Lecture 10:
Database Configuration

Logistics

» Point Solutions App
= Session |ID: database

* Programming assignment 2 due on Oct 1 (Gradescope)

» Practice questions for exercise sheet 1 (Honorlock + Canvas)

Recap

* Multi-Threading

* Synchronization

* Fine-Grained Locking

» Debugging

Lecture Overview

» Database Configuration
* Indexing In C++
» Hash Table

e Hash Function

» Key Deletion

Database Configuration

PAGE_SIZE 1 KB
MAX_SLOTS 128 slots per page
MAX_PAGES_IN_MEMORY |10 pages

PAGE_SIZE

8KB BUFFER POOL

PAGE A PAGE| PAGE| PAGE| PAGE PAGE PAGE
N
e me

LLl
O
<C
al
-
LL]
—
—
O
—
7p
m
AV

MAX_SLOTS

MAX_PAGES_IN_MEMORY

BUFFER POOL

iR
¥

Challenges in Configuration Tuning

Most parameters like PAGE_SIZE have a “sweet spot”

6000
5000
4000
3000

3R ele] D) 2000
1000

THROUGHPUT
(TRANSACTIONS

1 KB 2 KB 4 KB 8 KB 16 KB

PAGE SIZE PARAMETER

Challenges in Configuration Tuning

PostgreSQL's default configuration has low buffer pool size

System Parameter Value
BUFFER_POOL_SIZE 128 MB

.

System Parameter Value
BUFFER_POOL_SIZE 16 GB

Immutable vs. Mutable Parameters

System Parameter

Mutable or Immutable

PAGE_SIZE

Immutable

BUFFER_POOL_SIZE

Mutable

Cloud Database Tuning

[Cost vs Performance]

Memory Size | Throughput Cost Price-Performance

8 GB 100 transactions |$0.05 per S0.139 per million
per second hour transactions

16 GB 200 transactions |$0.15 per S0.208 per million
per second hour transactions

Tools for Configuration Tuning

Automatically recommend configuration
based on hardware and application

Parameter Value
TOTAL_MEMORY 16 GB
NUMBER_OF_CPUS 16

STORAGE_TYPE

SSD / HDD / SAN

APPLICATION_TYPE

Type 1/ Type 2/ Type 3

Database Application Type

Performance Database Size Workload

Application Type Bound by Relative to DRAM Characteristics

Online Transaction DB slightly larger | 20-40% short transactions, some

Processing (OLTP) CPU- or 1/0-bound than DRAM ~ 1 TB | long transactions and queries

Online Analytical)) DB much larger | Large complex reporting queries;
Processing (OLAP) /0- or DRAM-bound than DRAM ~ 4 TB | Also known as data warehouse

DB much smaller

Web Application (WEB) CPU-bound than DRAM ~ 4 GB 90% or more simple queries

Reinforcement Learning for Configuration Tuning

& : ; : : \
£ Agent interacts with database by trying different h

configuration settings

\ Observes the impact on performance such as throughput J
Current settings of database parameters and the current
State .
workload characteristics
Action Increase or decrease the value of some parameter
Increase in throughput or decrease In price-performance
Reward metric

05 Support for Database Management

COMPUTING
PRACTICES

Operating System Support
for Database Management

Michael Stonebraker
University of California, Berkeley

1. Introduction

Database management systems
(DBMS) provide higher level user
support than conventional operating
systems. The DBMS designer must
work in the context of the OS he/she
is faced with. Different operating

SUMMARY: Several operating system services are examined
with a view toward their applicability to support of database
management functions. These services include buffer pool
management; the file system; scheduling, process manage-
ment, and interprocess communication; and consistency

systems are designed for different ~ control.

use. In this paper we examine several

popular operating system services

and indicate whether they are appro- . . .
suggestions concerning improve- the operating system is compiled.

priate for support of database man-
agement functions. Often we will see
that the wrong service is provided or
that severe performance problems
exist. When possible, we offer some

ments. In the next several sections
we look at the services provided by
buffer pool management; the file sys-
tem; scheduling, process manage-

ment,_and interprocess communica-

Then, all file I/O is handled through
this cache. A file read (e.g., read X
in Figure 1) returns data directly
from a block in the cache, if possible;
otherwise, it causes a block to be

guffer Management: Policy

» OS buffer pools often use LRU replacement policy.
 For DB workloads LRU is often suboptimal.

« Access patterns in INGRES are four types:
- Sequential access of blocks not rereferenced
- Sequential access of blocks which wi// be cyclically rereferenced
- Random access to blocks that won't be used again
- Random access where there's some chance of reaccess.

*LRU only works well in case 4, but badly in other cases.

guffer Management: Prefetching

« OSes like UNIX detect sequential access and prefetch blocks

- DBMS often knows in advance which block(s) will be needed next,
and the next needed block is not always “next in file order” logically.

 So, OS prefetching is frequently inadequate or mis-aligned.

Flle System: File Abstraction

« UNIX provides files as character arrays

« DBMS builds on top of that whatever higher-level objects it needs
(records, indexing, etc.).

« UNIX extends files one block at a time, so blocks end up scattered
across disk.

