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Logistics

» Point Solutions App
= Session |ID: database

* Programming assignment 2 released (Gradescope)

» Exercise sheet 1 will be released soon (Canvas)
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» 2Q Policy
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std::mutex (mutual exclusion)

std: :mutex bankMutex;

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++i) {

Mutex manual

Iocklng & pankMutex.lock(); // Manually lock the mutex
. unlocking p ankBalance += 18; // Deposit
: nankBalance -= 18; // Withdrawal
" Transactions nankMutex.unlock(); // Manually unlock the mutex

processed }
_atomically }
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Critical Section

Operations between lock and unlock form
critical section

Only one thread enters the section at a
time

bankMutex.lock(); // Manually lock the mutex
CRITICAL SECTION STARTS

bankBalance += 18; // Deposilt

bankBalance -= 18; // Withdnrawal

// CRITICAL SECTION ENDS

bankMutex.unlock(); // Manually unlock the mutex




Spinlock Operations at Assembly Level

; Locking the spinlock
retry:
: EAX is set to the expected old value (unlocked = 0)
MOV EAX, ©
; EBX 1s set to the new value to store if comparison is successful
(locked = 1)
MOV EBX, 1
+ Atomically compare [mutex] to 8, if equal replace [mutex] with 1
LOCK CMPXCHG [mutex], EBX;
: Test if the original value of [mutex] (now in EBX) was
TEST EBX, EBX:
» If the mutex was already locked (EBX was 1), jump to retry
JNZ retry




Spinlock Operations at Assembly Level

» Critical section to update bankBalance

MOV EAX, [bankBalance] ; Load bank balance
ADD EAX, 18 : Modify bank balance
MOV [bankBalance], EAX ; Store bank balance

» Unlocking the Mutex
MOV EBX, O » Set EBX to @, which represents the unlocked state
MOV [mutex], EBX » Store 0 into the mutex, effectively unlocking it




Mutex Prevents Data Race

Thread 1 Thread 2
1 |LOCK mutex
2 |[LOAD $1000
3 |ADD S10
4 |STORE S1010
5 |UNLOCK mutex
6 LOCK mutex
7 LOAD $1010
8 ADD S10
9 STORE $1020
10 . UNLOCK mutex

Time




Multiple Bank Accounts

Managing transactions across 5 bank accounts in a
multi-threaded application

std: :mutex bankMutex;

// Initial balances of five bank accounts
int bankAccounts[5] = {1060, 20008, 3060, 40008, 5000}

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++i) {
nankMutex.lock(); // Single mutex for all five accounts
nankAccounts[account] += 16; // Deposit
nankAccounts[account] -= 18; // Withdrawal
nankMutex.unlock();




Multiple Bank Accounts

Thread 1 Thread 2

Account | Account | Account | Account | Account
1 2 3 4 5

Single Mutex






Fine-Grained Locking

Use a separate mutex for each bank account to improve concurrency




Fine-Grained Locking

Non-conflicting transactions can run in parallel

std: :mutex bankAccountMutexes[5]; // A mutex for each bank account
int bankAccounts[5] = {1060, 26006, 30060, 4008, 5600}; // Initial balances

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++1i) {
nankAccountMutexes[account].lock(); // Lock only the mutex for specified account
nankAccounts[account] += 16; // Deposit
nankAccounts[account] -= 18; // Withdrawal

nankAccountMutexes[account].unlock(); // Unlock the mutex for the specified account

Cr



Manual Locking and Unlocking

Manual mutex locking and unlocking comes with risk

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++i) {
nankAccountMutexes[account].lock(); // Lock only the mutex for specified account
nankAccounts[account] += 18; // Deposit
nankAccounts[account] -= 18; // Withdrawal
nankAccountMutexes[account].unlock(); // Unlock the mutex for the specified account

Cr




Thread Starvation




std::lock_guard
A solution to avoid forgetting to unlock a mutex is to use std::lock_guard

