
Lecture 8:
2Q Policy and

Multi-Threading

Logistics
• Point Solutions App

§ Session ID: database

• Programming assignment 2 released (Gradescope)
• Exercise sheet 1 will be released one week before Ed deadline

(Canvas Quiz)
• Mid-term exam on Oct 2 (in-class)

Recap
• Storage Manager
• Buffer Manager
• Cache Replacement Policy
• Buffer Pool Flooding

Lecture Overview
• 2Q Policy
• Multi-Threading
• Fine-Grained Locking

2Q Policy

Sequential Scan

// Sequential scan across the sales_data table
// Assumption: No index on sale_date column
SELECT *
FROM sales_data
WHERE sale_date BETWEEN ‘2040-01-01’ AND ‘2040-01-31’;

when a database reads every table page while processing a
querysequential scan

Buffer Pool Flooding

Sequential scan floods the buffer pool with
less important pages

Evicts the
oldest page

from
cache

FIFO Policy

Evicts
hot pages
to store

cold pages

LRU Policy

FIFO: Buffer Pool Flooding

Access Page 1 2 1 2 3 4 1 2 5 6 1 2
FIFO Queue: 1 1 2 2 2 3 4 1 2 5 6 1 2
FIFO Queue: 2 - 1 1 1 2 3 4 1 2 5 6 1
FIFO Queue: 3 - - - - 1 2 3 4 1 2 5 6
Evict Page 1 2 3 4 1 2 5
Cache Misses 1 2 2 2 3 4 5 6 7 8 9 10

Page Access
Trace 1 2 1 2 3 4 1 2 1 25 6

Buffer Pool Capacity: 3 Pages FIFO evicts hot pages 1 and 2

Access Page 1 2 1 2 3 4 1 2 5 6 1 2
LRU Queue: 1 1 2 1 2 3 4 1 2 5 6 1 2
LRU Queue: 2 - 1 2 1 2 3 4 1 2 5 6 1
LRU Queue: 3 - - - - 1 2 3 4 1 2 5 6
Evict Page 1 2 3 4 1 2 5
Cache Misses 1 2 2 2 3 4 5 6 7 8 9 10

Page Access
Trace 1 2 1 2 3 4 1 2 1 25 6

Buffer Pool Capacity: 3 Pages LRU evicts hot pages 1 and 2

LRU: Buffer Pool Flooding

TwoQ Policy

FIFO Queue

Read-Once
Pages

Accessed
During

Sequential
Scan

LRU Queue

Frequently-
Accessed
Hot Pages
Promoted

to
LRU Queue

• Page initially enters FIFO queue
• Page moves to LRU queue on second accesspage transition logic

void touch(PageID page_id) {
if (pageMap.find(page_id) != pageMap.end()) {

auto it = pageMap[page_id];
// If in FIFO and accessed again, move to LRU
// Otherwise, adjust position within LRU
// If cache is full, then evict
// New pages added to FIFO

}
}

TwoQ Policy: touch

Page Position Updated
When Accessed

Pages Promoted To LRU

Pages Enter FIFO Queue

void touch(PageID page_id) {
// If the page is already in the cache
if (pageMap.find(page_id) != pageMap.end()) {
auto it = pageMap[page_id];
// If it's in FIFO, move to LRU
if (std::find(FIFO.begin(), FIFO.end(), page_id)

!= FIFO.end()) {
FIFO.erase(it);
LRU.push_front(page_id);
pageMap[page_id] = LRU.begin();

}
...

}

TwoQ Policy: touch

Page in LRU Queue Has
Higher Reuse Probability

Page in FIFO Queue
Upgraded to LRU Queue

Check FIFO Queue When
Page Accessed

void touch(PageID page_id){
else {

// If it's in LRU, move to the front
LRU.erase(it);
LRU.push_front(page_id);
pageMap[page_id] = LRU.begin();

}
...

}

TwoQ Policy: touch

Most Recently Used Pages in LRU
Queue Evicted Last

void touch(PageID page_id) {
...
// If the page is not in the cache
else {
// If cache is full, evict
if (FIFO.size() + LRU.size() >= cacheSize) {
evict();

}
// Add page to FIFO
FIFO.push_back(page_id);
pageMap[page_id] = std::prev(FIFO.end());

}
}

TwoQ Policy: touch

PageID evict() {
// FIFO pages are evicted first to minimize cache pollution,
// followed by the least recently used pages in LRU

}

TwoQ Policy: evict

• Prioritizes Eviction from FIFO Queue
• Minimizes Cache Pollution from Sequential ScansTwoQ evict

PageID evict() {
PageID evictedPageId = INVALID_VALUE;
if (!FIFO.empty()) {
evictedPageId = FIFO.front();
FIFO.pop_front();
pageMap.erase(evictedPageId);

