[ecture o:
20 Policy anc
Multi-Threading

Logistics

» Point Solutions App
= Session |ID: database

* Programming assignment 2 released (Gradescope)

o Exercise sheet 1 will be released one week before Ed deadline
(Canvas Quiz)

¢« Mid-term exam on Oct 2 (in-class)

Recap

» Storage Manager

» Buffer Manager

» Cache Replacement Policy

» Buffer Pool Flooding

Lecture Overview

» 2Q Policy
* Multi-Threading

* Fine-Grained Locking

Sequential Scan

. when a database reads every table page while processing a
sequential scan query

// Sequential scan across the sales_data table

// Assumption: No index on sale_date column

SELECT *

FROM sales_data

WHERE sale_date BETWEEN ‘2040-01-081' AND ‘2046-61-317;

E

Buffer Pool Flooding
Sequential scan floods the buffer pool with
“ less important pages

| IIII|||||||||I /
FIFO Policy | | LRU Policy M

)

Evicts the Evicts
oldest page hot pages
from to store

cache cold pages

FIFO: Buffer Pool Flooding

Page Access
Buffer Pool Capacity: 3 Pages FIFO evicts hot pages 1 and 2

Access Page 1
FIFO Queue: 1 1
FIFO Queue: 2 -
FIFO Queue: 3 -

Evict Page
Cache Misses 1 2 2 2 3

1 [=N
| | = | N | =
1 [=N
— N W W

I O —m DN

= - N W
~N (=N O O1
= N OTION O

O NV OO = =

N W - NP

ST IV W A= -

LRU: Buffer Pool Flooding

Page Access
Buffer Pool Capacity: 3 Pages LRU evicts hot pages 1 and 2

Access Page 1 2 1 2 3 4 1 2 5 6 1 2
LRU Queue: 1 1 2 1 2 3 4 1 2 5 6 1 2
LRU Queue: 2 - 1 2 1 2 3 4 1 2 5 6 1
LRU Queue: 3 - - - - 1 2 3 4 1 2 5 6
Evict Page 1 2 3 4 1 2 5
Cache Misses 1 2 2 2 3 4 5 6 7 8 9 10

P>

TwoQ Policy

ade transition loaic 1° Page initially enters FIFO queue
Pe9 . « Page moves to LRU queue on second access
{ FIFO Queue} [LRU Queue }

g Read-Once - - Frequently- h

Pages Accessed
Accessed Hot Pages

During Promoted
Sequential to

Scan LRU Queue
y _ Q y.

)

TwoQ Policy: touch

Pages Enter FIFO Queue void touch(PageID page_id) {
if (pageMap.find(page_id) !'= pageMap.end()) {
auto it = pageMap[page_id];
// If in FIFO and accessed again, move to LRU
Pages Promoted To LRU // Otherwise, adjust position within LRU

// If cache is full, then evict
¥
Page Position Updated !
When Accessed

// New pages added to FIFO

TwoQ Policy: touch

Check FIFO Queue When
Page Accessed

Page in FIFO Queue
Upgraded to LRU Queue

Page in LRU Queue Has
Higher Reuse Probability

void touch(PageID page_id) {
// If the page is already in the cache
if (pageMap.find(page_id) !'= pageMap.end()) {
auto it = pageMap[page_id];
// If it's in FIFO, move to LRU
if (std::find(FIFO0.begin(), FIFO0.end(), page_id)
= FIFO.end()) {
~IF0.erase(it);
RU.push_front(page_id);

nageMap[page_id] = LRU.begin();

(.2

TwoQ Policy: touch

Most Recently Used Pages in LRU
“ Queue Evicted Last

void touch(PageID page_id){
else {
// If it's in LRU, move to the front
LRU.erase(it);
LRU. push_front(page_id);
pageMap[page_id] = LRU.begin();

TwoQ Policy: touch

void touch(PageID page_id) {

// If the page is not in the cache
else {
// If cache is full, evict
if (FIF0.size() + LRU.size() >= cacheSize) {
evict();
}
// Add page to FIFO
FIFO.push_back(page_id);
pageMap[page_id] = std::prev(FIF0.end());

b

TwoQ Policy: evict

: Prioritizes Eviction from FIFO Queue
« Minimizes Cache Pollution from Sequential Scans

PageID evict() {
// FIFO pages are evicted first to minimize cache pollution,
// followed by the least recently used pages in LRU

}

TwoQ Policy: evict

PageID evict() {

PagelID evictedPageld = INVALID_VALUE;

if ('FIF0.empty()) {
evictedPageId = FIFO.front();
FIFO.pop_front();
pageMap.erase(evictedPageld);

