L ecture 3.
Storage Management

Logistics

» Point Solutions App
= Session |ID: database

» Difference between 4420 and 6422 sections
« Advanced lectures
» Papers (around 9 papers)
« Advanced questions related to the papers/lectures in exams

» Assignment 1 released on Gradescope

« Due dates on Ed

Recap

» Tour of relational operators
 BuzzDB
o Why C++7

Lecture Overview

 Periodic Table

Storage Management

uple and

~leld classes

Generalized Tuple class

Smart pointers

Periodic Table of System Design Principles

Towards a Periodic Table of Computer System Design Principles

JOY ARULRAJ, Georgia Institute of Technology

System design is often taught through domain-specific solutions specific to particular domains, such as databases, operating systems,
or computer architecture, each with its own methods and vocabulary. While this diversity is a strength, it can obscure cross-cutting
principles that recur across domains. This paper proposes a preliminary “periodic table” of system design principles distilled from
several domains in computer systems. The goal is a shared, concise vocabulary that helps students, researchers, and practitioners reason
about structure and trade-offs, compare designs across domains, and communicate choices more clearly. For supporting materials and

updates, please refer to the repository at: https://github.com/jarulraj/periodic-table.

https://github.com/jarulraj/periodic-table

Cr

https://github.com/jarulraj/periodic-table

Periodic Table of System Design Principles

Towards a Periodic Table of Computer System Design Principles 3
Str Eff Sem Dist Plan Oper Rel Sec
Si Sc Al Lt Ep Ad Ft Sy
Mo Rc Lu Dc Cm Ec Is Ac
Co Wy Se Fp Cp Wa At Lp
Ex Cc Fs Lo Gd Au Cr Tq
Pm Bo Ig Bb Ho Cf
Gr Ha Ah Ev Sa
Op
La

Periodic Table of System Design Principles

- I Mo - Modularity

 Partition the system into cohesive units with minimal interfaces,
so that each unit can be reasoned about, replaced, or evolved

iIndependently. This principle focuses on decomposition:

choosing boundaries to favor clear separation of concerns so

that each responsibility sits in one module.

« Example: The OSI model decomposes communication into
standardised layers with well-defined boundaries that permit
iIndependent development and substitution [48].

Periodic Table of System Design Principles

. Il Co - Composability

» Design components that can be safely and flexibly recombined; rely
on explicit contracts and type-constrained interfaces so that every

egal composition remains correct, letting components be assembled

ke Interchangeable bricks. Unlike modularity, this principle focuses

on re-composition: making sure the components can be combined

safely and flexibly.

« Example: Unix programs (e.g., grep, sort, uniq) read from stdin and
write to stdout, letting the user compose complex text processing

pipelines [41l.

Periodic Table of System Design Principles

. I Pm - Policy/Mechanism Separation

* Sepa
(mec

rate what should be done (policy) from how it Is carri

nanism) by exposing a common interface through w

multiple policies can plug into the same mechanism.

« Example: Hydra has a kernel of generic mechanisms
(scheduling, paging, protection) and moved resource-allocation
policies to user-level modules [32].

ed out

NIch

Storage Technologies

Storage Persistent
Technologies Device

VOLATILE STORAGE PERSISTENT STORAGE

Volatile Storage

VOLATILE DRAM DRAM

(Dynamic Random-Access Memory)

ldeal for Quick Data Access

Data Lost Without Power

Persistent Storage

U0 [z22:]

(IR ININNT]

Durability

Data Lifecycle: Stage One

"Hot Data" Storage fss &

Data Lifecycle: Stage Two

Speed & Durability ,:ure

Data Lifecycle

Faster access - not durable

- -\
i
Cached Pages
. DRAM
» Database
. Disk

Slower access - but durable

QD
)
-
Wa
< ©
O
aD
D
oC

File I/0 In C++

int main() {
BuzzDB db;
// Import data from “output.txt” file
std::ifstream inputFile("output.txt");
// Attempt to open file
int fieldl, field?;

// Read pairs of integers from the file and insert them into
BuzzDB

while (inputFile >> fieldl >> field2) {
db.insert(field1, field2);

}

// Perform aggregation query on the imported data

db.selectGroupBySum();

File I/0 In C++

Verify File Use std:.cerr Avolds Data
Avalilability Stream Disruption

std::ifstream inputFile("output.txt"); // Attempt to open file

if (!inputFile) {
std::cerr << "Unable to open file" << std::endl; // Error handling
return 1;

}

Query Performance in C++

C++ Chrono Library ficiency

// Get the start time
auto start = std::chrono::high_resolution_clock: :now();
BuzzDB db;

db.selectGroupBySum();

// Get the end time
auto end = std::chrono::high_resolution_clock: :now();
// Calculate the difference between end and start times
std::chrono: :duration<double> elapsed = end - start;
// Output the elapsed time in seconds

std::cout << "Elapsed time: " << elapsed.count() <<

seconds" <<

Why does timing matter?

