Lecture 9:
Fine-Grained Locking &
Depugging

Logistics

» Point Solutions App
= Session |ID: database

* Programming assignment 2 released (Gradescope)

» Exercise sheet 1 will be released soon (Canvas)

Recap

» 2Q Policy
* Multi-Threading

* Synchronization

Lecture Overview

» Fine-Grained Locking
» Debugging

» Database Configuration

std::mutex (mutual exclusion)

a door [ock to a room with the sharec
mutex e

Thread 1 Thread 2

Shared
Variable

mutex

std::mutex (mutual exclusion)

std: :mutex bankMutex;

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++i) {

Mutex manual

Iocklng & pankMutex.lock(); // Manually lock the mutex
. unlocking p ankBalance += 18; // Deposit
: nankBalance -= 18; // Withdrawal
" Transactions nankMutex.unlock(); // Manually unlock the mutex

processed }
_atomically }

N
Prevents data

corruption
_ /

Cr

Critical Section

Operations between lock and unlock form
critical section

Only one thread enters the section at a
time

bankMutex.lock(); // Manually lock the mutex
CRITICAL SECTION STARTS

bankBalance += 18; // Deposilt

bankBalance -= 18; // Withdnrawal

// CRITICAL SECTION ENDS

bankMutex.unlock(); // Manually unlock the mutex

Spinlock Operations at Assembly Level

; Locking the spinlock
retry:
: EAX is set to the expected old value (unlocked = 0)
MOV EAX, ©
; EBX 1s set to the new value to store if comparison is successful
(locked = 1)
MOV EBX, 1
+ Atomically compare [mutex] to 8, if equal replace [mutex] with 1
LOCK CMPXCHG [mutex], EBX;
: Test if the original value of [mutex] (now in EBX) was
TEST EBX, EBX:
» If the mutex was already locked (EBX was 1), jump to retry
JNZ retry

Spinlock Operations at Assembly Level

» Critical section to update bankBalance

MOV EAX, [bankBalance] ; Load bank balance
ADD EAX, 18 : Modify bank balance
MOV [bankBalance], EAX ; Store bank balance

» Unlocking the Mutex
MOV EBX, O » Set EBX to @, which represents the unlocked state
MOV [mutex], EBX » Store 0 into the mutex, effectively unlocking it

Mutex Prevents Data Race

Thread 1 Thread 2
1 |LOCK mutex
2 |[LOAD $1000
3 |ADD S10
4 |STORE S1010
5 |UNLOCK mutex
6 LOCK mutex
7 LOAD $1010
8 ADD S10
9 STORE $1020
10 . UNLOCK mutex

Time

Multiple Bank Accounts

Managing transactions across 5 bank accounts in a
multi-threaded application

std: :mutex bankMutex;

// Initial balances of five bank accounts
int bankAccounts[5] = {1060, 20008, 3060, 40008, 5000}

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++i) {
nankMutex.lock(); // Single mutex for all five accounts
nankAccounts[account] += 16; // Deposit
nankAccounts[account] -= 18; // Withdrawal
nankMutex.unlock();

Multiple Bank Accounts

Thread 1 Thread 2

Account | Account | Account | Account | Account
1 2 3 4 5

Single Mutex

Fine-Grained Locking

Use a separate mutex for each bank account to improve concurrency

Fine-Grained Locking

Non-conflicting transactions can run in parallel

std: :mutex bankAccountMutexes[5]; // A mutex for each bank account
int bankAccounts[5] = {1060, 26006, 30060, 4008, 5600}; // Initial balances

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++1i) {
nankAccountMutexes[account].lock(); // Lock only the mutex for specified account
nankAccounts[account] += 16; // Deposit
nankAccounts[account] -= 18; // Withdrawal

nankAccountMutexes[account].unlock(); // Unlock the mutex for the specified account

Cr

Manual Locking and Unlocking

Manual mutex locking and unlocking comes with risk

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++i) {
nankAccountMutexes[account].lock(); // Lock only the mutex for specified account
nankAccounts[account] += 18; // Deposit
nankAccounts[account] -= 18; // Withdrawal
nankAccountMutexes[account].unlock(); // Unlock the mutex for the specified account

