
Lecture 10:
Database Configuration

Logistics
• Point Solutions App

§ Session ID: database

• Programming assignment 2 due on Oct 1 (Gradescope)
• Practice questions for exercise sheet 1 (Honorlock + Canvas)

Recap
• Multi-Threading
• Synchronization
• Fine-Grained Locking
• Debugging

Lecture Overview
• Database Configuration
• Indexing in C++
• Hash Table
• Hash Function
• Key Deletion

Database Configuration

Database Configuration

Parameter Value
PAGE_SIZE 1 KB
MAX_SLOTS 128 slots per page
MAX_PAGES_IN_MEMORY 10 pages
… …

PAGE_SIZE

1KB
PAGE

1KB
PAGE

1 KB
PAGE

1 KB
PAGE

1 KB
PAGE

1 KB
PAGE

1 KB
PAGE

1 KB
PAGE

4 KB
PAGE

4 KB
PAGE

8KB BUFFER POOL

MAX_SLOTS

SLOT
1

(8 B)

SLOT
2

(8 B)
…

SLOT
128
(8 B)

SLOT
1

(4 B)

SLOT
2

(4 B)
…

SLOT
256
(4 B)

1KB SLOTTED PAGE

MAX_PAGES_IN_MEMORY

BUFFER POOL

PAGE
1

PAGE
2

PAGE
3

PAGE
4

PAGE
1

PAGE
2

PAGE
3

PAGE
4

PAGE
5

PAGE
6

PAGE
7

PAGE
8

Challenges in Configuration Tuning

0
1000
2000
3000
4000
5000
6000

1 KB 2 KB 4 KB 8 KB 16 KB

THROUGHPUT
(TRANSACTIONS

PER SECOND)

PAGE SIZE PARAMETER

Most parameters like PAGE_SIZE have a “sweet spot”

Challenges in Configuration Tuning

System Parameter Value
BUFFER_POOL_SIZE 128 MB

System Parameter Value
BUFFER_POOL_SIZE 16 GB

PostgreSQL’s default configuration has low buffer pool size

Immutable vs. Mutable Parameters

System Parameter Mutable or Immutable
PAGE_SIZE Immutable
BUFFER_POOL_SIZE Mutable

Memory Size Throughput Cost Price-Performance
8 GB 100 transactions

per second
$0.05 per
hour

$0.139 per million
transactions

16 GB 200 transactions
per second

$0.15 per
hour

$0.208 per million
transactions

Cloud Database Tuning

Cost vs Performance

Tools for Configuration Tuning

Parameter Value
TOTAL_MEMORY 16 GB
NUMBER_OF_CPUS 16
STORAGE_TYPE SSD / HDD / SAN
APPLICATION_TYPE Type 1 / Type 2 / Type 3

Automatically recommend configuration
based on hardware and application

Application Type Performance
Bound by

Database Size
Relative to DRAM

Workload
Characteristics

Online Transaction
Processing (OLTP) CPU- or I/O-bound DB slightly larger

than DRAM ~ 1 TB
20-40% short transactions, some

long transactions and queries
Online Analytical

Processing (OLAP) I/O- or DRAM-bound DB much larger
than DRAM ~ 4 TB

Large complex reporting queries;
Also known as data warehouse

Web Application (WEB) CPU-bound DB much smaller
than DRAM ~ 4 GB 90% or more simple queries

Database Application Type

Reinforcement Learning for Configuration Tuning

State Current settings of database parameters and the current
workload characteristics

Action Increase or decrease the value of some parameter

Reward Increase in throughput or decrease in price-performance
metric

• Agent interacts with database by trying different
configuration settings

• Observes the impact on performance such as throughput

OS Support for DB

OS Support for Database Management

Buffer Management: Policy
• OS buffer pools often use LRU replacement policy.

• For DB workloads LRU is often suboptimal.

• Access patterns in INGRES are four types:
• Sequential access of blocks not rereferenced
• Sequential access of blocks which will be cyclically rereferenced
•Random access to blocks that won’t be used again
•Random access where there’s some chance of reaccess.

•LRU only works well in case 4, but badly in other cases.

Buffer Management: Prefetching
• OSes like UNIX detect sequential access and prefetch blocks

• DBMS often knows in advance which block(s) will be needed next,
and the next needed block is not always “next in file order” logically.

• So, OS prefetching is frequently inadequate or mis‐aligned.

File System: File Abstraction
• UNIX provides files as character arrays

• DBMS builds on top of that whatever higher-level objects it needs
(records, indexing, etc.).

• UNIX extends files one block at a time, so blocks end up scattered
across disk.

• For sequential scans this creates too much disk arm motion.

• DB prefers “extent”-based storage to reduce seek overhead.