Optimizes Database Operations

Benchmark BuzzDB
Performance

Tuple Class

Integer Key-

Value Pairs ptrings

class Tuple {
public:
// Identifier field
int key;
// Actual data field
int value;

};

Field Class

enum FieldType {INT, FLOAT}

class Field {
public:
FieldType type;
union {
int 1;
float f;
} data;

};

Field Class

Field Object

enum FieldType {INT, FLOAT}

class Field {
public:
FieldType type;

union {
int 1;
float f;
} data;

Field Class

Integer Float Value Constructor

Value INT FLOAT Overloading Print Method

class Field {
public:
Field(int i): type(INT), data{i} {}
Field(float f): type(FLOAT), data{f} {}
void print() const {
switch(type) {
case INT: std:: cout << data.i;

break;
case FLOAT: std:: cout << data.f;
break;

C++ Constructors, Tuples,
and Strings

& Float Data

-
Q
o]0
O,
)
=
(Vp)
Q
L
©
e
m

Constructors in C++

Generalized Tuple Class

class Tuple {

std::vector<Field> fields;
Field :
Val public:
e void addField(const Field & field) {
fields.push_back(field);
Integer 5
void print() const {
for (const auto & field: fields) {
Float field.print(); std:: cout << " ";

Column

Constructing Generalized Tuples

void BuzzDB::insert(int key, int value) {
Tuple newTuple;
Field key_field = Field(key);
Field value_field = Field(value);
float float_val = 132.064;
Field float_field = Field(float_val);

newTuple.addField(key_field);
newTuple.addField(value_field);
newTuple.addField(float_field);

table.push_back(newTuple);
index[key].push_back(value);

Further Generalization to Strings

FieldType enum includes STRING

enum FieldType {INT, FLOAT, STRING}

class Field {
public:
FieldType type;
union {
int 1;
float f;
char *s; // string
} data;

More Generalization to Strings

DATABASE = 8 Letters

POLYMORPHISM =12
~ Letters

More Generalization to Strings

Dynamic Memory Allocation

Field(const std::string &s) : type(STRING) {

data.s = new char[s.size() + 11;
std: :copy(s.begin(), s.end(), data.s);
data.s[s.size()] = '\8'; // Null-terminate the string

}

New Operator

Dynamic Heap- Explicit
Memory Allocated Variable
Allocation Variable Destruction

data.s = new char[s.size() + 1];

Destructors in C++

Field Class

Cleans Memory Data.s # nullptr
Destructor

Field::~Field() {
if (type == STRING && data.s !'= nullptr) {

delete[] data.s;

}
}

Delete Operator

Correspondin Avoid
g Delete System
Operator Crashes

welVELile JI YV

Clearance

delete ptr; // Frees memory allocated for a single integer
delete[] arr; // Frees memory allocated for an array of integers

Raw Pointers

Field Class lll Raw Character Pointer

enum FieldType {INT, FLOAT, STRING}

class Field {
public:
FieldType type;
union {
int 1;
float f;
char *s;
} data;

Perils of Raw Pointers

_

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|
|
| :
| |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Cr

Perils of Raw Pointers: Memory Leaks

Explicit Deletion Required

void createMemorylLeak() {
int *leakyPtr = new int(42); // Allocation
// Forgot to delete leakyPtr
// Memory allocated to leakyPtr is never freed

}

Perils of Raw Pointers: Dangling Pointers

void createDanglingPointer() {
int * danglyPtr = new int(42)
delete danglyPtr
// Deallocate memory
// danglyPtr now becomes a dangling pointer
std:: cout << *danglyPtr
// Undefined behavior, potentially a crash

danglyPtr

Perils of Raw Pointers: Double-Free Errors

void createDoubleFree() {
int *doubleTroublePtr = new int(42);
delete doubleTroublePtr; // Correct deletion

POINTER delete doubleTroublePtr; // Double free, leads to runtime error
}

Perils of Raw Pointers

. int *function1(int *ptr) {
No Clear OWﬂEFShIp // It's unclear if the function should delete ptr

// Function logic here...
return new int(55); // Should the caller delete the returned pointer?

Unclear Deallocation H
void function2() {

int *myPtr = new int(42);

Unclear Memory int *newPtr = function1(myPtr);
Management // Who owns myPtr and newPtr? Who is responsible for deleting them?
}

Smart Pointers

std::unique ptr

Code Safety

(Readability

Maintainability

Smart Pointers: Avoid Memory Leaks

finclude <memory>

void createMemorylLeak() {
std::unique_ptr<int> safePtr =

std: :make_unique<int>(42); // Automatic management
// No need to manually delete;
// memory is automatically freed when safePtr goes out of scope

}

std::unique_ptr Manages Memory Scope Deallocation

Smart Pointers: Avoid Dangling Pointers

After calling reset(), safePtr safely releases its ownership and
avoids becoming a dangling pointer by setting itself to nullptr

void createDanglingPointer() {
std: :unique_ptr<int> safePtr = std::make_unique<int>(42);

safePtr.reset(); // Correctly frees memory and sets pointer to nullptr
// safePtr is now nullptr, preventing access to freed memory

}

Smart Pointers: Avoid Doube-Free Errors

std::unique_ptr enforces unique ownership of the managed object, meaning that the
memory Iis freed exactly once when the pointer goes out of scope or Is reset.

void createDoubleFree() {
std: :unique_ptr<int> safePtr = std::make_unique<int>(42);
Prevents /| safePtr goes out of scope and automatically deletes the managed object

double-free errors // No risk of double free errors
// as unique_ptr ensures single ownership and controlled deletion

}

Smart Pointers: Avoid Ownership Ambiguity

unique_ptr clarifies ownership through its ownership model

std: :unique_ptr<int> functionl(std::unique_ptr<int> ptr) {
// Ownership is clearly transferred with unique_ptr, no ambiguity
return std::make_unique<int>(55);
// Returning a new unique_ptr transfers ownership back to the caller

}
void function2() {

std: :unique_ptr<int> myPtr = std::make_unique<int>(42);
std: :unique_ptr<int> newPtr = functionl1(std::move(myPtr));
// Ownership transfer is explicit with std::move,

// clarifying lifecycle management

}

Conclusion

» Storage management
» Generalized Tuple class

e Smart Pointers

