Lecture J:
Slotted Page




Logistics

» Point Solutions App
= Session |ID: database

» Programming assignment 1 due on Sep 10 via Gradescope

* One-page introduction sheet due on Sep 10 via Gradescope



Recap

Smart Pointers

Smart Field

Heap vs Stack

Page class

Simplifying serialization

Static method for deserialization



Simplifying Page Serialization

Field Class Serialization

void Field::serialize(std::ofstream &out) {
out << type << ' ' << data_length << ' ';
if (type == STRING) {
out << data.get() << ' ';
} else if (type == INT) {
out << *reinterpret_cast<int *>(data.get()) << ' ';
} else if (type == FLOAT) {
out << *reinterpret_cast<float *>(data.get()) << ' ';
}
}



Page::deserialize(filename)

Merge Creation + Loading auto loadedPage = Page::deserialize(filename);

Direct Tuple Loading // Deserialize from disk

// Page pagez;
nage?2.read(filename);

No Temporary Page Object /1




Lecture Overview

* Tuple Deletion
» Slotted Page

* File Management

* |Index Construction






Tuple Deletion

Tuple Deletion Process

deleteTuple method

Check vector bounds

Update page size

Remove tuple from vector

void Page::deleteTuple(size_t index) {

}

if (index >= tuples.size()) {
std::cout << "Tuple index out of range.
return;

}

used_size -= tuples[index]->getSize();
tuples.erase(tuples.begin() + index);

.,
?




Tuple Deletion

Logic introduced to delete tuples

Simulate
Data Lifestyle

Database
Cleanup

Skip Deletion
Periodically

// Skip deleting tuples only once every hundred tuples
if (tuple_insertion_attempt_counter % 168 != 8) {
page.deleteTuple(B);

}




Data Inconsistency

In-Memory Deletion

Changes do not reach disk

loadedPage2 mismatch

// Serialize to disk

db.page.write(filename);

// Deserialize from disk

auto loadedPage = Page::deserialize(filename);
// PROBLEM: Deletion only in memory, not on disk
loadedPage->deleteTuple(B);

// Deserialize again from disk -- page unchanged
auto loadedPage? = Page::deserialize(filename);

Cr




Data Inconsistency

Data Inconsistency Issues

S — In-Memory Changes Not Persisted
In-Memory Changes

f Memory and Disk State Discrepancy




Data Synchronization

Trigger Serialization Process

Disk State Updated

std::cout << "Deleting slots 6 and 7 \n";
loadedPage->deleteTuple(B);
loadedPage->deleteTuple(7);

loadedPage->write(filename);




Data Synchronization

Modifications reflected during deserialization

// Deserialize again from disk -- page is updated this time
auto loadedPage2 = SlottedPage::deserialize(filename);
loadedPage2->print();




Limitations of Page Class: Linear Scan

 FInding space for a new tuple requires a linear scan.
« Poor handling of variable-length tuples leads to wasted space.

Tuple #1
Tuple #2
Tuple #3




Limitations of Page Class: Compaction

* Periodically, we must "compact” this "fragmented” page, moving
tuples around to consolidate free space.

Louis Garrel
Liu Yifel
Original Liu Yifei mfp |Kiiti Sanon Compacted
Page Kriti Sanon Lana Condor Page
Burna Boy

Burna Boy







Slotted Page

Slots are entries in a page's "header” section that keep track of
where the tuples are stored within the page.

struct Slot {
uint16_t offset; // Offset of the tuple within the page
uint16_t length; // Length of the tuple data

¥




Slotted Page

é Slots are entries in a page's "header” section that keep track of

where the tuples are stored within the page.

Free Space Offset ¢

E_v — |9 Slot Array

Y 2

R =

Variable

Length
Tuples




Slotted Page

class SlottedPage {
std: :unique_ptr<char[]> page_data; _
std: :vector<Slot> slots; Slots enable direct

?:.L?e_t free_space_offset; access to any
b tuple by Iindex.




Anatomy of a Slotted Page

Slotted Page

class SlottedPage {
std: :unique_ptr<char[ ]> page_data;
Tracks: std: :vector<Slot> slots;

« Metadata size_t free_space_offset;

« Slot Numbers ;.
* Free Space ’
Offset

Slots Mark Tuple
Data Start on Page




Slotted Page: Adding Tuple

bool addTuple(std::unique_ptr<Tuple> tuple) {

size_t slot_itr = O;
Slot *slot_array =
reinterpret_cast<Slot *>(page_data.get());
for (; slot_itr < MAX_SLOTS; slot_itr++) {
if (slot_array[slot_itr].empty &&
slot_array[slot_itr].length >= tuple_size) {
break;

}

}
// Determine tuple placement and update slot

return true;

}

Checks for
Avallable Space

|dentifies Correct
Tuple Slot

Ensures Efficient
Space Utilization




Slotted Page: Deleting Tuple

void deleteTuple(size_t index) {
Slot *slot_array = reinterpret_cast<Slot *>(page_data.get());
if (index < MAX_SLOTS && !slot_array[index].empty) {
slot_array[index].empty = true; // Mark the slot as empty
used_size -= slot_array[index].length; // Reclaim space

}
}

Marks a tuple as deleted within the Slotted Page
by updating the slot array

Frees space for future insertions or updates
Efficient Space Reclamation




Slotted Page: Updating Tuple

« Updates that change tuple size:
« we can either update the tuple in-place (if space permits)

« or move the tuple within the page and update the slot with the new offset
and length.

