
Lecture 9:
Fine-Grained Locking &

Debugging

Logistics
• Point Solutions App

§ Session ID: database

• Programming assignment 2 released (Gradescope)
• Exercise sheet 1 will be released soon (Canvas)

Recap
• 2Q Policy
• Multi-Threading
• Synchronization

Lecture Overview
• Fine-Grained Locking
• Debugging
• Database Configuration

Mutex

std::mutex (mutual exclusion)

mutex

Shared
Variable

Thread 1 Thread 2

a door lock to a room with the shared
variablemutex

std::mutex bankMutex;

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {
bankMutex.lock(); // Manually lock the mutex
bankBalance += 10; // Deposit
bankBalance -= 10; // Withdrawal
bankMutex.unlock(); // Manually unlock the mutex

}
}

std::mutex (mutual exclusion)

Prevents data
corruption

Transactions
processed
atomically

Mutex manual
locking &
unlocking

bankMutex.lock(); // Manually lock the mutex
// CRITICAL SECTION STARTS
bankBalance += 10; // Deposit
bankBalance -= 10; // Withdrawal
// CRITICAL SECTION ENDS
bankMutex.unlock(); // Manually unlock the mutex

Critical Section

• Operations between lock and unlock form
critical section

• Only one thread enters the section at a
time

Spinlock Operations at Assembly Level

; Locking the spinlock
retry:

; EAX is set to the expected old value (unlocked = 0)
MOV EAX, 0
; EBX is set to the new value to store if comparison is successful

(locked = 1)
MOV EBX, 1
; Atomically compare [mutex] to 0, if equal replace [mutex] with 1
LOCK CMPXCHG [mutex], EBX;
; Test if the original value of [mutex] (now in EBX) was 1
TEST EBX, EBX;
; If the mutex was already locked (EBX was 1), jump to retry
JNZ retry

Spinlock Operations at Assembly Level

; Critical section to update bankBalance
MOV EAX, [bankBalance] ; Load bank balance
ADD EAX, 10 ; Modify bank balance
MOV [bankBalance], EAX ; Store bank balance

; Unlocking the Mutex
MOV EBX, 0 ; Set EBX to 0, which represents the unlocked state
MOV [mutex], EBX ; Store 0 into the mutex, effectively unlocking it

Mutex Prevents Data Race

1 LOCK mutex
2 LOAD $1000
3 ADD $10
4 STORE $1010
5 UNLOCK mutex
6 LOCK mutex
7 LOAD $1010
8 ADD $10
9 STORE $1020
10 UNLOCK mutex

Thread 1 Thread 2

Time

Multiple Bank Accounts

std::mutex bankMutex;
// Initial balances of five bank accounts
int bankAccounts[5] = {1000, 2000, 3000, 4000, 5000};

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {
bankMutex.lock(); // Single mutex for all five accounts
bankAccounts[account] += 10; // Deposit
bankAccounts[account] -= 10; // Withdrawal
bankMutex.unlock();

}
}

Managing transactions across 5 bank accounts in a
multi-threaded application

Single Mutex

Thread 1 Thread 2

Multiple Bank Accounts

Account
1

Account
2

Account
3

Account
4

Account
5

Fine-Grained Locking

Fine-Grained Locking

5 separate mutexes

Account 1

Thread 2

Thread 1

Account 2

Account 3

Account 4

Account 5

Use a separate mutex for each bank account to improve concurrency

std::mutex bankAccountMutexes[5]; // A mutex for each bank account
int bankAccounts[5] = {1000, 2000, 3000, 4000, 5000}; // Initial balances

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {
bankAccountMutexes[account].lock(); // Lock only the mutex for specified account
bankAccounts[account] += 10; // Deposit
bankAccounts[account] -= 10; // Withdrawal
bankAccountMutexes[account].unlock(); // Unlock the mutex for the specified account

}
}

Fine-Grained Locking

Non-conflicting transactions can run in parallel

Manual Locking and Unlocking

Manual mutex locking and unlocking comes with risk

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {
bankAccountMutexes[account].lock(); // Lock only the mutex for specified account
bankAccounts[account] += 10; // Deposit
bankAccounts[account] -= 10; // Withdrawal
bankAccountMutexes[account].unlock(); // Unlock the mutex for the specified account

