| ecture b:
le and Storage
Management

Logistics

» Point Solutions App
= Session |ID: database

* Programming assignment 1 due on Sep 10 (Gradescope)
* One-page intro sheet due on Sep 10 (Gradescope)

* Programming assignment 2 and exercise sheet 1 will be released
soon.

Recap

Simplifying serialization

Static method for deserialization

uple deletion
Slotted Page

File Management

Lecture Overview

File Management

Index Construction

Casting and Streams In C++
Storage Management

RAIl in C++

Database File Management

DB @ BuzzDB manages a single Slotted Page instance

@ Limits the database to operating with a single page

class BuzzDB 4§
private:
std::fstream file;

// a vector of Slotted Pages acting as a table
std: :vector<std: :unique_ptr<SlottedPage>> pages;

public:
BuzzDB() { file.open(database_filename, std::ios::in | std::ios::out); }

};

Cr

Database File Management

® 1122DB

std::ifstream

std::ifstream infile(database_filename);
if (linfile.good()) {
std::ofstream outfile(database_filename);

}

Database File Management

é The database file is then opened with read and write permissions

The constructor calculates the number of pages in the database by
8 seeking to the end of the file and dividing the file size by PAGE_SIZE

file.open(database_filename, std::ios::in | std::ios::out);
file.seekg(8, std::ios::end);
num_pages = file.tellg() / PAGE_SIZE;

iz

std::fstream jos::out

Extending Database File

If no pages are found, it calls extendDatabaseFile() to add an initial empty
page, ensuring the database is ready for data insertion.

if (num_pages == 8) {
extendDatabaseFile();
}

void extendDatabaseFile() {
auto empty_slotted_page = std::make_unique<SlottedPage>();
file.seekp(B, std::ios::end);
file.write(empty_slotted_page->page_data.get(), PAGE_SIZE);
file.flush();
// Load the new page into memory...

Extending Database File

(

The extendDatabaseFile() function handles the low-level file
operations required to append a new page to the database file.

void extendDatabaseFile() {
auto empty_slotted_page = std::make_unique<SlottedPage>();
// Write the buffer to the file, extending it
file.seekp(0, std::ios::end);
file.write(empty_slotted_page->page_data.get(), PAGE_SIZE);
file.flush();
// Update number of pages
num_pages += 1;

Extending Database File

Page #1 8

Page #2 4096 B
Page #3 8192 B
Page #4 12 KB

Page 5 16 KB

= W NN = O

Inserting Data into Database File

DB @ BuzzDB checks existing pages to insert new tuple
@ extendDatabaseFile adds new page if all are full

bool status = try_to_insert(key, value);
[/ Try again after extending the database file
if (status == false) {
extendDatabaseFile();
bool status? = try_to_insert(key, value);
assert(status?2 == true);

}

Loading Pages from Database File

Loading involves Each page Each SlottedPage

iterating through the deserialized into a object added to the
existing pages SlottedPage object pages vector

for (size_t page_itr = 0; page_itr < num_pages; page_itr++) {
std: :unique_ptr<SlottedPage> loadedPage =
SlottedPage: :deserialize(file, page_itr);
pages.push_back(std: :move(loadedPage));

}

Flushing Database File

DB @ BuzzDB saves changed pages to disk

® Flush method plays a critical role

void SlottedPage::flush(std::fstream &file, uint16_t page_id) const {
size_t page_offset = page_id * PAGE_SIZE;
file.seekp(page_offset, std::ios::beg);
file.write(page_data.get(), PAGE_SIZE);
file.flush(); // Ensure data is written to disk

}

Inserting Tuples

DB @ Flush method ensures that updated SlottedPage is

written to disk

bool try_to_insert(int key, int value) {

status = pages[page_itr]->addTuple(std::move(newTuple));
if (status == true) {

pages[page_itr]->flush(file, page_itr);

break; // Successfully inserted and persisted the tuple

}
}

Flushing Database File

=i C++ employs buffered I/0 to enhance file
m operations' efficiency

std:.ofstream temporarily places data into an In-
memory output buffer to optimize disk 1/0
operations

Flushing Database File

Explicitly calling flush() immediately writes all buffered output data
to the file, an essential step for preventing data loss.

What is an Index?

