
Lecture 6:
File and Storage

Management

Logistics
• Point Solutions App

§ Session ID: database

• Programming assignment 1 due on Sep 10 (Gradescope)
• One-page intro sheet due on Sep 10 (Gradescope)
• Programming assignment 2 and exercise sheet 1 will be released

soon.

Recap
• Simplifying serialization
• Static method for deserialization
• Tuple deletion
• Slotted Page
• File Management

Lecture Overview
• File Management
• Index Construction
• Casting and Streams in C++
• Storage Management
• RAII in C++

File Management

Database File Management

class BuzzDB {
private:
std::fstream file;
// a vector of Slotted Pages acting as a table
std::vector<std::unique_ptr<SlottedPage>> pages;

public:
BuzzDB() { file.open(database_filename, std::ios::in | std::ios::out); }

};

BuzzDB manages a single Slotted Page instance
Limits the database to operating with a single pagebuzzDB

std::ifstream infile(database_filename);
if (!infile.good()) {
std::ofstream outfile(database_filename);

}

Database File Management

std::ifstream fstream

ofstream

buzzDB

Database File Management

file.open(database_filename, std::ios::in | std::ios::out);
file.seekg(0, std::ios::end);
num_pages = file.tellg() / PAGE_SIZE;

std::fstream ios::in

Read

ios::out

Write

The database file is then opened with read and write permissions

The constructor calculates the number of pages in the database by
seeking to the end of the file and dividing the file size by PAGE_SIZE

Extending Database File

if (num_pages == 0) {
extendDatabaseFile();

}

void extendDatabaseFile() {
auto empty_slotted_page = std::make_unique<SlottedPage>();
file.seekp(0, std::ios::end);
file.write(empty_slotted_page->page_data.get(), PAGE_SIZE);
file.flush();
// Load the new page into memory...

}

If no pages are found, it calls extendDatabaseFile() to add an initial empty
page, ensuring the database is ready for data insertion.

Extending Database File

void extendDatabaseFile() {
auto empty_slotted_page = std::make_unique<SlottedPage>();
// Write the buffer to the file, extending it
file.seekp(0, std::ios::end);
file.write(empty_slotted_page->page_data.get(), PAGE_SIZE);
file.flush();
// Update number of pages
num_pages += 1;

}

The extendDatabaseFile() function handles the low-level file
operations required to append a new page to the database file.

Extending Database File

0 Page #1 0
1 Page #2 4096 B
2 Page #3 8192 B
3 Page #4 12 KB
4 Page #5 16 KB

Inserting Data into Database File

bool status = try_to_insert(key, value);
// Try again after extending the database file
if (status == false) {
extendDatabaseFile();
bool status2 = try_to_insert(key, value);
assert(status2 == true);

}

BuzzDB checks existing pages to insert new tuple
extendDatabaseFile adds new page if all are fullbuzzDB

Loading Pages from Database File

for (size_t page_itr = 0; page_itr < num_pages; page_itr++) {
std::unique_ptr<SlottedPage> loadedPage =

SlottedPage::deserialize(file, page_itr);
pages.push_back(std::move(loadedPage));

}

Loading involves
iterating through the

existing pages

Each page
deserialized into a
SlottedPage object

Each SlottedPage
object added to the

pages vector

Flushing Database File

void SlottedPage::flush(std::fstream &file, uint16_t page_id) const {
size_t page_offset = page_id * PAGE_SIZE;
file.seekp(page_offset, std::ios::beg);
file.write(page_data.get(), PAGE_SIZE);
file.flush(); // Ensure data is written to disk

}

BuzzDB saves changed pages to disk
Flush method plays a critical rolebuzzDB

Inserting Tuples

bool try_to_insert(int key, int value) {
…
status = pages[page_itr]->addTuple(std::move(newTuple));
if (status == true) {

pages[page_itr]->flush(file, page_itr);
break; // Successfully inserted and persisted the tuple

}
}

Flush method ensures that updated SlottedPage is
written to diskbuzzDB

Flushing Database File

DRAM

C++ employs buffered I/O to enhance file
operations' efficiency

std::ofstream temporarily places data into an in-
memory output buffer to optimize disk I/O
operations

Flushing Database File

DRAM

DISK

Explicitly calling flush() immediately writes all buffered output data
to the file, an essential step for preventing data loss.

Index Construction

What is an Index?

