Lecture L1:
Hash Tahles

Logistics

» Point Solutions App
= Session |ID: database

» Exercise sheet 1 will be released on Sep 23
= 25 questions (modules 1 through 4)

= Lockdown browser
« Scratch paper allowed

e Mid-term exam on Oct 2

Recap

» Database Configuration

* Indexing In C++

« Hash Tables

e Hash Function

Lecture Overview

» Deletion and Position Tracking
» Quadratic Probing
* Double Hashing

Periodic Table of System Design Principles

Towards a Periodic Table of Computer System Design Principles

JOY ARULRAJ, Georgia Institute of Technology

System design is often taught through domain-specific solutions specific to particular domains, such as databases, operating systems,
or computer architecture, each with its own methods and vocabulary. While this diversity is a strength, it can obscure cross-cutting
principles that recur across domains. This paper proposes a preliminary “periodic table” of system design principles distilled from
several domains in computer systems. The goal is a shared, concise vocabulary that helps students, researchers, and practitioners reason
about structure and trade-offs, compare designs across domains, and communicate choices more clearly. For supporting materials and

updates, please refer to the repository at: https://github.com/jarulraj/periodic-table.

https://github.com/jarulraj/periodic-table

Cr

https://github.com/jarulraj/periodic-table

Periodic Table of System Design Principles

Towards a Periodic Table of Computer System Design Principles 3
Str Eff Sem Dist Plan Oper Rel Sec
Si Sc Al Lt Ep Ad Ft Sy
Mo Rc Lu Dc Cm Ec Is Ac
Co Wy Se Fp Cp Wa At Lp
Ex Cc Fs Lo Gd Au Cr Tq
Pm Bo Ig Bb Ho Cf
Gr Ha Ah Ev Sa
Op
La

Storage manager

» Se - Semantically Expl

icit Interfaces: Make durabillity, ordering,

and visibility contracts explicit (fsync, barriers, WAL semantics).
* Ft — Fault Tolerance: Survive crashes/corruption via checksums,

recovery, replication/mnr
» At - Atomic Execution:

Irroring.
Group updates so they commit all-or-

nothing (WAL + careful flush protocol.

« Ha - Hardware-Aware

Design: Choose page/extent sizes,

alignment, and layouts (e.g., log-structured for SSDs) to fit device

traits.

Buffer manager

Lo - Locality of Reference: Exploit temporal/spatial locality via
hot-page reuse and prefetch for scans.

Ri — Reuse of |/0: Cache pages to avoid repeated disk /0.

Pm - Policy/Mechanism Separation: Pin/unpin/dirty/flush
mechanisms with pluggable eviction (LRU, CLOCK, ARC).

Ad - Adaptive Processing: Tune prefetch/eviction based on hit
rate, skew, and working-set changes.

Hash Tables

* Rc - Reuse of Computation
Build the hash table once and use it several times to quickly locate a

tuple (or key)

* Lo - Locality of Reference
Probing keeps searches near the home bucket

* Pm - Policy/Mechanism Separation
Mechanism = array + probe sequence, policies = hash/equality
functions, load-factor thresholds and resize strategy, deletion method
(tombstones vs backward-shift). You can swap these without changing

the core table.

Hash Table

Think of a hash table like a cabinet of drawers.
Each drawer can hold a piece of paper with the key and associated value.

DIRECT ACCESS USING HASH FUNCTION

Inserting Key-Value Pair

Insert (15, Apple)

HASH(KEY) =KEY % 10=15% 10 =5 (since 15=10 * 1 + 5)

Inserting Key-Value Pair

Insert (26, Grape)

HASH(KEY) = KEY % 10 =26 % 10 = 6 (since 26 = 10 * 2 + 6)

Inserting Key-Value Pair with Collision

Insert (56, Kiwi)

HASH(KEY) = KEY % 10 =56 % 10 = 6

Finding Key-Value Pair

Find value associated with key 15 = Apple

HASH(KEY) =KEY % 10=15%10=5

Finding Key-Value Pair

Find value associated with key 56 = Kiwi

HASH(KEY) = KEY % 10 = 56 % 10 = 6

Finding Key-Value Pair

Find value associated with key 86 = KEY NOT FOUND

HASH(KEY) = KEY % 10 = 86 % 10 = 6

Hash Function

Hash function maps keys to slots in the hash table

size_t hashFunction(int key) {
return key % totalSlots; // Our simple formula
}

HASH(KEY) = KEY % TABLE_SIZE

Collision Handling

Linear Probing Move to the next available slot until we find one empty.

If slot 8 Is taken, check slot 9, then O, 1, and so on.