UNORGANIZED LIBRARY

Book
ID

Orwell

Austen

Austen

Hobbes

Orwell

Orwell

Hobbes

Austen

Author

LIBRARY INDEX

Austen 1, 2, 7
Hobbes 3, 6
Orwell 8, 4, 5

TREE DATA STRUCTURE

Cr

Index Construction

@ Build index using the on-disk database file

@ Iterate over all the pages in the file and all the slots in each page

void BuzzDB::scanTableToBuildIndex() {
for (size_t page_itr = 0; page_itr < num_pages; page_itr++) {
char *page_buffer = pages[page_itr]->page_data.get();
Slot *slot_array = reinterpret_cast<Slot *>(page_buffer);
for (size_t slot_itr = 0; slot_itr < MAX_SLOTS; slot_itr++) {
// Build index using the tuple stored in the slot

}
}
}

Index Construction

Step 1: Obtain a pointer to the page data

void BuzzDB::scanTableToBuildIndex() {
for (size_t page_itr = 0; page_itr < num_pages; page_itr++) {
char *page_buffer = pages[page_itr]->page_data.get();
// Build index using tuples stored in the page

}
}

Index Construction

Step 2: Cast page buffer to Slot array to access slot metadata.

Step 3: Loop over each slot, checking for non-empty slots
Indicating stored tuples

Slot *slot_array = reinterpret_cast<Slot *>(page_buffer);
for (size_t slot_itr = 0; slot_itr < MAX_SLOTS; slot_itr++) {
if (slot_array[slot_itr].empty == false) {

}
}

reinterpret_cast

Essential to
access slots
array directly
from a raw
memory buffer

Type of casting
that converts

Converts a char=*

any pointer type pointer

Into any other
pointer type

(page_buffer) to
a Slot* pointer

Slot *slot_array = reinterpret_cast<Slot *>(page_buffer);

Index Construction

® Extract tuple data from the slot's offset within the page buffer

® Deserialize the tuple data to retrieve key-value pairs
® Add key-value pairs to the index

const char *tuple_data = page_buffer + slot_array[slot_itr].offset;
std::istringstream iss(tuple_data);

auto loadedTuple = Tuple::deserialize(iss);

int key = loadedTuple->fields[8]->asInt();

int value = loadedTuple->fields[1]->asInt();
index[key].push_back(value);

Istringstream

.

Istringstream is a library used to perform

operations on string streams

“1085 Kriti Sanon 5000”
ID 185
First Name Kriti
Last Name Sanon
Salary 5000

SERIALIZED

DATA STREAM

DESERIALIZED
TUPLE

STRING STREAM

Cr

Istringstream

 Initialize string with tuple data for easy

deserialization

 Convert serialized string data back into Tuple objects

const char *tuple_data = page_buffer + slot_array[slot_itr].offset;
std::istringstream iss(tuple_data);

auto loadedTuple = Tuple::deserialize(iss);

int key = loadedTuple->fields[B8]->asInt();

int value = loadedTuple->fields[1]->asInt();
index[key].push_back(value);

Lase Stuay:
Postares Fsync Issue

Postgres Fsync Issue

» Postgres reliesont

‘database only" p

N

ne OS for disk writes, consistent with Iits

osophy.

» Two types of writes:

- Data file — always go through the kernel cache.

. Logfile — can use direct I/O or kernel cache

Postgres Fsync Issue

* The issue arises at the kernel level when flushing cache to disk
with fsync.

» Postgres assumes the OS will retry flushing if fsync fails, but this
S Incorrect.

* When fsync fails, cached data is discarded and cannot be retried.

» Behavior differs slightly by filesystem (ext4, xfs, btrfs, etc.), but
the outcome is the same: no retry of the failed flush.

Postgres Fsync Issue

» Postgres expected fsync errors to be visible across all file
descriptors for a file.

* |n reality, error reporting Is iInconsistent:
« On Linux < 4.13: sometimes no process sees the error.

- On newer kernels: only the first process sees it, others don't.

» Actual behavior depends on the OS kernel version.

Last =

Casting in C++

C++ provides four main casting operators to
convert data from one type to another:

static_cast
reinterpret_cast

const_cast

dynamic_cast (later)

Casting in C++: static_cast

Use 1t when you're converting types

that are naturally compatible with
each other, like integers and floats.