0 Orwell

1 Austen

2 Austen

3 Hobbes

4 Orwell

5 Orwell

6 Hobbes

7 Austen

Austen 1, 2, 7

Hobbes 3, 6

Orwell 0, 4, 5

UNORGANIZED LIBRARY LIBRARY INDEX

Book
ID Author

TREE DATA STRUCTURE

void BuzzDB::scanTableToBuildIndex() {
for (size_t page_itr = 0; page_itr < num_pages; page_itr++) {
char *page_buffer = pages[page_itr]->page_data.get();
Slot *slot_array = reinterpret_cast<Slot *>(page_buffer);
for (size_t slot_itr = 0; slot_itr < MAX_SLOTS; slot_itr++) {
// Build index using the tuple stored in the slot

}
}

}

Index Construction

Build index using the on-disk database file
Iterate over all the pages in the file and all the slots in each page

void BuzzDB::scanTableToBuildIndex() {
for (size_t page_itr = 0; page_itr < num_pages; page_itr++) {
char *page_buffer = pages[page_itr]->page_data.get();
// Build index using tuples stored in the page

}
}

Index Construction

Step 1: Obtain a pointer to the page data

Slot *slot_array = reinterpret_cast<Slot *>(page_buffer);
for (size_t slot_itr = 0; slot_itr < MAX_SLOTS; slot_itr++) {
if (slot_array[slot_itr].empty == false) {

…
}

}

Index Construction

Step 2: Cast page buffer to Slot array to access slot metadata.
Step 3: Loop over each slot, checking for non-empty slots
indicating stored tuples

Type of casting
that converts

any pointer type
into any other
pointer type

Converts a char*
pointer

(page_buffer) to
a Slot* pointer

Essential to
access slots
array directly

from a raw
memory buffer

Slot *slot_array = reinterpret_cast<Slot *>(page_buffer);

reinterpret_cast

const char *tuple_data = page_buffer + slot_array[slot_itr].offset;
std::istringstream iss(tuple_data);
auto loadedTuple = Tuple::deserialize(iss);
int key = loadedTuple->fields[0]->asInt();
int value = loadedTuple->fields[1]->asInt();
index[key].push_back(value);

Index Construction

Extract tuple data from the slot's offset within the page buffer
Deserialize the tuple data to retrieve key-value pairs
Add key-value pairs to the index

istringstream

“105 Kriti Sanon 5000”

ID 105

First Name Kriti

Last Name Sanon

Salary 5000

SERIALIZED
DATA STREAM

DESERIALIZED
TUPLE

STRING STREAM

istringstream is a library used to perform
operations on string streams

istringstream

const char *tuple_data = page_buffer + slot_array[slot_itr].offset;
std::istringstream iss(tuple_data);
auto loadedTuple = Tuple::deserialize(iss);
int key = loadedTuple->fields[0]->asInt();
int value = loadedTuple->fields[1]->asInt();
index[key].push_back(value);

• Initialize string with tuple data for easy

deserialization

• Convert serialized string data back into Tuple objects

Case Study:
Postgres Fsync Issue

Postgres Fsync Issue
• Postgres relies on the OS for disk writes, consistent with its

“database only” philosophy.
• Two types of writes:
• Data file→ always go through the kernel cache.
• Logfile→ can use direct I/O or kernel cache

Postgres Fsync Issue
• The issue arises at the kernel level when flushing cache to disk

with fsync.
• Postgres assumes the OS will retry flushing if fsync fails, but this

is incorrect.
• When fsync fails, cached data is discarded and cannot be retried.
• Behavior differs slightly by filesystem (ext4, xfs, btrfs, etc.), but

the outcome is the same: no retry of the failed flush.

Postgres Fsync Issue
• Postgres expected fsync errors to be visible across all file

descriptors for a file.
• In reality, error reporting is inconsistent:
• On Linux < 4.13: sometimes no process sees the error.
• On newer kernels: only the first process sees it, others don’t.

• Actual behavior depends on the OS kernel version.

Casting in C++

Casting in C++
C++ provides four main casting operators to

convert data from one type to another:

dynamic_cast (later)

const_cast

reinterpret_cast

static_cast

float floatKey = 123.45;
int intKey = static_cast<int>(floatKey);
// Conversion for using as a key

Casting in C++: static_cast

Example: Converting a float to an int to store it
as a key in the BuzzDB index.

Use it when you're converting types
that are naturally compatible with
each other, like integers and floats.