}
}

Thread Starvation

Mutex of Account 3

Thread 4

Thread 1

Locked

Waiting For

std::lock_guard

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {

// Automatically locks
std::lock_guard<std::mutex> lock(bankAccountMutexes[account]);
bankAccounts[account] += 10; // Deposit
bankAccounts[account] -= 10; // Withdrawal
// Mutex automatically unlocked when lock goes out of scope

}
}

A solution to avoid forgetting to unlock a mutex is to use std::lock_guard

std::lock_guard automatically manages locking and unlocking

RAII Principle in C++

std::mutex myMutex;
std::lock_guard<std::mutex> lock(myMutex); // Object created here

another example of RAIIstd::lock_guard

instance of std::lock_guardObjectmutexResource

RAII Principle in C++

RAII Object Resource Managed Acquisition Release

std::lock_guard Mutex Locks the mutex upon
creation

Automatically releases the
lock when object is destroyed.

std::unique_ptr Dynamic memory Allocates memory and
takes ownership

Automatically deallocates
memory

std::fstream File handle Opens a file and
acquires the file handle

Closes the file and releases
the file handle

Automate resource management by
tying resource allocation to object lifespan

Debugging
Policies & Mechanisms

Origin of Debugging

GRACE HOPPER
James S. Davis

Public domain, via Wikimedia Commons

Log Book with Computer Bug
National Museum of American History

Public Domain under Creative Commons Zero (CC0) license

Debugging in Database Systems

Bugs

Data Corruption

Performance
Degradation

System Crashes

Tools

GDB

Print Statements

Using GDB for Debugging

g++ -g buzzdb.cpp -o buzzdb
gdb ./buzzdb

a tool to see what is going on 'inside’ the program while it
executes or at the moment it crashedGDB

Using GDB for Debugging

#include <iostream>

int add(int x, int y) {
return x + y; // Set a breakpoint here

}

int main() {
int sum = 0;
for (int i = 1; i <= 10; ++i) {
sum = add(sum, i);
std::cout << "Sum: " << sum << endl;

}
return 0;

}

GDB Commands

Run:
Starts the
program

under GDB

Next: Moves
Execution to
the next line

Print:
Displays
values of
variables

Break: Set a
breakpoint at
a specific line

or function

GDB Commands

Continue: Continue
running the

program until the
next breakpoint

Backtrace (bt):
Shows the

call stack to see
how the program

reached
current point

Info:
Displays local

variables in the
current stack

frame

Breakpoints and Backtrace

Breakpoints: Temporarily halt the
program execution at a specific point

Backtrace: Reveals the path taken by the
program to reach current execution point

Illustrative GDB Session

(gdb) break add
Breakpoint 1 at 0x...: file main.cpp, line 4.
(gdb) run
Starting program: /a.out

Breakpoint 1, add (x=0, y=1) at main.cpp:4
4 return x + y;
(gdb) info locals
x = 0
y = 1
(gdb) next
5 }

Illustrative GDB Session

(gdb) print x
$1 = 0
(gdb) print y
$2 = 1
(gdb) continue
Continuing.
Sum: 1
(gdb) backtrace
#0 add (x=1, y=2) at main.cpp:4
#1 0x... in main () at main.cpp:8

Using Print Statements for Debugging

std::cout << "Loading page : " << page_id << std::endl;
std::cout << "Evicting page: " << evictedPageId << std::endl;

Print statements allow you to track
how your program's execution flow and

how variables change over time

Overload << operator

// Define the operator<< function
std::ostream &operator<<(std::ostream &os, const Person &person) {
os << "Person[name=" << person.name << ", age=" << person.age << "]";
return os;

}
int main() {
Person alice("Alice", 50);
std::cout << alice << std::endl;

}

OUTPUT: Person[name = Alice, age = 50]

Print statements allow you to track
how your program's execution flow and

how variables change over time

Debugging Principle: Stress Testing

constexpr size_t MAX_PAGES_IN_MEMORY = 10; // For stress testing
BufferManager bufferManager(MAX_PAGES_IN_MEMORY);

makes it easier
to observe and

understand
eviction

decisions

Small Buffer Pool

edge-cases such
as buffer pool

arise much
sooner

Limited Slots

Debugging Principle: Modular Design

NIKLAUS WIRTH
orcmid, CC BY 2.0

via Wikimedia Commons

class BufferManager {
StorageManager storage_manager;
std::unique_ptr<Policy> policy;
…

};

clear interfaces and separation of concernsModularity

Debugging Principle: Literate Programming

/**
* Function: readPage
* Purpose: Reads a page from the buffer pool.
* If the page is not currently in memory,
* it loads the page from disk into the buffer pool.
* Inputs: pageId - The ID of the page to be read
* Outputs: A reference to a Buffer containing the page data
* Throws: DiskIOException if the page cannot be read
*/
Buffer &BufferManager::readPage(PageId pageId) {

…
}

DONALD KNUTH
Alex Handy, CC BY-SA 2.0
via Wikimedia Commons

programs must be understandable by humans first.
documentation is an integral part of programming.