File System: Indexing
• UNIX uses indirect blocks (tree of blocks) for file contents; directory

structure is a tree too.

• DBMS adds its own B-trees for indexing. So there are multiple tree
structures layered, often redundantly.

Indexing in C++

Indexing in Database Systems

Book Index

Indiana State Library and Historical Bureau, Public
domain, via Wikimedia Commons

Index Finger

Indexing in C++: ordered_map

Key Value
1 Apple
2 Banana
3 Cherry
4 Date
5 Elderberry
6 Fig
7 Grape
8 Honeydew
9 Ilama

10 Jackfruit

5

3 8

2 4

1

7 9

10

O (log N)

Indexing in C++: unordered_map

Key Value
2 Banana
6 Fig
1 Apple
3 Cherry
4 Date
5 Elderberry
8 Honeydew
7 Grape

10 Jackfruit
9 Ilama

O (1) O (N)

Avg Case Worst Case

map vs unordered_map

MAP UNORDERED MAP
Ordering Sorted based on key Not sorted based on key

Implementation Binary Search Tree Hash Table
Average Case Time O(log N) O(1)

Worst Case Time O(log N) O(N)

HashIndex in BuzzDB

class HashIndex {
private:
std::unordered_map<int, int> hash_index;

public:
void insertOrUpdate(int key, int value) {

hash_index[key] = value;
}
int getValue(int key) const {
auto it = hash_index.find(key);
return it != hash_index.end() ? it->second : -1;

}
};

insertOrUpdate getValue

Integration of HashIndex in BuzzDB

void BuzzDB::scanTableToBuildIndex() {
// Iterating over pages and tuples
for (size_t page_itr = 0; page_itr < num_pages; page_itr++) {
// Extract key-value pairs and insert them into the index
int key = loadedTuple->fields[0]->asInt();
int value = loadedTuple->fields[1]->asInt();

index.insertOrUpdate(key, value);
}

}

During the scanning phase, each tuple’s
key-value pair is inserted into the HashIndex.

Custom HashTable

std::unordered map

Hash Index Class
(this version)

Custom Hash Table

Hash Index Class
(next version)

Hash Table

Hash Table

Think of a hash table like a cabinet of drawers.
Each drawer can hold a piece of paper with the key and associated value.

0 1 2 3 4 5 6 7 8 9
15

Apple

DIRECT ACCESS USING HASH FUNCTION

Inserting Key-Value Pair

Insert (15, Apple)

0 1 2 3 4 5 6 7 8 9
15

Apple

HASH(KEY) = KEY % 10 = 15 % 10 = 5 (since 15 = 10 * 1 + 5)

Inserting Key-Value Pair

Insert (26, Grape)

0 1 2 3 4 5 6 7 8 9
15 26

Apple Grape

HASH(KEY) = KEY % 10 = 26 % 10 = 6 (since 26 = 10 * 2 + 6)

Inserting Key-Value Pair with Collision

Insert (56, Kiwi)

0 1 2 3 4 5 6 7 8 9
15 26 56

Apple Grape Kiwi

HASH(KEY) = KEY % 10 = 56 % 10 = 6

Finding Key-Value Pair

Find value associated with key 15 = Apple

0 1 2 3 4 5 6 7 8 9
15 26 56

Apple Grape Kiwi

HASH(KEY) = KEY % 10 = 15 % 10 = 5

Finding Key-Value Pair

Find value associated with key 56 = Kiwi

0 1 2 3 4 5 6 7 8 9
15 26 56

Apple Grape Kiwi

HASH(KEY) = KEY % 10 = 56 % 10 = 6

Finding Key-Value Pair

Find value associated with key 86 = KEY NOT FOUND

0 1 2 3 4 5 6 7 8 9
15 26 56

Apple Grape Kiwi

HASH(KEY) = KEY % 10 = 86 % 10 = 6

Hash Function

Hash Function

Hash function maps keys to slots in the hash table

HASH(KEY) = KEY % TABLE_SIZE

size_t hashFunction(int key) {
return key % totalSlots; // Our simple formula

}

Collision Handling

0 1 2 3 4 5 6 7 8 9
80 11 15 26 56 18 79
Lime Date Apple Grape Kiwi Fig Pear

Move to the next available slot until we find one empty.Linear Probing

If slot 8 is taken, check slot 9, then 0, 1, and so on.

"Linear" Probing

Formula to find the index of the next slot I after K “probes” is
“linear” with respect to K.