} else if (!LRU.empty()) {
evictedPageId = LRU.back();
LRU.pop_back();
pageMap.erase(evictedPageId);

}
return evictedPageId;

}

TwoQ Policy: evict

FIFO
Eviction
Targets

Oldest Page
in Cache

Last-Used
Page in LRU

Cache
Evicted if

FIFO Cache
Empty

TwoQ: No Buffer Pool Flooding

Access Page 1 2 1 2 3 4 1 2 5 6 1 2
FIFO Queue:1 1 2 2 _ 3 4 4 4 5 6 6 6
FIFO Queue:2 - 1 - - - - - - - - - -
FIFO Queue:3 - - - - - - - - - - - -
LRU Queue: 1 - - 1 2 2 2 1 2 2 2 1 2
LRU Queue: 2 - - - 1 1 1 2 1 1 1 2 1
LRU Queue: 3 - - - - - - - - - - - -
Evict Page 3 4 5
Cache Misses 1 2 2 2 3 4 4 4 5 6 6 6

TwoQ retains hot pages like 1 and 2

More Policies: LFU

LFU Policy Benefits

Keeps Frequently-Used
Pages in Memory

LFU Policy Limitations

Does Not Consider Changes
to Recent Access Patterns

More Policies: ARC

ARC Policy Benefits

Dynamically Balances between
LRU and LFU

ARC Policy Limitations

Complex
Implementation

Music Playlist + Cache Eviction Policies

Keeps Favorites and New DiscoveriesTwoQ

Keeps Only New DiscoveriesLRU

Multi-Threading

History of CPUs

1970-1980s
First CPUs

Few
Megahertz

1990s
100s of
MHz to

over 1 GHz

Early 2000s
Top-end

CPUs
over 3 GHz

Mid 2000s
3.8 GHz
Thermal

Wall

History of CPUs

Today
64-core

CPUs
AMD

Threadripper

2006
onwards

4-core CPUs
AMD

Phenom X4

2005
First 2-core

CPUs
Parallel

Processing

Multi-Core CPUs

Clock Speed

Rhythm of a
Drumbeat

One Beat =
One Instruction

Single-Core CPU

Faster Drumbeat

Causes Overheating

Multi-Core CPU

Multiple
Drummers

Multiple Instructions
at the same time

Threading

Thread 1
Txn 1 from User 1

Thread 2
Txn 2 from User 2

Thread: Series of Instructions

Multi-Core CPUs:
Multiple Threads in Parallel

Multi-Threading Example

#include <iostream>
#include <thread>
#include <vector>

int bankBalance = 1000; // Initial bank balance

void performTransactions() {
for (int i = 0; i < 10000; ++i) {
bankBalance += 10; // Deposit
bankBalance -= 10; // Withdrawal

}
}

A shared bank balance variable updated by multiple
threads representing different transactionsContext

int main() {
std::vector<std::thread> threads;
for (int i = 0; i < 8; ++i) {
// Initiate transactions without synchronization
threads.emplace_back(performTransactions);

}
for (auto &thread : threads) {
thread.join(); // Wait for all threads to finish

}
std::cout << "Expected balance: 1000\n

Actual balance: " << bankBalance
<< std::endl;

return 0;
}

Multi-Threading Example

Need for Synchronization

Run 1
Expected Balance: $1000
Actual Balance : $910

Run 2
Expected Balance: $1000
Actual Balance : $1020

Without synchronization, simultaneous
transactions lead to inaccurate balanceChallenge

Playground Slide Synchronization

Playground
Slide

Thread 2 Thread 1

Assembly Level Explanation

// LOAD value of bankBalance from memory to register
MOV EAX, [bankBalance]

//ADD 10 to increment the value in the register
ADD EAX, 10

//STORE the new value in register back to the memory location of bankBalance
MOV [bankBalance], EAX

bankBalance += 10;

Race Condition

Thread 1 LOAD $1000 into a register.

Thread 1 ADDs $10 to its register (now
$1010) and STOREs it back in bankBalance.

Thread 2 also LOADs $1000 into another
register around the same time

Thread 2, unaware that Thread 1 has
modified bankBalance, still has the old

value (1000) in its register

Thread 2 also ADDs $10 and STOREs
$1010 back to bankBalance.