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++i) {
// Automatically locks
std: :lock_guard<std: :mutex> lock(bankAccountMutexes[account]);
bankAccounts[account] += 18; // Deposit
bankAccounts[account] -= 18; // Withdrawal
// Mutex automatically unlocked when lock goes out of scope

}
}

std::lock_guard automatically manages locking and unlocking



RAIl Principle in C++

std::lock_guard § another example of RAII

std: :mutex myMutex;
std::lock_guard<std::mutex> lock(myMutex); // Object created here

Object instance of std::lock_guard

Cr



RAIl Principle in C++

Automate resource management by
tying resource allocation to object lifespan

RAIl Object Resource Managed Acquisition Release
std::lock_guard Mutex Locks the mutex upon Automatlca_lly re_Ieases the
creation lock when object Is destroyed.
. . Allocates memory and Automatically deallocates
std::unique_ptr | Dynamic memory .
takes ownership memory
Opens a file and Closes the file and releases

std::fstream File handle

acquires the file handle the file handle




Debugging
Policies & Mechanisms




Origin of Debugging
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James S. Davis National Museum of American History
Public domain, via Wikimedia Commons Public Domain under Creative Commons Zero (CCO0) license
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Debugging in Database Systems

\

Bugs

J

Data Corruption

Performance
Degradation

Print Statements

System Crashes




Using GDB for Debugging

a tool to see what Is going on 'inside’ the program while it

GDB executes or at the moment it crashed

g++ -g buzzdb.cpp -0 buzzdb
gdb ./buzzdb



Using GDB for Debugging

#include <iostream>

int add(int x, int y) {
return x + y; // Set a breakpoint here

}

int main() {
int sum = 0O;
for (int 1 =1; i <= 18; ++i) {
sum = add(sum, i);
std::cout << "Sum: " << sum << endl;

}

return 0;

}




GDB Commands

Run: Next: Moves Print: Break: Set a
Starts the ' Displays breakpoint at

Execution to P
. values of a specific line
the next line

program
under GDB variables or function




GDB Commands

Continue: Continue
running the

program until the
next breakpoint

Backtrace (bt):
Shows the
call stack to see

how the program
reached
current point

Info:
Displays local
variables in the
current stack
frame




Breakpoints and Backtrace

(- ™ )
;( Breakpoints: Temporarily halt the
A program execution at a specific point
\\\- Y, )
(@ D N

program to reach current execution point
7,

; E 5 Backtrace: Reveals the path taken by the




lllustrative GDB Session

(gdb) break add

Breakpoint 1 at 6x...: file main.cpp, line 4.
(gdb) run

Starting program: /a.out

Breakpoint 1, add (x=8, y=1) at main.cpp:4
4 return x + vy;

(gdb) info locals

X =0

v =1

(gdb) next

5}



lllustrative GDB Session

(gdb) print x

$1 =10

(gdb) print vy

$2 = 1

(gdb) continue

Continuing.

Sum:

(gdb) backtrace

#0 add (x=1, y=2) at main.cpp:4
#1 Ox... in main () at main.cpp:8



Using Print Statements for Debugging

Print statements allow you to track

how your program's execution flow and
how variables change over time

std::cout << "Loading page :
std::cout << "Evicting page:

<< page_1id << std::endl;
<< evictedPageld << std::endl;




Overload << operator

Print statements allow you to track

how your program's execution flow and
how variables change over time

// Define the operator<< function
std::ostream &operator<<(std::ostream &os, const Person &person) {
0os << "Person[name=" << person.name << ", age=" << person.age << "]";
return os;
3
int main() {
Person alice("Alice", 58);
std::cout << alice << std::endl;

}

OUTPUT: Person[name = Alice, age = 50]




Debugging Principle: Stress Testing

Small Buffer Pool

makes It easier

to observe and
understand
eviction
decisions

constexpr size_t MAX_PAGES_IN_MEMORY = 18; // For stress testing
BufferManager bufferManager (MAX_PAGES_IN_MEMORY);




Debugging Principle: Modular Design

Modularity clear interfaces and separation of concerns

class BufferManager {
StorageManager storage_manager;
std: :unique_ptr<Policy> policy;

};...
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Debugging Principle: Literate Programming

programs must be understandable by humans first.
documentation is an integral part of programming.