INDEX I = (HASH(KEY) + K) % TABLE_SIZE

HASH(KEY) = KEY % TABLE_SIZE

HashEntry Struct

struct HashEntry {
int key, value;
HashEntry(int k, int v) : key(k), value(v) {}

};

Represents a piece of paper containing key and value.HashEntry Struct

HashIndex

HashTable is simply an array of drawers. Each drawer can either
hold a HashEntry or be empty (indicating no value).

class HashIndex {
std::vector<std::optional<HashEntry>> hashTable;

static const size_t capacity = 100; // Hard-coded capacity
HashIndex() { hashTable.resize(capacity); }

};

Inserting Key-Value Pair

void insertOrUpdate(int key, int value) {
size_t index = hashFunction(key);
do {
if (!hashTable[index]) {
hashTable[index] = HashEntry{key, value, true}; // Insert new entry
break;

} else if (hashTable[index]->key == key) {
hashTable[index]->value += value; // Update existing entry
break;

}
index = (index + 1) % capacity; // Linear probing to next slot

} while (index != originalIndex); // Returned to starting point
}

Uses linear probing to find the next available slot for insertion or
locate an existing key for updating.insertOrUpdate

Finding Key-Value Pair

int getValue(int key) const {
size_t index = hashFunction(key);
do {
if (hashTable[index] && hashTable[index]->key == key) {

return hashTable[index]->value; // Key found
}
index = (index + 1) % capacity; // Continue probing

} while (index != originalIndex);
return -1; // Key not found

}

The retrieval process employs linear probing as well to navigate
through potential collision sequences.getValue

Operation Complexity

N = Number of key-value pairs in the hash table.

NO/FEW COLLISIONS LOTS OF COLLISIONS
INSERT O(1) O(N)
FIND O(1) O(N)

Clustering Problem with High Collision Rates

Bad Hash Function: HASH(KEY) = 5

0 1 2 3 4 5 6 7 8 9
15 26 56

Apple Grape Kiwi

HASH(KEY) = 5

Key Deletion

Finding key 32

Find value associated with key 32 = Fig

0 1 2 3 4 5 6 7 8 9
2 13 34 32

Apple Grape Kiwi Fig

HASH(KEY) = KEY % 10 = 32 % 10 = 2

Deletion

Delete key 13

0 1 2 3 4 5 6 7 8 9
2 13 34 32

Apple Grape Kiwi Fig

HASH(KEY) = KEY % 10 = 13 % 10 = 3

Deletion

Delete key 13

0 1 2 3 4 5 6 7 8 9
2 34 32

Apple Kiwi Fig

HASH(KEY) = KEY % 10 = 13 % 10 = 3

Finding key 32 After Deletion

Find key 32 = Not Found

0 1 2 3 4 5 6 7 8 9
2 34 32

Apple Kiwi Fig

HASH(KEY) = KEY % 10 = 32 % 10 = 2

Find value associated with key 32 = Not Found

Solution #1: Rehashing All Keys

Insert all keys into another empty hash table.

0 1 2 3 4 5 6 7 8 9
2 32 34

Apple Fig Kiwi

HASH(KEY) = KEY % 10

Solution #2: Lazy Deletion

Mark a hash entry as deleted without removing it.

0 1 2 3 4 5 6 7 8 9
2 13 34 32

Apple Grape Kiwi Fig
1 1 1 0 1 1 1 1 1 1

Finding key 32 After Deletion

Find value associated with key 32 = Fig

0 1 2 3 4 5 6 7 8 9
2 13 34 32

Apple Grape Kiwi Fig
1 1 1 0 1 1 1 1 1 1

HASH(KEY) = KEY % 10 = 32 % 10 = 2

Lazy Deletion using Exists Flag

struct HashEntry {
int key;
int value;
bool exists; // Indicates if the entry is active or deleted

// Updated constructor includes position
HashEntry(int k, int v, int pos) : key(k), value(v), exists(true) {}

};

Vector to Static-Sized Array

class HashIndex {
private:
static const size_t capacity = 100; // Hard-coded capacity
HashEntry hashTable[capacity]; // Static-sized array

};

Position Tracking

Position is used for tracking the location of each entry within the hash table.

struct HashEntry {
int key;
int value;
int position; // Tracks the final position in the array
bool exists; // Indicates if the entry is active

// Updated constructor includes position
HashEntry(int k, int v, int pos)

: key(k), value(v), position(pos), exists(true) {}
};

Position Tracking

void insertOrUpdate(int key, int value) {
size_t originalIndex = hashFunction(key);
bool inserted = false;
do {
if (!hashTable[index].exists) {

hashTable[index] = HashEntry(key, value, true);
hashTable[index].position = index;
inserted = true;
break;

}
…

}
}

0 1 2 3 4 5 6 7 8 9
2 12 22 32

Apple Grape Kiwi Fig

HASH(KEY) = KEY % 10

Limitations of Linear Probing

Clustering increases likelihood of collision; searches become inefficient

Conclusion
• Database Configuration
• Indexing in C++
• Hash Table
• Hash Function
• Key Deletion