Free Space Offset ¢

E_v — |9 Slot Array

Y 2

e =

Variable

Length
Tuples




Addressing Limitations of Page Class

bool addTuple(const char *tupleData, size_t length) {
if (free_space_offset + length > PAGE_SIZE) return false; // Check space

page_data[ free_space_offset] = ... // Copy tuple data
slots.push_back({free_space_offset, length}); // Update slot
free_space_offset += length; // Move free space offset

return true;

}

Steps for Adding A Tuple to Almost Full Page:

« Check Page Header for Contiguous Free Space
« Directly Access the Slot for Modification




Addressing Limitations of Page Class

« Each slot points to a variable-length tuple, maximizing space
utilization and minimizing internal fragmentation.

« Compaction is simplified. Tuples can be moved to compact the
page, and only the slot offsets need to be updated.

Free Space Offset ¢

E_v — |9 Slot Array

Y 2

e =

Variable

Length
Tuples







Database File Management

DB @ BuzzDB manages a single Slotted Page instance

@ Limits the database to operating with a single page

class BuzzDB 4§
private:
std::fstream file;

// a vector of Slotted Pages acting as a table
std: :vector<std: :unique_ptr<SlottedPage>> pages;

public:
BuzzDB() { file.open(database_filename, std::ios::in | std::ios::out); }

};

Cr




Database File Management

® 1122DB

std::ifstream

std::ifstream infile(database_filename);
if (linfile.good()) {
std::ofstream outfile(database_filename);

}




Database File Management

é The database file is then opened with read and write permissions

The constructor calculates the number of pages in the database by
8 seeking to the end of the file and dividing the file size by PAGE_SIZE

file.open(database_filename, std::ios::in | std::ios::out);
file.seekg(8, std::ios::end);
num_pages = file.tellg() / PAGE_SIZE;

iz

std::fstream jos::out




Extending Database File

If no pages are found, it calls extendDatabaseFile() to add an initial empty
page, ensuring the database is ready for data insertion.

if (num_pages == 8) {
extendDatabaseFile();
}

void extendDatabaseFile() {
auto empty_slotted_page = std::make_unique<SlottedPage>();
file.seekp(B, std::ios::end);
file.write(empty_slotted_page->page_data.get(), PAGE_SIZE);
file.flush();
// Load the new page into memory...



Extending Database File

(

The extendDatabaseFile() function handles the low-level file
operations required to append a new page to the database file.

void extendDatabaseFile() {
auto empty_slotted_page = std::make_unique<SlottedPage>();
// Write the buffer to the file, extending it
file.seekp(0, std::ios::end);
file.write(empty_slotted_page->page_data.get(), PAGE_SIZE);
file.flush();
// Update number of pages
num_pages += 1;



Extending Database File

Page #1 8

Page #2 4096 B
Page #3 8192 B
Page #4 12 KB

Page 5 16 KB

= W NhNN = O




Inserting Data into Database File

DB @ BuzzDB checks existing pages to insert new tuple
@ extendDatabaseFile adds new page if all are full

bool status = try_to_insert(key, value);
[/ Try again after extending the database file
if (status == false) {
extendDatabaseFile();
bool status? = try_to_insert(key, value);
assert(status?2 == true);

}




Loading Pages from Database File

Loading involves Each page Each SlottedPage

iterating through the deserialized into a object added to the
existing pages SlottedPage object pages vector

for (size_t page_itr = 0; page_itr < num_pages; page_itr++) {
std: :unique_ptr<SlottedPage> loadedPage =
SlottedPage: :deserialize(file, page_itr);
pages.push_back(std: :move(loadedPage));

}




Flushing Database File

DB @ BuzzDB saves changed pages to disk

® Flush method plays a critical role

void SlottedPage::flush(std::fstream &file, uint16_t page_id) const {
size_t page_offset = page_id * PAGE_SIZE;
file.seekp(page_offset, std::ios::beg);
file.write(page_data.get(), PAGE_SIZE);
file.flush(); // Ensure data is written to disk

}




Inserting Tuples

DB @ Flush method ensures that updated SlottedPage is

written to disk

bool try_to_insert(int key, int value) {

status = pages[page_itr]->addTuple(std::move(newTuple));
if (status == true) {

pages[page_itr]->flush(file, page_itr);

break; // Successfully inserted and persisted the tuple

}
}




Flushing Database File

=i  C++ employs buffered I/0 to enhance file
m operations' efficiency

std:.ofstream temporarily places data into an In-
memory output buffer to optimize disk 1/0
operations




Flushing Database File

Explicitly calling flush() immediately writes all buffered output data
to the file, an essential step for preventing data loss.




Conclusion

* Tuple deletion

Slotted Page

Database File Management

File Management

Index Construction