} else if ('LRU.empty()) {
evictedPageId = LRU.back();
LRU. pop_back() ;
pageMap.erase(evictedPageld);

}

return evictedPageld;

}

TwoQ: No Buffer Pool Flooding

TwoQ retains hot pages like 1 and 2

Access Page 1 2 1 2 3 4 1 2
FIFO Queue:1 1 2 2 _ 3 4 4 4
FIFO Queue:?2 - 1 - - - - - -
FIFO Queue:3 - - - - - - - -
LRU Queue: 1 - - 1 2 2 2 1 2
LRU Queue: 2 - - - 1 1 1 2 1
LRU Queue: 3 - - - - - - - -
Evict Page 3

Cache Misses 1 2 2 2 3 4 4 4

More Policies: LFU

LFU Policy Benefits LFU Policy Limitations

Keeps Frequently-Used Does Not Consider Changes
Pages in Memory to Recent Access Patterns

More Policies: ARC

ARC Policy Benefits ARC Policy Limitations

Dynamically Balances between Complex
LRU and LFU Implementation

Music Playlist + Cache Fviction Policies

LRU | Keeps Only New Discoveries
Keeps Favorites and New Discoveries

71970-1980s
First CPUs
Few

. Megahertz

History of CPUs

" 1990 |
100s of
MHz to

. over | GHZJ

Early 2000s
Top-end
CPUs
over 3 GHz

” Mid 2000s |
3.8 GHz
Thermal

History of CPUs

First 2-core
CPUs
Parallel
Processing

b4-core
CPUs
AMD

Threadripper

Multi-Core CPUs

Clock Speed

Rhythm of a
Drumbeat

One Beat =
One Instruction

N
Single-Core CPU

Faster Drumbeat

Causes Overheating

Multi-Core CPU

Multiple
Drummers

Multiple Instructions
at the same time

Threading

1o

o\

Thread: Series of Instructions

Multi-Core CPUs:

Multiple Threads in Parallel

¥

Thread 1 Thread 2
Txn 1 from User 1 Txn 2 from User 2

¥

¥

Multi-Threading Example

Context A shared bank balance variable updated by multiple
threads representing different transactions

#include <iostream>
#include <thread>
#include <vector>

int bankBalance = 10868; // Initial bank balance

void performTransactions() {
for (int 1 = 8; i < 100800; ++1i) {
bankBalance += 18; // Deposit
bankBalance -= 18; // Withdrawal

}
}

Multi-Threading Example

int main() {

}

std: :vector<std: :thread> threads;
for (int 1 =08; i < 8; ++i) {

// Initiate transactions without synchronization

threads.emplace_back(performTransactions);
}
for (auto &thread : threads) {

thread.join(); // Wait for all threads to finish
}
std::cout << "Expected balance: 1806\n

Actual balance: " << bankBalance
<< std::endl;

return 0;

Need for Synchronization
Chall Without synchronization, simultaneous
alienge transactions lead to inaccurate balance

Run 1

Expected Balance: $1000
Actual Balance : $916

Run 2
Expected Balance: $1000
Actual Balance : $1620

Playground Slide Synchronization

Thread 2 ; Thread 1 ;

Playground
Slide

Assembly Level Explanation

bankBalance += 10;

4

// LOAD value of bankBalance from memory to register
MOV EAX, [bankBalance]

//ADD 10 to increment the value in the register
ADD EAX, 10

//STORE the new value in register back to the memory location of bankBalance
MOV [bankBalance], EAX

Race Condition

Thread 1

Thread 1 LOAD $1000 into a register.

Thread 1 ADDs $10 to its register (now
$1010) and STOREs it back in bankBalance.

Time

Thread 2

Thread 2 also LOADs $1000 into another
register around the same time

Thread 2, unaware that Thread 1 has
modified bankBalance, still has the old
value (1000) in its register

Thread 2 also ADDs S10 and STOREs
S1010 back to bankBalance.

