
Lecture 3:
Storage Management

Logistics
• Point Solutions App

§ Session ID: database

• Difference between 4420 and 6422 sections
§ Advanced lectures
§ Papers (around 9 papers)
§ Advanced questions related to the papers/lectures in exams

• Assignment 1 released on Gradescope
• Due dates on Ed

Recap
• Tour of relational operators
• BuzzDB
• Why C++?

Lecture Overview
• Periodic Table
• Storage Management
• Tuple and Field classes
• Generalized Tuple class
• Smart pointers

Periodic Table of System Design Principles

https://github.com/jarulraj/periodic-table

https://github.com/jarulraj/periodic-table

Periodic Table of System Design Principles

Periodic Table of System Design Principles

• 🟪Mo – Modularity
• Partition the system into cohesive units with minimal interfaces,

so that each unit can be reasoned about, replaced, or evolved
independently. This principle focuses on decomposition:
choosing boundaries to favor clear separation of concerns so
that each responsibility sits in one module.

• Example: The OSI model decomposes communication into
standardised layers with well-defined boundaries that permit
independent development and substitution [48].

Periodic Table of System Design Principles

• 🟪 Co – Composability
• Design components that can be safely and flexibly recombined; rely

on explicit contracts and type-constrained interfaces so that every
legal composition remains correct, letting components be assembled
like interchangeable bricks. Unlike modularity, this principle focuses
on re-composition: making sure the components can be combined
safely and flexibly.

• Example: Unix programs (e.g., grep, sort, uniq) read from stdin and
write to stdout, letting the user compose complex text processing
pipelines [41].

Periodic Table of System Design Principles

• 🟪 Pm – Policy/Mechanism Separation

• Separate what should be done (policy) from how it is carried out
(mechanism) by exposing a common interface through which
multiple policies can plug into the same mechanism.

• Example: Hydra has a kernel of generic mechanisms
(scheduling, paging, protection) and moved resource-allocation
policies to user-level modules [32].

Storage Technologies

VOLATILE STORAGE PERSISTENT STORAGE

Persistent
Device

Volatile
Device

Storage
Technologies

Volatile Storage

VOLATILE DRAM DRAM
(Dynamic Random-Access Memory)

Ideal for Quick Data Access

Data Lost Without Power

Persistent Storage

Atomicity Consistency Isolation Durability

Data Lifecycle: Stage One

Fast Queries &
Updates“Hot Data” Storage

Data Lifecycle: Stage Two

Fast & SecureSpeed & Durability

Cached Pages

Database

Faster access - not durable

Data Lifecycle

Slower access - but durable

DRAM

Disk

FILE I/O IN C++

DRAM

File I/O in C++

DISK

Read/Write
Data

int main() {
BuzzDB db;
// Import data from “output.txt” file
std::ifstream inputFile("output.txt");
// Attempt to open file
int field1, field2;
// Read pairs of integers from the file and insert them into

BuzzDB
while (inputFile >> field1 >> field2) {
db.insert(field1, field2);

}
// Perform aggregation query on the imported data
db.selectGroupBySum();

}

File I/O in C++

buzzDB

std::ifstream inputFile("output.txt"); // Attempt to open file

if (!inputFile) {
std::cerr << "Unable to open file" << std::endl; // Error handling
return 1;

}

File I/O in C++

Verify File
Availability

Use std::cerr
Stream

Avoids Data
Disruption

// Get the start time
auto start = std::chrono::high_resolution_clock::now();
BuzzDB db;
…
db.selectGroupBySum();
// Get the end time
auto end = std::chrono::high_resolution_clock::now();
// Calculate the difference between end and start times
std::chrono::duration<double> elapsed = end - start;
// Output the elapsed time in seconds
std::cout << "Elapsed time: " << elapsed.count() << " seconds" <<
std::endl;

Query Performance in C++

Database EfficiencyC++ Chrono Library

Why does timing matter?

Optimizes Database Operations

Benchmark BuzzDB
Performance

Tuple and Field Classes

Tuple Class

class Tuple {
public:

// Identifier field
int key;
// Actual data field
int value;

};

StringsFloating Point
Numbers

Integer Key-
Value Pairs

enum FieldType {INT, FLOAT}

class Field {
public:
FieldType type;
union {

int i;
float f;

} data;
};

Field Class

Defines
Constants

INT &
FLOATType

Field Class FieldType Enums

Field Class

Memory
Allocation

Memory
Share

Integer I
Float F

Field Class Unions Field Object

4 Bytes
Storage

INT & FLOAT

enum FieldType {INT, FLOAT}

class Field {
public:
FieldType type;
union {

int i;
float f;

} data;
};

class Field {
public:
Field(int i): type(INT), data{i} {}
Field(float f): type(FLOAT), data{f} {}
void print() const {

switch(type) {
case INT: std:: cout << data.i;
break;
case FLOAT: std:: cout << data.f;
break;

}
}

}

Field Class
Integer

Value INT
Float Value

FLOAT
Constructor
Overloading Print Method

C++ Constructors, Tuples,
and Strings

Initializes Integer
& Float Data

Construct
Objects with

Specific Values

Constructors in C++

class Tuple {
std::vector<Field> fields;
public:
void addField(const Field & field) {

fields.push_back(field);
}
void print() const {

for (const auto & field: fields) {
field.print(); std:: cout << " ";

}
}

};

Generalized Tuple Class

Field
Value

Integer

Float
Column

void BuzzDB::insert(int key, int value) {
Tuple newTuple;
Field key_field = Field(key);
Field value_field = Field(value);
float float_val = 132.04;
Field float_field = Field(float_val);

newTuple.addField(key_field);
newTuple.addField(value_field);
newTuple.addField(float_field);

table.push_back(newTuple);
index[key].push_back(value);

}

Constructing Generalized Tuples

enum FieldType {INT, FLOAT, STRING}

class Field {
public:
FieldType type;
union {

int i;
float f;
char *s; // string

} data;
...

