
Lecture 5:
Slotted Page



Logistics
• Point Solutions App

§ Session ID: database

• Programming assignment 1 due on Sep 10 via Gradescope
• One-page introduction sheet due on Sep 10 via Gradescope



Recap
• Smart Pointers
• Smart Field
• Heap vs Stack
• Page class
• Simplifying serialization
• Static method for deserialization



void Field::serialize(std::ofstream &out) {
out << type << ' ' << data_length << ' ';
if (type == STRING) {
out << data.get() << ' ';

} else if (type == INT) {
out << *reinterpret_cast<int *>(data.get()) << ' ';

} else if (type == FLOAT) {
out << *reinterpret_cast<float *>(data.get()) << ' ';

}
}

Simplifying Page Serialization

Field Class Serialization



auto loadedPage = Page::deserialize(filename);

// Deserialize from disk
// Page page2;
// page2.read(filename);

Page::deserialize(filename)

Merge Creation + Loading

Direct Tuple Loading

No Temporary Page Object



Lecture Overview
• Tuple Deletion
• Slotted Page
• File Management
• Index Construction



Tuple Deletion



Tuple Deletion Process

void Page::deleteTuple(size_t index) {
if (index >= tuples.size()) {
std::cout << "Tuple index out of range. ";
return;

}
used_size -= tuples[index]->getSize();
tuples.erase(tuples.begin() + index);

}

Tuple Deletion

deleteTuple method

Check vector bounds

Update page size

Remove tuple from vector 



// Skip deleting tuples only once every hundred tuples
if (tuple_insertion_attempt_counter % 100 != 0) {
page.deleteTuple(0);

}

Tuple Deletion
Logic introduced to delete tuples

Skip Deletion
Periodically

Simulate 
Data Lifestyle

Database 
Cleanup



// Serialize to disk
db.page.write(filename);
// Deserialize from disk
auto loadedPage = Page::deserialize(filename);
// PROBLEM: Deletion only in memory, not on disk
loadedPage->deleteTuple(0);
// Deserialize again from disk -- page unchanged
auto loadedPage2 = Page::deserialize(filename);

Data Inconsistency



Data Inconsistency



std::cout << "Deleting slots 0 and 7 \n";
loadedPage->deleteTuple(0);
loadedPage->deleteTuple(7);

loadedPage->write(filename);

Data Synchronization



Data Synchronization

// Deserialize again from disk -- page is updated this time
auto loadedPage2 = SlottedPage::deserialize(filename);
loadedPage2->print();



• Finding space for a new tuple requires a linear scan. 
• Poor handling of variable-length tuples leads to wasted space.

Num Tuples = 3

Tuple #1

Tuple #2

Tuple #3

Tuple #4 Num Tuples = 4

Limitations of Page Class: Linear Scan

Tuple #2



• Periodically, we must "compact" this "fragmented” page, moving 
tuples around to consolidate free space.

UserName
Louis Garrel

Liu Yifei
Kriti Sanon 

Lana Condor

Burna Boy

UserName
Louis Garrel
Liu Yifei
Kriti Sanon
Lana Condor
Burna Boy

Compacted
Page

Original
Page

Limitations of Page Class: Compaction



Slotted Page



Slotted Page

struct Slot {
uint16_t offset; // Offset of the tuple within the page
uint16_t length; // Length of the tuple data

};

Slots are entries in a page's "header" section that keep track of 
where the tuples are stored within the page.



Slot Array

Variable
Length
Tuples

Free Space Offset

#1 #2
#4

Slotted Page

Slots are entries in a page's "header" section that keep track of 
where the tuples are stored within the page.



Slotted Page

class SlottedPage {
std::unique_ptr<char[]> page_data;
std::vector<Slot> slots;
size_t free_space_offset;
...

};

Slots enable direct 
access to any 
tuple by index.



Anatomy of a Slotted Page

class SlottedPage {
std::unique_ptr<char[]> page_data;
std::vector<Slot> slots;
size_t free_space_offset;
...

};

Slotted Page

Tracks:
• Metadata
• Slot Numbers
• Free Space 

Offset

Slots Mark Tuple 
Data Start on Page



Slotted Page: Adding Tuple

bool addTuple(std::unique_ptr<Tuple> tuple) {
…
size_t slot_itr = 0;
Slot *slot_array =

reinterpret_cast<Slot *>(page_data.get());
for (; slot_itr < MAX_SLOTS; slot_itr++) {
if (slot_array[slot_itr].empty &&

slot_array[slot_itr].length >= tuple_size) {
break;

}
}
// Determine tuple placement and update slot
return true;

}

Checks for 
Available Space

Identifies Correct 
Tuple Slot

Ensures Efficient 
Space Utilization



Slotted Page: Deleting Tuple

void deleteTuple(size_t index) {
Slot *slot_array = reinterpret_cast<Slot *>(page_data.get());
if (index < MAX_SLOTS && !slot_array[index].empty) {
slot_array[index].empty = true; // Mark the slot as empty
used_size -= slot_array[index].length; // Reclaim space

}
}

• Marks a tuple as deleted within the Slotted Page 
by updating the slot array

• Frees space for future insertions or updates
• Efficient Space Reclamation



• Updates that change tuple size:
• we can either update the tuple in-place (if space permits)
• or move the tuple within the page and update the slot with the new offset 

and length.