This cast transforms any pointer into any other pointer
type, even if the types are unrelated.

char* pageData = getPageData(); // Assume this function gets raw data of a page
Slot* slots = reinterpret_cast<Slot*>(pageData); // Treat raw data as array of Slots

Casting in C++: reinterpret_cast

const int* constPtr = new int(42);
int* modifiablePtr = const_cast<int*>(constPtr);
*modifiablePtr = 21; // Modifying the originally constant integer
std::cout << "Modified value: " << *modifiablePtr << std::endl;

Casting in C++: const_cast

Ø const_cast modifies the constness of pointers and
references

Ø Either adds or removes the const qualifier

Streams in C++

Stream Abstraction

Conceptual model
for handling

I/O operations

Abstracts
Data Source or

Data Destination
specifics

Stream
Abstraction
focuses on

Flow of Data

Data Source
&

Destinations

File
I/O

Memory
Buffer

Console
I/O

Network
I/O

Streams in C++

fstream for
file I/O

stringstream for
in-memory string manipulation

File I/O with fstream

std::fstream file("data.txt", std::ios::in | std::ios::out);
std::string line;
while (getline(file, line)) {

std::cout << line << std::endl;
}
file << "New line in file\n";
file.close();

Read from/to
FilesFile Streamfstream

Used for Persistent Data Storage & Retrieval

Manipulating Strings with stringstream

std::stringstream ss;
ss << 100 << ' ' << 200; // Inserting integers into the string stream
int a, b;
ss >> a >> b; // Extracting integers back from the string stream
std::cout << "a: " << a << ", b: " << b << std::endl;

Used for converting data to and from strings

Strings treated
as Streams

Part of sstream
Librarystringstream

Storage Management

Storage Manager

STORAGE MANAGER

BUZZDB: QUERY PROCESSING

Storage Manager

Constructor/Destructor

Flush Page (Write)

Extend File

Load Page (Read)

STORAGE MANAGER

Storage Manager

StorageManager::StorageManager() {
fileStream.open(database_filename, std::ios::in | std::ios::out);
if (!fileStream) {
fileStream.clear(); // Reset the state
fileStream.open(database_filename, std::ios::out);
fileStream.close();

}
fileStream.open(database_filename, std::ios::in | std::ios::out);
// Calculate number of pages
fileStream.seekg(0, std::ios::end);
num_pages = fileStream.tellg() / PAGE_SIZE;

}

Dynamic File Extension

void StorageManager::extend() {
auto empty_slotted_page = std::make_unique<SlottedPage>();
fileStream.seekp(0, std::ios::end);
fileStream.write(empty_slotted_page->page_data.get(), PAGE_SIZE);
fileStream.flush();
num_pages += 1;

}

Database dynamically extended by
adding new pages as needed

void StorageManager::flush(uint16_t page_id) {
size_t page_offset = page_id * PAGE_SIZE;
fileStream.seekp(page_offset, std::ios::beg);
fileStream.write(pages[page_id]->page_data.get(), PAGE_SIZE);
fileStream.flush();

}

Data Persistence

Ensures changes made to in-memory
pages are written back to the diskflush

operation
Secure data against potential data loss

std::unique_ptr<SlottedPage> load(uint16_t page_id) {
fileStream.seekg(page_id * PAGE_SIZE, std::ios::beg);
auto page = std::make_unique<SlottedPage>();
// Read the content of the file into the page
if (fileStream.read(page->page_data.get(), PAGE_SIZE)) {
// std::cout << "Page read successfully from file." << std::endl;

} else {
std::cerr << "Error: Unable to read data from the file. \n";
exit(-1);

}
return page;

}

Data Loading

Load method reads a page
from the database file

StorageManager::~StorageManager() {
if (fileStream.is_open()) {
fileStream.close();

}
}

Storage Manager Destructor

Destructor ensures that the opened file
stream is closed

RAII in C++

RAII (Resource Acquisition Is Initialization)
A programming idiom that binds the lifecycle of
resources (e.g., file handles) to object lifetimes

RAII in C++

Object Destruction

Object Creation

Release Resource

Acquire Resource

RAII in C++: Smart Pointers

Smart Pointer Destruction

Smart Pointer Creation

Release Memory

Acquire Memory

• Smart pointers illustrate the RAII principle
• Resource lifetime (memory) is tied to the scope of the

smart pointer, ensuring automatic resource cleanup

RAII in C++: File Handles

Storage Manager Destructor

Storage Manager Constructor

Release File Stream

Acquire File Stream

Storage Manager illustrates the RAII principle.

bool BuzzDB::try_to_insert(int key, int value) {
for (size_t page_id = 0; page_id < sm.num_pages; ++page_id) {
auto &page = sm.pages[page_id]; // Access page via Storage Manager
if (page->addTuple(/* tuple data */)) {
sm.flush(page_id); // Persist changes to disk
return true; // Successful insertion

}
}
return false; // Indicate failure to insert due to full pages

}

Integration into BuzzDB

Utilize the Storage Manager to read and
write pages, enhancing code
modularity

buzzDB

Conclusion
• File Management
• Index Construction
• Casting and Streams in C++
• Storage Management
• RAII in C++