Cr

Thread Starvation

std::lock_guard
A solution to avoid forgetting to unlock a mutex is to use std::lock_guard

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++i) {
// Automatically locks
std: :lock_guard<std: :mutex> lock(bankAccountMutexes[account]);
bankAccounts[account] += 18; // Deposit
bankAccounts[account] -= 18; // Withdrawal
// Mutex automatically unlocked when lock goes out of scope

}
}

std::lock_guard automatically manages locking and unlocking

RAIl Principle in C++

std::lock_guard § another example of RAII

std: :mutex myMutex;
std::lock_guard<std::mutex> lock(myMutex); // Object created here

Object instance of std::lock_guard

Cr

RAIl Principle in C++

Automate resource management by
tying resource allocation to object lifespan

RAIl Object Resource Managed Acquisition Release
std::lock_guard Mutex Locks the mutex upon Automatlca_lly re_Ieases the
creation lock when object Is destroyed.
. . Allocates memory and Automatically deallocates
std::unique_ptr | Dynamic memory .
takes ownership memory
Opens a file and Closes the file and releases

std::fstream File handle

acquires the file handle the file handle

Debugging
Policies & Mechanisms

Origin of Debugging

\ | 3 5
’ T m rg 630 Ga . kw}ﬂ,

(W1 WEYEI

LJQuo
®,
GRACE HOPPER Log Book with Computer Bug
James S. Davis National Museum of American History
Public domain, via Wikimedia Commons Public Domain under Creative Commons Zero (CCO0) license

Cr

Debugging in Database Systems

\

Bugs

J

Data Corruption

Performance
Degradation

Print Statements

System Crashes

Using GDB for Debugging

a tool to see what Is going on 'inside’ the program while it

GDB executes or at the moment it crashed

g++ -g buzzdb.cpp -0 buzzdb
gdb ./buzzdb

Using GDB for Debugging

#include <iostream>

int add(int x, int y) {
return x + y; // Set a breakpoint here

}

int main() {
int sum = 0O;
for (int 1 =1; i <= 18; ++i) {
sum = add(sum, i);
std::cout << "Sum: " << sum << endl;

}

return 0;

}

GDB Commands

Run: Next: Moves Print: Break: Set a
Starts the ' Displays breakpoint at

Execution to P
. values of a specific line
the next line

program
under GDB variables or function

GDB Commands

Continue: Continue
running the

program until the
next breakpoint

Backtrace (bt):
Shows the
call stack to see

how the program
reached
current point

Info:
Displays local
variables in the
current stack
frame

Breakpoints and Backtrace

(- ™)
;(Breakpoints: Temporarily halt the
A program execution at a specific point
\\\- Y,)
(@ D N

program to reach current execution point
7,

; E 5 Backtrace: Reveals the path taken by the

lllustrative GDB Session

(gdb) break add

Breakpoint 1 at 6x...: file main.cpp, line 4.
(gdb) run

Starting program: /a.out

Breakpoint 1, add (x=8, y=1) at main.cpp:4
4 return x + vy;

(gdb) info locals

X =0

v =1

(gdb) next

5}

lllustrative GDB Session

(gdb) print x

$1 =10

(gdb) print vy

$2 = 1

(gdb) continue

Continuing.

Sum:

(gdb) backtrace

#0 add (x=1, y=2) at main.cpp:4
#1 Ox... in main () at main.cpp:8

Using Print Statements for Debugging

Print statements allow you to track

how your program's execution flow and
how variables change over time

std::cout << "Loading page :
std::cout << "Evicting page:

<< page_1id << std::endl;
<< evictedPageld << std::endl;

Overload << operator

Print statements allow you to track

how your program's execution flow and
how variables change over time

// Define the operator<< function
std::ostream &operator<<(std::ostream &os, const Person &person) {
0os << "Person[name=" << person.name << ", age=" << person.age << "]";
return os;
3
int main() {
Person alice("Alice", 58);
std::cout << alice << std::endl;

}

OUTPUT: Person[name = Alice, age = 50]

Debugging Principle: Stress Testing

Small Buffer Pool

makes It easier

to observe and
understand
eviction
decisions

constexpr size_t MAX_PAGES_IN_MEMORY = 18; // For stress testing
BufferManager bufferManager (MAX_PAGES_IN_MEMORY);

Debugging Principle: Modular Design

Modularity clear interfaces and separation of concerns

class BufferManager {
StorageManager storage_manager;
std: :unique_ptr<Policy> policy;

};...