Thread 1 Thread 2

Time

Non-Atomic Load-ADD-STORE Sequence

1 LOAD $1000
2 LOAD $1000
3 ADD $10
4 STORE $1010
5 ADD $10
6 STORE $1010

Time

Thread 1 Thread 2

Intermediate
State

Mutex

std::mutex (mutual exclusion)

mutex

Shared
Variable

Thread 1 Thread 2

a door lock to a room with the shared
variablemutex

std::mutex bankMutex;

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {
bankMutex.lock(); // Manually lock the mutex
bankBalance += 10; // Deposit
bankBalance -= 10; // Withdrawal
bankMutex.unlock(); // Manually unlock the mutex

}
}

std::mutex (mutual exclusion)

Prevents data
corruption

Transactions
processed
atomically

Mutex manual
locking &
unlocking

bankMutex.lock(); // Manually lock the mutex
// CRITICAL SECTION STARTS
bankBalance += 10; // Deposit
bankBalance -= 10; // Withdrawal
// CRITICAL SECTION ENDS
bankMutex.unlock(); // Manually unlock the mutex

Critical Section

• Operations between lock and unlock form
critical section

• Only one thread enters the section at a
time

Spinlock Operations at Assembly Level

; Locking the spinlock
retry:

; EAX is set to the expected old value (unlocked = 0)
MOV EAX, 0
; EBX is set to the new value to store if comparison is successful

(locked = 1)
MOV EBX, 1
; Atomically compare [mutex] to 0, if equal replace [mutex] with 1
LOCK CMPXCHG [mutex], EBX;
; Test if the original value of [mutex] (now in EBX) was 1
TEST EBX, EBX;
; If the mutex was already locked (EBX was 1), jump to retry
JNZ retry

Spinlock Operations at Assembly Level

; Critical section to update bankBalance
MOV EAX, [bankBalance] ; Load bank balance
ADD EAX, 10 ; Modify bank balance
MOV [bankBalance], EAX ; Store bank balance

; Unlocking the Mutex
MOV EBX, 0 ; Set EBX to 0, which represents the unlocked state
MOV [mutex], EBX ; Store 0 into the mutex, effectively unlocking it

Mutex Prevents Data Race

1 LOCK mutex
2 LOAD $1000
3 ADD $10
4 STORE $1010
5 UNLOCK mutex
6 LOCK mutex
7 LOAD $1010
8 ADD $10
9 STORE $1020
10 UNLOCK mutex

Thread 1 Thread 2

Time

Multiple Bank Accounts

std::mutex bankMutex;
// Initial balances of five bank accounts
int bankAccounts[5] = {1000, 2000, 3000, 4000, 5000};

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {
bankMutex.lock(); // Single mutex for all five accounts
bankAccounts[account] += 10; // Deposit
bankAccounts[account] -= 10; // Withdrawal
bankMutex.unlock();

}
}

Managing transactions across 5 bank accounts in a
multi-threaded application

Single Mutex

Thread 1 Thread 2

Multiple Bank Accounts

Account
1

Account
2

Account
3

Account
4

Account
5

Fine-Grained Locking

Fine-Grained Locking

5 separate mutexes

Account 1

Thread 2

Thread 1

Account 2

Account 3

Account 4

Account 5

Use a separate mutex for each bank account to improve concurrency

std::mutex bankAccountMutexes[5]; // A mutex for each bank account
int bankAccounts[5] = {1000, 2000, 3000, 4000, 5000}; // Initial balances

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {
bankAccountMutexes[account].lock(); // Lock only the mutex for specified account
bankAccounts[account] += 10; // Deposit
bankAccounts[account] -= 10; // Withdrawal
bankAccountMutexes[account].unlock(); // Unlock the mutex for the specified account

}
}

Fine-Grained Locking

Non-conflicting transactions can run in parallel

Manual Locking and Unlocking

Manual mutex locking and unlocking comes with risk

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {
bankAccountMutexes[account].lock(); // Lock only the mutex for specified account
bankAccounts[account] += 10; // Deposit
bankAccounts[account] -= 10; // Withdrawal
bankAccountMutexes[account].unlock(); // Unlock the mutex for the specified account

}
}

Thread Starvation

Mutex of Account 3

Thread 4

Thread 1

Locked

Waiting For

std::lock_guard

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {

// Automatically locks
std::lock_guard<std::mutex> lock(bankAccountMutexes[account]);
bankAccounts[account] += 10; // Deposit
bankAccounts[account] -= 10; // Withdrawal
// Mutex automatically unlocked when lock goes out of scope

}
}

A solution to avoid forgetting to unlock a mutex is to use std::lock_guard

std::lock_guard automatically manages locking and unlocking

RAII Principle in C++

std::mutex myMutex;
std::lock_guard<std::mutex> lock(myMutex); // Object created here

another example of RAIIstd::lock_guard

instance of std::lock_guardObjectmutexResource

RAII Principle in C++

RAII Object Resource Managed Acquisition Release

std::lock_guard Mutex Locks the mutex upon
creation

Automatically releases the
lock when object is destroyed.

std::unique_ptr Dynamic memory Allocates memory and
takes ownership

Automatically deallocates
memory

std::fstream File handle Opens a file and
acquires the file handle

Closes the file and releases
the file handle

Automate resource management by
tying resource allocation to object lifespan

Conclusion
• 2Q Policy
• Multi-Threading
• Fine-Grained Locking