Slotted Page: Updating Tuple

Free Space Offset

#1 #2
#4

Slot Array

Variable
Length
Tuples



Addressing Limitations of Page Class
bool addTuple(const char *tupleData, size_t length) {
if (free_space_offset + length > PAGE_SIZE) return false; // Check space
page_data[free_space_offset] = ... // Copy tuple data
slots.push_back({free_space_offset, length}); // Update slot
free_space_offset += length; // Move free space offset
return true;

}

Steps for Adding A Tuple to Almost Full Page:
• Check Page Header for Contiguous Free Space
• Directly Access the Slot for Modification



• Each slot points to a variable-length tuple, maximizing space 
utilization and minimizing internal fragmentation.
• Compaction is simplified. Tuples can be moved to compact the 

page, and only the slot offsets need to be updated. 

Addressing Limitations of Page Class

Free Space Offset

#1 #2
#4

Slot Array

Variable
Length
Tuples



File Management



Database File Management

class BuzzDB {
private:
std::fstream file;
// a vector of Slotted Pages acting as a table
std::vector<std::unique_ptr<SlottedPage>> pages;

public:
BuzzDB() { file.open(database_filename, std::ios::in | std::ios::out); }

};

BuzzDB manages a single Slotted Page instance 
Limits the database to operating with a single pagebuzzDB



std::ifstream infile(database_filename);
if (!infile.good()) {
std::ofstream outfile(database_filename);

}

Database File Management

std::ifstream fstream

ofstream

buzzDB



Database File Management

file.open(database_filename, std::ios::in | std::ios::out);
file.seekg(0, std::ios::end);
num_pages = file.tellg() / PAGE_SIZE;

std::fstream ios::in

Read

ios::out

Write

The database file is then opened with read and write permissions

The constructor calculates the number of pages in the database by 
seeking to the end of the file and dividing the file size by PAGE_SIZE



Extending Database File

if (num_pages == 0) {
extendDatabaseFile();

}

void extendDatabaseFile() {
auto empty_slotted_page = std::make_unique<SlottedPage>();
file.seekp(0, std::ios::end);
file.write(empty_slotted_page->page_data.get(), PAGE_SIZE);
file.flush();
// Load the new page into memory...

}

If no pages are found, it calls extendDatabaseFile() to add an initial empty 
page, ensuring the database is ready for data insertion.



Extending Database File

void extendDatabaseFile() {
auto empty_slotted_page = std::make_unique<SlottedPage>();
// Write the buffer to the file, extending it
file.seekp(0, std::ios::end);
file.write(empty_slotted_page->page_data.get(), PAGE_SIZE);
file.flush();
// Update number of pages
num_pages += 1;

}

The extendDatabaseFile() function handles the low-level file 
operations required to append a new page to the database file. 



Extending Database File

0 Page #1 0
1 Page #2 4096 B
2 Page #3 8192 B
3 Page #4 12 KB
4 Page #5 16 KB



Inserting Data into Database File

bool status = try_to_insert(key, value);
// Try again after extending the database file
if (status == false) {
extendDatabaseFile();
bool status2 = try_to_insert(key, value);
assert(status2 == true);

}

BuzzDB checks existing pages to insert new tuple 
extendDatabaseFile adds new page if all are fullbuzzDB



Loading Pages from Database File

for (size_t page_itr = 0; page_itr < num_pages; page_itr++) {
std::unique_ptr<SlottedPage> loadedPage =

SlottedPage::deserialize(file, page_itr);
pages.push_back(std::move(loadedPage));

}

Loading involves 
iterating through the 

existing pages

Each page 
deserialized into a 
SlottedPage object

Each SlottedPage
object added to the 

pages vector



Flushing Database File

void SlottedPage::flush(std::fstream &file, uint16_t page_id) const {
size_t page_offset = page_id * PAGE_SIZE;
file.seekp(page_offset, std::ios::beg);
file.write(page_data.get(), PAGE_SIZE);
file.flush(); // Ensure data is written to disk

}

BuzzDB saves changed pages to disk
Flush method plays a critical rolebuzzDB



Inserting Tuples

bool try_to_insert(int key, int value) {
…
status = pages[page_itr]->addTuple(std::move(newTuple));
if (status == true) {

pages[page_itr]->flush(file, page_itr);
break; // Successfully inserted and persisted the tuple

}
}

Flush method ensures that updated SlottedPage is 
written to diskbuzzDB



Flushing Database File

DRAM

C++ employs buffered I/O to enhance file 
operations' efficiency

std::ofstream temporarily places data into an in-
memory output buffer to optimize disk I/O 
operations



Flushing Database File

DRAM

DISK

Explicitly calling flush() immediately writes all buffered output data 
to the file, an essential step for preventing data loss.



Conclusion
• Tuple deletion
• Slotted Page
• Database File Management
• File Management
• Index Construction