* For sequential scans this creates too much disk arm motion.

« DB prefers "extent"-based storage to reduce seek overhead.

Flle System: Indexing

« UNIX uses indirect blocks (tree of blocks) for file contents; directory
structure Is a tree too.

« DBMS adds its own B-trees for indexing. So there are multiple tree
structures layered, often redundantly.

Indexing in Database Systems

INDEX
KIein, AT o s arwiss s i sra s s 5 soa s sie s oo 0d a0 505 518 & ous 318508 5108 0872 36 wia s 249
LaDuke, ETHOtt W, ottt iiiiiii it iienieiearecesananans 377
Lawless, Frank R, . vcveesiotomansn e easmsvimsnaes snsmasnsavasesasn 307
Layer, JOhN G. vovuonveeeeeeasiine oo omsoes omnssessoesionsssvsssss 330
Leffel, JOMN €. oo vt cneassessssnassssssnseomovessansnss ns s ones 357
Leffel, EAWArd . o« s vaumaiossnoss o6 sesm oo ansis sima e en s i o 359
Leonard, Frederick P. ..o vt ittt it iiiiaien e 371
Lewis, EAwarduiieniiin it iiiiniiiitieianeeenaeannsns 338
Lewis, Frank E. oottt iiiiiiiie tiiitinartncesaanans 200
Lewis, James R.ottt 327
Lewis, Thompson P. ...ttt iiiiie e 339
Tlewelyn, Edgar J. covueiriniiiiiiii ittt iinans 331
BGcoroe T.ccivivscsssnmomanmsns s ws o onne onse os e an o 334
'rmanh, IR nCiST BN e el o LT, 1. b WO cpiteils, o 0 L R 298 -
Book Index i e, ... s 387 Index Fmger
Idin, James F. ...cvoiiiiiiiiiiiiiiiiiii ittt 389
BN, NOahcvvinvnrenninreenarosssonnenasansosoanssnnan 389
McReynolds, Samuel M.eiiiiiiiiiiiiiii it 296
MacGregor, Fi'ancis 2 A St S A - 244
Macy, Carlos B. . oovviiernrineeienionenscnnaneienennins Byator s YT 287
Marvel, Alexander L.ouuitunneiiiiiiiiiiiiieianeereeanaanans 400
Marvel, THOMAS .« .cvvveinitiiiiin ittt e naaeaeeonas o ke 397
Meinschein, Conradveveinieriiiiiininrerreneeereaneneneennns 338
Menzies, G. V. . ouiiititiiit ittt iiitiereentstaneennasananens 217
Menzies, WInNStoncuueettennnnntrrinneenennnnnesoninanaennns 218
Miller, TLOYenz €. oo vie e s s o vnans an o o om e s b o6 50 0658 o s 5w s s 55 e 385
Moeéller, Johti B, s v v i om s asinn swsanis sin s ne ss od s n s sianin ais s i 256
Montgomery, Samuel B. ... i 282
Morrow, Lannie G. e et St B et 6 o reakd el e o of BT
Moye, James H. ..ot e 362

T

Indiana State Library and Historical Bureau, Public
domain, via Wikimedia Commons

Indexing in C++:; ordered_map

A
¢
<

Apple /e
Banana °
Cherry
Date
Elderberry

Fig

o

Grape
Honeydew
llama O (log N)

O 00 NOY O1llh WDN -~

Jackfruit

—_
o

Indexing in C++: unordered_map

Banana

Fig

Apple

Cherry

Avg Case Worst Case

Date

Elderberry

Honeydew

2
6
1
3
A4
5
3
I

Grape

—_
o

Jackfruit

o

llama

Cr

map vs unordered_map

Ordering

Sorted based on key

UNORDERED MAP
Not sorted based on key

Implementation

Binary Search Tree

Hash Table

Average Case Time

O(log N)

0(1)

Worst Case Time

O(log N)

O(N)

Hashindex in BuzzDB

class HashIndex {
private:
std: :unordered_map<int, int> hash_index;
public:
void insertOrUpdate(int key, int value) {
hash_index[key] = value;
}

int getValue(int key) const {
auto it = hash_index.find(key);
return it != hash_index.end() ? it->second : -1;

}

};

Integration of Hashindex in BuzzDB

During the scanning phase, each tuple’s
key-value pair Is inserted into the Hashindex.

void BuzzDB::scanTableToBuildIndex() {
// Iterating over pages and tuples
for (size_t page_itr = 0; page_itr < num_pages; page_itr++) {
// Extract key-value pairs and insert them into the index
int key = loadedTuple->fields[B8]->asInt();
int value = loadedTuple->fields[1]->asInt();

index.insertOrUpdate(key, value);

}
}

Custom HashTable

Hash Index Class
(this version)

std::unordered map

Hash Index Class
(next version)

Custom Hash Table

Hash Table

Think of a hash table like a cabinet of drawers.
Each drawer can hold a piece of paper with the key and associated value.