/**
Function: readPage
Purpose: Reads a page from the buffer pool.

If the page is not currently in memory,

it loads the page from disk into the buffer pool.
Inputs: pageld - The ID of the page to be read
Outputs: A reference to a Buffer containing the page data = ——
* Throws: DiskIOException if the page cannot be read DONALD KNUTH

* ok F ok ¥ *

*
/ Alex Handy, CC BY-SA 2.0

Buffer &BufferManager::readPage(Pageld pageld) { via Wikimedia Commons
}

Cr




Debugging Principle: Robustness

ensure that the system can withstand

Robustness failures, like failed disk I/0 operations

// Load frame from disk into memory bool
BufferManager: :loadFrame(int frameld, int pageld) {
try {
// Call the storage manager to read data from disk into the buffer frame
storageManager.readPage(pageId, pool[frameld].data);
} catch (const DiskIOException &e) {
std::cerr << "Failed to load page from disk: " << e.what() << std::endl;
return false;

}

return true;






Database Configuration

PAGE_SIZE 1 KB
MAX_SLOTS 128 slots per page
MAX_PAGES_IN_MEMORY |10 pages
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Challenges in Configuration Tuning

Most parameters like PAGE_SIZE have a “sweet spot”

6000
5000
4000
3000

3R ele] D) 2000
1000

THROUGHPUT
(TRANSACTIONS

1 KB 2 KB 4 KB 8 KB 16 KB

PAGE SIZE PARAMETER




Challenges in Configuration Tuning

PostgreSQL's default configuration has low buffer pool size

System Parameter Value
BUFFER_POOL_SIZE 128 MB

.

System Parameter Value
BUFFER_POOL_SIZE 16 GB




Immutable vs. Mutable Parameters

System Parameter

Mutable or Immutable

PAGE_SIZE

Immutable

BUFFER_POOL_SIZE

Mutable




Cloud Database Tuning

[Cost vs Performance ]

Memory Size | Throughput Cost Price-Performance

8 GB 100 transactions  |$0.05 per S0.139 per million
per second hour transactions

16 GB 200 transactions  |$0.15 per S0.208 per million
per second hour transactions




Tools for Configuration Tuning

Automatically recommend configuration
based on hardware and application

Parameter Value
TOTAL_MEMORY 16 GB
NUMBER_OF_CPUS 16

STORAGE_TYPE

SSD / HDD / SAN

APPLICATION_TYPE

Type 1/ Type 2/ Type 3




Database Application Type

Performance Database Size Workload

Application Type Bound by Relative to DRAM Characteristics

Online Transaction DB slightly larger | 20-40% short transactions, some

Processing (OLTP) CPU- or 1/0-bound than DRAM ~ 1 TB | long transactions and queries

Online Analytical ) ) DB much larger | Large complex reporting queries;
Processing (OLAP) /0- or DRAM-bound than DRAM ~ 4 TB | Also known as data warehouse

DB much smaller

Web Application (WEB) CPU-bound than DRAM ~ 4 GB 90% or more simple queries




Reinforcement Learning for Configuration Tuning

& : ; : : \
£ Agent interacts with database by trying different h

configuration settings

\ Observes the impact on performance such as throughput J
Current settings of database parameters and the current
State .
workload characteristics
Action Increase or decrease the value of some parameter
Increase in throughput or decrease In price-performance
Reward metric




Conclusion

* Fine-Grained Locking
» Debugging

» Database Configuration