Non-Atomic Load-ADD-STORE Sequence

Thread 1

Thread 2

1 |LOAD $1000

2 LOAD $1000

3 |ADD S10 Intermediate
4 |STORE $1010 State

5 ADD $10

6 STORE $1010

Time

std::mutex (mutual exclusion)

a door [ock to a room with the sharec
mutex e

Thread 1 Thread 2

Shared
Variable

mutex

std::mutex (mutual exclusion)

std: :mutex bankMutex;

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++i) {

Mutex manual

Iocklng & pankMutex.lock(); // Manually lock the mutex
. unlocking p ankBalance += 18; // Deposit
: nankBalance -= 18; // Withdrawal
" Transactions nankMutex.unlock(); // Manually unlock the mutex

processed }
_atomically }

N
Prevents data

corruption
_ /

Cr

Critical Section

Operations between lock and unlock form
critical section

Only one thread enters the section at a
time

bankMutex.lock(); // Manually lock the mutex
CRITICAL SECTION STARTS

bankBalance += 18; // Deposilt

bankBalance -= 18; // Withdnrawal

// CRITICAL SECTION ENDS

bankMutex.unlock(); // Manually unlock the mutex

Spinlock Operations at Assembly Level

; Locking the spinlock
retry:
: EAX is set to the expected old value (unlocked = 0)
MOV EAX, ©
; EBX 1s set to the new value to store if comparison is successful
(locked = 1)
MOV EBX, 1
+ Atomically compare [mutex] to 8, if equal replace [mutex] with 1
LOCK CMPXCHG [mutex], EBX;
: Test if the original value of [mutex] (now in EBX) was
TEST EBX, EBX:
» If the mutex was already locked (EBX was 1), jump to retry
JNZ retry

Spinlock Operations at Assembly Level

» Critical section to update bankBalance

MOV EAX, [bankBalance] ; Load bank balance
ADD EAX, 18 : Modify bank balance
MOV [bankBalance], EAX ; Store bank balance

» Unlocking the Mutex
MOV EBX, O » Set EBX to @, which represents the unlocked state
MOV [mutex], EBX » Store 0 into the mutex, effectively unlocking it

Mutex Prevents Data Race

Thread 1 Thread 2
1 |LOCK mutex
2 |[LOAD $1000
3 |ADD S10
4 |STORE S1010
5 |UNLOCK mutex
6 LOCK mutex
7 LOAD $1010
8 ADD S10
9 STORE $1020
10 . UNLOCK mutex

Time

Multiple Bank Accounts

Managing transactions across 5 bank accounts in a
multi-threaded application

std: :mutex bankMutex;

// Initial balances of five bank accounts
int bankAccounts[5] = {1060, 20008, 3060, 40008, 5000}

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++i) {
nankMutex.lock(); // Single mutex for all five accounts
nankAccounts[account] += 16; // Deposit
nankAccounts[account] -= 18; // Withdrawal
nankMutex.unlock();

Multiple Bank Accounts

Thread 1 Thread 2

Account | Account | Account | Account | Account
1 2 3 4 5

Single Mutex

Fine-Grained Locking

Use a separate mutex for each bank account to improve concurrency

Fine-Grained Locking

Non-conflicting transactions can run in parallel

std: :mutex bankAccountMutexes[5]; // A mutex for each bank account
int bankAccounts[5] = {1060, 26006, 30060, 4008, 5600}; // Initial balances

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++1i) {
nankAccountMutexes[account].lock(); // Lock only the mutex for specified account
nankAccounts[account] += 16; // Deposit
nankAccounts[account] -= 18; // Withdrawal

nankAccountMutexes[account].unlock(); // Unlock the mutex for the specified account

Cr

Manual Locking and Unlocking

Manual mutex locking and unlocking comes with risk

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++i) {
nankAccountMutexes[account].lock(); // Lock only the mutex for specified account
nankAccounts[account] += 18; // Deposit
nankAccounts[account] -= 18; // Withdrawal
nankAccountMutexes[account].unlock(); // Unlock the mutex for the specified account

Cr

Thread Starvation

std::lock_guard
A solution to avoid forgetting to unlock a mutex is to use std::lock_guard

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++i) {
// Automatically locks
std: :lock_guard<std: :mutex> lock(bankAccountMutexes[account]);
bankAccounts[account] += 18; // Deposit
bankAccounts[account] -= 18; // Withdrawal
// Mutex automatically unlocked when lock goes out of scope

}
}

std::lock_guard automatically manages locking and unlocking

RAIl Principle in C++

std::lock_guard § another example of RAII

std: :mutex myMutex;
std::lock_guard<std::mutex> lock(myMutex); // Object created here

Object instance of std::lock_guard

Cr

RAIl Principle in C++

Automate resource management by
tying resource allocation to object lifespan

RAIl Object Resource Managed Acquisition Release
std::lock_guard Mutex Locks the mutex upon Automatlca_lly re_Ieases the
creation lock when object Is destroyed.
. . Allocates memory and Automatically deallocates
std::unique_ptr | Dynamic memory .
takes ownership memory
Opens a file and Closes the file and releases

std::fstream File handle

acquires the file handle the file handle

Conclusion

» 2Q Policy
* Multi-Threading

* Fine-Grained Locking