DIRECT ACCESS USING HASH FUNCTION

Inserting Key-Value Pair

Insert (15, Apple)

HASH(KEY) =KEY % 10=15% 10 =5 (since 15=10 * 1 + 5)

Inserting Key-Value Pair

Insert (26, Grape)

HASH(KEY) = KEY % 10 =26 % 10 = 6 (since 26 = 10 * 2 + 6)

Inserting Key-Value Pair with Collision

Insert (56, Kiwi)

HASH(KEY) = KEY % 10 =56 % 10 = 6

Finding Key-Value Pair

Find value associated with key 15 = Apple

HASH(KEY) =KEY % 10=15%10=5

Finding Key-Value Pair

Find value associated with key 56 = Kiwi

HASH(KEY) = KEY % 10 = 56 % 10 = 6

Finding Key-Value Pair

Find value associated with key 86 = KEY NOT FOUND

HASH(KEY) = KEY % 10 = 86 % 10 = 6

Hash Function

Hash function maps keys to slots in the hash table

size_t hashFunction(int key) {
return key % totalSlots; // Our simple formula
}

HASH(KEY) = KEY % TABLE_SIZE

Collision Handling

Linear Probing Move to the next available slot until we find one empty.

If slot 8 Is taken, check slot 9, then O, 1, and so on.

Cr

ni : 0 :
Linear” Probing
Formula to find the index of the next slot | after K “probes” is
“linear” with respect to K.

INDEX I = (HASHCKEY) + K) % TABLE_SIZE

HASH(KEY) = KEY % TABLE_SIZE

HashEntry Struct

HashEntry Struct Represents a piece of paper containing key and value.

struct HashEntry {
int key, value;
HashEntry(int k, int v) : key(k), value(v) {}

¥

Hashindex

HashTable is simply an array of drawers. Each drawer can either
hold a HashEntry or be empty (indicating no value).

class HashIndex {
std: :vector<std: :optional<HashEntry>> hashTable;

static const size_t capacity = 108; // Hard-coded capacity
HashIndex() { hashTable.resize(capacity); }

¥

Inserting Key-Value Pair

sertOrUndate Uses linear probing to find the next available slot for insertion or
P locate an existing key for updating.

void insertOrUpdate(int key, int value) {
size_t index = hashFunction(key);
do {
if ('hashTable[index]) {
hashTable[index] = HashEntry{key, value, true}; // Insert new entry
break;
} else if (hashTable[index]->key == key) {
hashTable[index]->value += value; // Update existing entry
break;
}
index = (index + 1) % capacity; // Linear probing to next slot
} while (index != originallndex); // Returned to starting point

}

Finding Key-Value Pair

etValue The retrieval process employs linear probing as well to navigate
9 through potential collision sequences.

int getValue(int key) const {
size_t index = hashFunction(key);
do {
if (hashTable[index] && hashTable[index]->key == key) {
return hashTable[index]->value; // Key found
}
index = (index + 1) % capacity; // Continue probing
} while (index != originallndex);
return -1; // Key not found

}

Operation Complexity

N = Number of key-value pairs in the hash table.

NO/FEW COLLISIONS LOTS OF COLLISIONS

INSERT
FIND

Clustering Problem with High Collision Rates

Bad Hash Function: HASH(KEY) = 5

HASH(KEY) = 5

Finding key 32

Find value associated with key 32 = Fig

HASH(KEY) = KEY % 10=32% 10 = 2

Deletion

Delete key 13

HASH(KEY) = KEY % 10=13% 10 = 3

Deletion

Delete key 13

HASH(KEY) =KEY % 10=13% 10 = 3

Finding key 32 After Deletion

Find value associated with key 32 = Not Found

HASH(KEY) = KEY % 10=32% 10 = 2

Solution #1: Rehashing All Keys

Insert all keys into another empty hash table.

HASH(KEY) = KEY % 10

Solution #2: Lazy Deletion

Mark a hash entry as deleted without removing it.

Finding key 32 After Deletion

Find value associated with key 32 = Fig

HASH(KEY) = KEY % 10=32% 10 = 2

Lazy Deletion using Exists Flag

struct HashEntry {
int key;
int value;
bool exists; // Indicates if the entry is active or deleted

// Updated constructor includes position
HashEntry(int k, int v, int pos) : key(k), value(v), exists(true) {}

Vector to Static-Sized Array

class HashIndex {

private:
static const size_t capacity = 108; // Hard-coded capacity
HashEntry hashTable[capacity]; // Static-sized array

b

Position Tracking

Position is used for tracking the location of each entry within the hash table.

struct HashEntry {
int key;
int value;
int position; // Tracks the final position in the array
bool exists; // Indicates if the entry is active

// Updated constructor includes position
HashEntry(int k, int v, int pos)
. key(k), value(v), position(pos), exists(true) {}

Position Tracking

void insertOrUpdate(int key, int value) {

size_t originalIndex = hashFunction(key);
bool inserted = false;

do {
if ('hashTable[index].exists) {
hashTable[index] = HashEntry(key, value, true);

haszaolefindex:.position = index;
inserted = true;
break;

}

Limitations of Linear Probing

Clustering increases likelihood of collision; searches become inefficient

HASH(KEY) = KEY % 10

Conclusion

» Database Configuration
* Indexing In C++
» Hash Table

e Hash Function

» Key Deletion