Example: Converting a float to an int to store it
as a key in the BuzzDB index.

float floatKey = 123.4b;
int intKey = static_cast<int>(floatKey);
// Conversion for using as a key

Casting in C++: reinterpret_cast

This cast transforms any pointer into any other pointer
type, even if the types are unrelated.

char* pageData = getPageData(); // Assume this function gets raw data of a page
Slot* slots = reinterpret_cast<Slot*>(pageData); // Treat raw data as array of Slots

Casting in C++: const_cast

» const_cast modifies the constness of pointers and

references
> Either adds or removes the const qualifier

const int* constPtr = new int(42);

int* modifiablePtr = const_cast<int*>(constPtr);

*modifiablePtr = 21; // Modifying the originally constant integer
std::cout << "Modified value: " << *modifiablePtr << std::endl;

Stream Abstraction

Abstracts Stream
Data Source or Abstraction
Data Destination focuses on
specifics Flow of Data

Conceptual model
for handling
/0 operations

Memory Console Network
Buffer /O /O

Streams In C++

fstream for
file 1/0

stringstream for
INn-memory string manipulation

File I/0 with fstream

id from/to
Files

T

fstream

std::fstream file("data.txt", std::ios::in | std::ios::out);
std::string line;
while (getline(file, line)) {
std::cout << line << std::endl;
}

file << "New line in file\n";
file.close();

Used for Persistent Data Storage & Retrieval

Manipulating Strings with stringstream

ngs treated
3 Streams

7"‘—'L—

stringstream

std::stringstream ss;

ss << 180 << ' ' << 208; // Inserting integers into the string stream
int a, b;

ss >> a >> b; // Extracting integers back from the string stream
std::cout << "a: " << a << ", b: " << b << std::endl;

Used for converting data to and from strings

Storage Manager

STORAGE MANAGER

BUZZDB: QUERY PROCESSING

Storage Manager

Load Page (Read)
Flush Page (Write)
STORAGE MANAGER
Extend File

Constructor/Destructor

Storage Manager

StorageManager: :StorageManager() {
fileStream.open(database_filename, std::ios::in | std::ios::out);
if (!fileStream) {

fileStream.clear(); // Reset the state
fileStream.open(database_filename, std::ios::out);
fileStream.close();

}

fileStream.open(database_filename, std::ios::in | std::ios::out);
// Calculate number of pages

fileStream.seekg(8, std::ios::end);

num_pages = fileStream.tellg() / PAGE_SIZE;

Dynamic File Extension

Database dynamically extended by
adding new pages as needed

void StorageManager::extend() {
auto empty_slotted_page = std::make_unique<SlottedPage>();
fileStream.seekp(8, std::ios::end);
fileStream.write(empty_slotted_page->page_data.get(), PAGE_SIZE);
fileStream.flush();
num_pages += 1;

}

Data Persistence

Ensures changes made to in-memory
flush pages are written back to the disk

operation | .
Secure data against potential data loss

void StorageManager::flush(uint16_t page_id) {
size_t page_offset = page_id * PAGE_SIZE;
fileStream.seekp(page_offset, std::ios::beg);
fileStream.write(pages[page_id]->page_data.get(), PAGE_SIZE);
fileStream.flush();

}

Data Loading

Load method reads a page
from the database file

std: :unique_ptr<SlottedPage> load(uint16_t page_id) {
fileStream.seekg(page_id * PAGE_SIZE, std::ios::beg);
auto page = std::make_unique<SlottedPage>();
// Read the content of the file into the page
if (fileStream.read(page->page_data.get(), PAGE_SIZE)) {
// std::cout << "Page read successfully from file." << std::endl;
} else {
std::cerr << "Error: Unable to read data from the file. \n";
exit(-1);
}
return page;

}

Storage Manager Destructor

Destructor ensures that the opened file
stream Is closed

StorageManager: :~StorageManager() {
if (fileStream.is_open()) {
fileStream.close();

}
}

RAIl In C++

RAIl (Resource Acquisition Is Initialization)

A programming idiom that binds the lifecycle of
resources (e.g., file handles) to object lifetimes

Object Creation <«——— Acquire Resource

|

Object Destruction «——> Release Resource

RAIl in C++: Smart Pointers

« Smart pointers illustrate the RAII principle

« Resource lifetime (memory) is tied to the scope of the
smart pointer, ensuring automatic resource cleanup

Smart Pointer Creation ——> Acquire Memory

|

Smart Pointer Destruction «— Release Memory

RAIl in C++: File Handles

Storage Manager illustrates the RAIl principle.

Storage Manager Constructor «—» Acquire File Stream

|

Storage Manager Destructor «———— Release File Stream

Integration into BuzzDB

Utilize the Storage Manager to reac

write pages, enhancing code
modularit

bool BuzzDB::try_to_insert(int key, int value) {
for (size_t page_id = 8; page_id < sm.num_pages; ++page_id) {
auto &page = sm.pages[page_id]; // Access page via Storage Manager
if (page->addTuple(/* tuple data */)) {
sm.flush(page_id); // Persist changes to disk
return true; // Successful insertion

}
}

return false; // Indicate failure to insert due to full pages

}

Conclusion

File Management

Index Construction

Casting and Streams In C++
Storage Management

RAIl in C++