Debugging Principle: Robustness

// Load frame from disk into memory bool
BufferManager::loadFrame(int frameId, int pageId) {

try {
// Call the storage manager to read data from disk into the buffer frame
storageManager.readPage(pageId, pool[frameId].data);

} catch (const DiskIOException &e) {
std::cerr << "Failed to load page from disk: " << e.what() << std::endl;
return false;

}
return true;

}

ensure that the system can withstand
failures, like failed disk I/O operationsRobustness

Database Configuration

Database Configuration

Parameter Value
PAGE_SIZE 1 KB
MAX_SLOTS 128 slots per page
MAX_PAGES_IN_MEMORY 10 pages
… …

PAGE_SIZE

1KB
PAGE

1KB
PAGE

1 KB
PAGE

1 KB
PAGE

1 KB
PAGE

1 KB
PAGE

1 KB
PAGE

1 KB
PAGE

4 KB
PAGE

4 KB
PAGE

8KB BUFFER POOL

MAX_SLOTS

SLOT
1

(8 B)

SLOT
2

(8 B)
…

SLOT
128
(8 B)

SLOT
1

(4 B)

SLOT
2

(4 B)
…

SLOT
256
(4 B)

1KB SLOTTED PAGE

MAX_PAGES_IN_MEMORY

BUFFER POOL

PAGE
1

PAGE
2

PAGE
3

PAGE
4

PAGE
1

PAGE
2

PAGE
3

PAGE
4

PAGE
5

PAGE
6

PAGE
7

PAGE
8

Challenges in Configuration Tuning

0
1000
2000
3000
4000
5000
6000

1 KB 2 KB 4 KB 8 KB 16 KB

THROUGHPUT
(TRANSACTIONS

PER SECOND)

PAGE SIZE PARAMETER

Most parameters like PAGE_SIZE have a “sweet spot”

Challenges in Configuration Tuning

System Parameter Value
BUFFER_POOL_SIZE 128 MB

System Parameter Value
BUFFER_POOL_SIZE 16 GB

PostgreSQL’s default configuration has low buffer pool size

Immutable vs. Mutable Parameters

System Parameter Mutable or Immutable
PAGE_SIZE Immutable
BUFFER_POOL_SIZE Mutable

Memory Size Throughput Cost Price-Performance
8 GB 100 transactions

per second
$0.05 per
hour

$0.139 per million
transactions

16 GB 200 transactions
per second

$0.15 per
hour

$0.208 per million
transactions

Cloud Database Tuning

Cost vs Performance

Tools for Configuration Tuning

Parameter Value
TOTAL_MEMORY 16 GB
NUMBER_OF_CPUS 16
STORAGE_TYPE SSD / HDD / SAN
APPLICATION_TYPE Type 1 / Type 2 / Type 3

Automatically recommend configuration
based on hardware and application

Application Type Performance
Bound by

Database Size
Relative to DRAM

Workload
Characteristics

Online Transaction
Processing (OLTP) CPU- or I/O-bound DB slightly larger

than DRAM ~ 1 TB
20-40% short transactions, some

long transactions and queries
Online Analytical

Processing (OLAP) I/O- or DRAM-bound DB much larger
than DRAM ~ 4 TB

Large complex reporting queries;
Also known as data warehouse

Web Application (WEB) CPU-bound DB much smaller
than DRAM ~ 4 GB 90% or more simple queries

Database Application Type

Reinforcement Learning for Configuration Tuning

State Current settings of database parameters and the current
workload characteristics

Action Increase or decrease the value of some parameter

Reward Increase in throughput or decrease in price-performance
metric

• Agent interacts with database by trying different
configuration settings

• Observes the impact on performance such as throughput

Conclusion
• Fine-Grained Locking
• Debugging
• Database Configuration