AN 10 < ok
AR

g%v
CEEE S
e

NIKLAUS WIRTH

orcmid, CC BY 2.0
via Wikimedia Commons

Debugging Principle: Literate Programming

programs must be understandable by humans first.
documentation is an integral part of programming.

/**
Function: readPage
Purpose: Reads a page from the buffer pool.

If the page is not currently in memory,

it loads the page from disk into the buffer pool.
Inputs: pageld - The ID of the page to be read
Outputs: A reference to a Buffer containing the page data = ——
* Throws: DiskIOException if the page cannot be read DONALD KNUTH

* ok F ok ¥ *

*
/ Alex Handy, CC BY-SA 2.0

Buffer &BufferManager::readPage(Pageld pageld) { via Wikimedia Commons
}

Cr

Debugging Principle: Robustness

ensure that the system can withstand

Robustness failures, like failed disk I/0 operations

// Load frame from disk into memory bool
BufferManager: :loadFrame(int frameld, int pageld) {
try {
// Call the storage manager to read data from disk into the buffer frame
storageManager.readPage(pageId, pool[frameld].data);
} catch (const DiskIOException &e) {
std::cerr << "Failed to load page from disk: " << e.what() << std::endl;
return false;

}

return true;

Database Configuration

PAGE_SIZE 1 KB
MAX_SLOTS 128 slots per page
MAX_PAGES_IN_MEMORY |10 pages

PAGE_SIZE

8KB BUFFER POOL

PAGE A PAGE| PAGE| PAGE| PAGE PAGE PAGE
N
e me

LLl
O
<C
al
-
LL]
—
—
O
—
7p
m
AV

MAX_SLOTS

MAX_PAGES_IN_MEMORY

BUFFER POOL

iR
¥

Challenges in Configuration Tuning

Most parameters like PAGE_SIZE have a “sweet spot”

6000
5000
4000
3000

3R ele] D) 2000
1000

THROUGHPUT
(TRANSACTIONS

1 KB 2 KB 4 KB 8 KB 16 KB

PAGE SIZE PARAMETER

Challenges in Configuration Tuning

PostgreSQL's default configuration has low buffer pool size

System Parameter Value
BUFFER_POOL_SIZE 128 MB

.

System Parameter Value
BUFFER_POOL_SIZE 16 GB

Immutable vs. Mutable Parameters

System Parameter

Mutable or Immutable

PAGE_SIZE

Immutable

BUFFER_POOL_SIZE

Mutable

Cloud Database Tuning

[Cost vs Performance]

Memory Size | Throughput Cost Price-Performance

8 GB 100 transactions |$0.05 per S0.139 per million
per second hour transactions

16 GB 200 transactions |$0.15 per S0.208 per million
per second hour transactions

Tools for Configuration Tuning

Automatically recommend configuration
based on hardware and application

Parameter Value
TOTAL_MEMORY 16 GB
NUMBER_OF_CPUS 16

STORAGE_TYPE

SSD / HDD / SAN

APPLICATION_TYPE

Type 1/ Type 2/ Type 3

Database Application Type

Performance Database Size Workload

Application Type Bound by Relative to DRAM Characteristics

Online Transaction DB slightly larger | 20-40% short transactions, some

Processing (OLTP) CPU- or 1/0-bound than DRAM ~ 1 TB | long transactions and queries

Online Analytical)) DB much larger | Large complex reporting queries;
Processing (OLAP) /0- or DRAM-bound than DRAM ~ 4 TB | Also known as data warehouse

DB much smaller

Web Application (WEB) CPU-bound than DRAM ~ 4 GB 90% or more simple queries

Reinforcement Learning for Configuration Tuning

& : ; : : \
£ Agent interacts with database by trying different h

configuration settings

\ Observes the impact on performance such as throughput J
Current settings of database parameters and the current
State .
workload characteristics
Action Increase or decrease the value of some parameter
Increase in throughput or decrease In price-performance
Reward metric

Conclusion

* Fine-Grained Locking
» Debugging

» Database Configuration

