_temps = vmulq_f32(temp_vec, vcvtq_f32_u32(in_range_mask));
sum_vec = vaddq_f32(sum_vec, masked_temps);



• Horizontal Reduction: Sum up all elements in the SIMD vector.

• Handle Remaining Scalar Elements: Process leftover elements not divisible by the 
SIMD width.

SIMD Query: Final Steps

float total_sum = vaddvq_f32(sum_vec);
for (int i = count - (count % 4); i < count; ++i) {

if (data.timestamps[i] >= startTimestamp && data.timestamps[i] <= endTimestamp) {
total_sum += data.temperatures[i];

}
}



• SIMD instruction names are structured to reflect:
• Operation type: Add, multiply, compare, etc.
• Data type: Integer, floating-point, or specialized formats.
• Vector width: Number of data elements processed.

SIMD Instruction Naming

vaddq_f32 Addition 
Operation

32-bit floating-point 
numbers

Quad-word 
(4 floats)

vcgeq_s32 Compare 
greater than or equal to

Operates on signed 
32-bit integers.

64-bit vector
(2 integers)



• Wider SIMD registers enable higher parallelism.

• 64-bit SIMD:
• Technologies: MMX (Intel, 1996).
• Operated on 64-bit registers (e.g., 4 integers).

• 128-bit SIMD:
• Technologies: SSE (Intel), NEON (ARM).
• Supported 4x32-bit floats or 2x64-bit doubles.

Evolution of SIMD Widths Over Time



• 256-bit SIMD:
• Technologies: AVX (Intel, 2010).
• Doubled vector width for 8x32-bit floats or 4x64-bit doubles.

• 512-bit SIMD:
• Technologies: AVX-512 (Intel, 2017).
• Supported 16x32-bit floats or 8x64-bit doubles in a single operation.

Evolution of SIMD Widths Over Time



• Hash computation and comparison in parallel using SIMD masks.

• Hash table lookups may involve non-contiguous memory accesses

Advanced SIMD: Hash Join Algorithm

// Load probe keys
int32x4_t probe_keys = vld1q_s32(&probe_table.keys[i]); 
// Compute hash
int32x4_t hash_vec = vmodq_s32(vmulq_s32(probe_keys, hash_multiplier), hash_table_size); 
// Gather hash table values
int32x4_t hash_table_vals = vld1q_s32(&hash_table[hash_vec]); 
// Compare keys
uint32x4_t match_mask = vceqq_s32(probe_keys, hash_table_vals); 



Course Retrospective



Takeaways from the Course
• Let’s take a step back and reflect on what you’ve accomplished.

• Systems programming is challenging.
• Delving into internals teaches attention to detail.
• It forces understanding of how things work under the hood.

• Foundational systems knowledge beyond databases.
• Threading, memory management, and I/O.
• You now have tools to approach any system-level problem.
• Reflect on how much you’ve learned and grown as a programmer.



Big Ideas from the Course
• Database Systems Are Awesome
• They solve real-world problems elegantly.
• But they are not magic.

• Abstractions Are Key
• Elegant abstractions are the "magic" enabling usability and 

performance.

• Declarativity Rules
• Declarative query models make complex systems usable.
• Taken to the extreme -- Google search



Big Ideas from the Course
• Building Systems Is More Than Hacking:
• It’s about design, principles, and reusability.

• Recurring Patterns:
• Recognizing motifs like parallelism, caching, and transactions.

• Intellectual Contributions:
• Computer Science is evolving, and you can contribute to its history.



Looking Ahead: What’s Next?
• CS 6423 (Advanced Database Implementation)

§ Query Optimization
• Concurrency Control
• Logging and Recovery

• Building on this course
• Deeper insights into how databases optimize for efficiency.
• Expanding your knowledge of system-level guarantees.



Looking Ahead: What’s Next?
• CS 6423 (Advanced Database Implementation)

§ Logging and Recovery
§ Concurrency Control
§ Query Optimization

• Building on this course
• Deeper insights into how databases optimize for efficiency.
• Expanding your knowledge of system-level guarantees.



Logging and Recovery
• Example: A system crash during a transfer:

UPDATE accounts SET balance = balance - 100 WHERE id = 1;
UPDATE accounts SET balance = balance + 100 WHERE id = 2;



Logging and Recovery
• Mechanisms to restore the database to a consistent state after crashes.

• Write-Ahead Logging (WAL)
• Log changes before applying them.

• Checkpointing and Crash Recovery
• Periodically save the database state to reduce recovery time.
• Redo/Undo logs to reconstruct committed transactions and roll back 

uncommitted ones.

• ARIES Algorithm
• Advanced Recovery Algorithm (Analysis, Redo, Undo).



Concurrency Control
• Example: Two users simultaneously trying to update the same row

UPDATE accounts SET balance = balance - 100 WHERE id = 1;



Concurrency Control
• Ensuring correctness and consistency when multiple users access the 

database simultaneously.
• Locks and Latches:
• Types of locks (shared, exclusive); Deadlock detection and prevention.

• Multi-Version Concurrency Control (MVCC)
• Readers don’t block writers; writers don’t block readers.

• Isolation Levels:
• Read Committed, Repeatable Read, Serializable.

• Distributed Transactions:
• Two-phase commit (2PC), distributed locking.



Query Optimization
• Example: Push filters before the join. Use an indexed join if 

available.

SELECT * 
FROM orders 
JOIN customers 
ON orders.customer_id = customers.id
WHERE customers.city = 'Atlanta';



Query Optimization
• Selecting the best execution plan for a query.
• Goal: Minimize execution cost (e.g., time, memory, I/O).
• Execution Plans
• Logical vs. physical plans.

• Cost Models
• Estimating costs for different plans.

• Heuristics and Rules
• Simplifying query trees and reordering joins.

• Advanced Techniques
• Dynamic Programming (e.g., System R algorithm).
• Cardinality Estimation



Feedback and Project Presentations
• Please share your feedback via CIOS

• +1% extra credit for entire class if we get 80%+ participation

• In-class presentations on Nov 21

• Tentatively prepare a 5-minute presentation



Conclusion
• Vectorized Execution
• Course Retrospective