}

Further Generalization to Strings

FieldType enum includes STRING

More Generalization to Strings

String
Form

Floating
Point

Integer
Form

Polymorphic Container

DATABASE = 8 Letters

POLYMORPHISM = 12
Letters

Field(const std::string &s) : type(STRING) {
data.s = new char[s.size() + 1];
std::copy(s.begin(), s.end(), data.s);
data.s[s.size()] = '\0'; // Null-terminate the string

}

More Generalization to Strings

String S +
1

Field Object
to String

String
Parameter S

Memory
data.s

Dynamic Memory Allocation

data.s = new char[s.size() + 1];

New Operator

Dynamic
Memory

Allocation

Heap-
Allocated
Variable

Explicit
Variable

Destruction

Field::~Field() {
if (type == STRING && data.s != nullptr) {
delete[] data.s;

}
}

Destructors in C++

Data.s ≠ nullptrCleans MemoryField Class
Destructor

delete ptr; // Frees memory allocated for a single integer
delete[] arr; // Frees memory allocated for an array of integers

Delete Operator

Avoid
System
Crashes

Correspondin
g Delete
Operator

Heap Memory
Clearance

Raw Pointers

enum FieldType {INT, FLOAT, STRING}

class Field {
public:
FieldType type;
union {

int i;
float f;
char *s;

} data;
...

};

Raw Pointers

Field Class Raw Character Pointer

Perils of Raw Pointers

Double-free
Errors

Dangling
Pointers

Memory
Leaks

Four Important Problems

Ownership
Ambiguity

void createMemoryLeak() {
int *leakyPtr = new int(42); // Allocation
// Forgot to delete leakyPtr
// Memory allocated to leakyPtr is never freed

}

Perils of Raw Pointers: Memory Leaks

Explicit Deletion Required

void createDanglingPointer() {
int * danglyPtr = new int(42)
delete danglyPtr
// Deallocate memory
// danglyPtr now becomes a dangling pointer
std:: cout << *danglyPtr
// Undefined behavior, potentially a crash

}

Perils of Raw Pointers: Dangling Pointers

danglyPtr

void createDoubleFree() {
int *doubleTroublePtr = new int(42);
delete doubleTroublePtr; // Correct deletion
delete doubleTroublePtr; // Double free, leads to runtime error

}

Perils of Raw Pointers: Double-Free Errors

POINTER

DELETE

DELETE

int *function1(int *ptr) {
// It's unclear if the function should delete ptr
// Function logic here...
return new int(55); // Should the caller delete the returned pointer?

}
void function2() {

int *myPtr = new int(42);
int *newPtr = function1(myPtr);
// Who owns myPtr and newPtr? Who is responsible for deleting them?

}

Perils of Raw Pointers

No Clear Ownership

Unclear Deallocation

Unclear Memory
Management

Smart Pointers

std::unique_ptr

Smart Pointers

Code Safety

Readability

Maintainability

#include <memory>

void createMemoryLeak() {
std::unique_ptr<int> safePtr =

std::make_unique<int>(42); // Automatic management
// No need to manually delete;

// memory is automatically freed when safePtr goes out of scope
}

Smart Pointers: Avoid Memory Leaks

Manages Memorystd::unique_ptr Scope Deallocation

After calling reset(), safePtr safely releases its ownership and
avoids becoming a dangling pointer by setting itself to nullptr

void createDanglingPointer() {
std::unique_ptr<int> safePtr = std::make_unique<int>(42);
safePtr.reset(); // Correctly frees memory and sets pointer to nullptr
// safePtr is now nullptr, preventing access to freed memory

}

Smart Pointers: Avoid Dangling Pointers

std::unique_ptr enforces unique ownership of the managed object, meaning that the
memory is freed exactly once when the pointer goes out of scope or is reset.

void createDoubleFree() {
std::unique_ptr<int> safePtr = std::make_unique<int>(42);
// safePtr goes out of scope and automatically deletes the managed object
// No risk of double free errors
// as unique_ptr ensures single ownership and controlled deletion

}

Smart Pointers: Avoid Doube-Free Errors

Prevents
double-free errors

unique_ptr clarifies ownership through its ownership model

std::unique_ptr<int> function1(std::unique_ptr<int> ptr) {
// Ownership is clearly transferred with unique_ptr, no ambiguity
return std::make_unique<int>(55);
// Returning a new unique_ptr transfers ownership back to the caller

}
void function2() {
std::unique_ptr<int> myPtr = std::make_unique<int>(42);
std::unique_ptr<int> newPtr = function1(std::move(myPtr));
// Ownership transfer is explicit with std::move,
// clarifying lifecycle management

}

Smart Pointers: Avoid Ownership Ambiguity

Conclusion
• Storage management
• Generalized Tuple class
• Smart Pointers