Cr

ni : 0 :
Linear” Probing
Formula to find the index of the next slot | after K “probes” is
“linear” with respect to K.

INDEX I = (HASHCKEY) + K) % TABLE_SIZE

HASH(KEY) = KEY % TABLE_SIZE

HashEntry Struct

HashEntry Struct Represents a piece of paper containing key and value.

struct HashEntry {
int key, value;
HashEntry(int k, int v) : key(k), value(v) {}

¥

Hashindex

HashTable is simply an array of drawers. Each drawer can either
hold a HashEntry or be empty (indicating no value).

class HashIndex {
std: :vector<std: :optional<HashEntry>> hashTable;

static const size_t capacity = 108; // Hard-coded capacity
HashIndex() { hashTable.resize(capacity); }

¥

Inserting Key-Value Pair

sertOrUndate Uses linear probing to find the next available slot for insertion or
P locate an existing key for updating.

void insertOrUpdate(int key, int value) {
size_t index = hashFunction(key);
do {
if ('hashTable[index]) {
hashTable[index] = HashEntry{key, value, true}; // Insert new entry
break;
} else if (hashTable[index]->key == key) {
hashTable[index]->value += value; // Update existing entry
break;
}
index = (index + 1) % capacity; // Linear probing to next slot
} while (index != originallndex); // Returned to starting point

}

Finding Key-Value Pair

etValue The retrieval process employs linear probing as well to navigate
9 through potential collision sequences.

int getValue(int key) const {
size_t index = hashFunction(key);
do {
if (hashTable[index] && hashTable[index]->key == key) {
return hashTable[index]->value; // Key found
}
index = (index + 1) % capacity; // Continue probing
} while (index != originallndex);
return -1; // Key not found

}

Operation Complexity

N = Number of key-value pairs in the hash table.

NO/FEW COLLISIONS LOTS OF COLLISIONS

INSERT
FIND

Clustering Problem with High Collision Rates

Bad Hash Function: HASH(KEY) = 5

HASH(KEY) = 5

Finding key 32

Find value associated with key 32 = Fig

HASH(KEY) = KEY % 10=32% 10 = 2

Deletion

Delete key 13

HASH(KEY) = KEY % 10=13% 10 = 3

Deletion

Delete key 13

HASH(KEY) =KEY % 10=13% 10 = 3

Finding key 32 After Deletion

Find value associated with key 32 = Not Found

HASH(KEY) = KEY % 10=32% 10 = 2

Solution #1: Rehashing All Keys

Insert all keys into another empty hash table.

HASH(KEY) = KEY % 10

Solution #2: Lazy Deletion

Mark a hash entry as deleted without removing it.

Finding key 32 After Deletion

Find value associated with key 32 = Fig

HASH(KEY) = KEY % 10=32% 10 = 2

Lazy Deletion using Exists Flag

struct HashEntry {
int key;
int value;
bool exists; // Indicates if the entry is active or deleted

// Updated constructor includes position
HashEntry(int k, int v, int pos) : key(k), value(v), exists(true) {}

Vector to Static-Sized Array

class HashIndex {

private:
static const size_t capacity = 108; // Hard-coded capacity
HashEntry hashTable[capacity]; // Static-sized array

b

Position Tracking

Position is used for tracking the location of each entry within the hash table.

struct HashEntry {
int key;
int value;
int position; // Tracks the final position in the array
bool exists; // Indicates if the entry is active

// Updated constructor includes position
HashEntry(int k, int v, int pos)
. key(k), value(v), position(pos), exists(true) {}

Position Tracking

void insertOrUpdate(int key, int value) {

size_t originalIndex = hashFunction(key);
bool inserted = false;

do {
if ('hashTable[index].exists) {
hashTable[index] = HashEntry(key, value, true);

haszaolefindex:.position = index;
inserted = true;
break;

}

Limitations of Linear Probing

Clustering increases likelihood of collision; searches become inefficient

HASH(KEY) = KEY % 10

Quadratic Probing
Formula to find the index of the next slot | after K “probes”
Is “quadratic” with respect to K.

INDEX I = (HASH(KEY) + K?%) % TABLE_SIZE

HASH(KEY) = KEY % TABLE_SIZE

Inserting 2

Insert (2, Apple)

HASH(2) =2; K=0; INDEX | = (2+0%)% 10 =2

Inserting 12

Insert (12, Grape)

HASH(12) =2; K=1; INDEX1=(2+12)% 10 = 3

Inserting 22

Insert (22, Kiwi)

HASH(22) = 2; K=2; INDEX 1=(2+22)%10=16%10=6

Inserting 32

Insert (32, Fig)

HASH(32) =2; K=3; INDEX1=(2+3°)%10=11%10=1

Quadratic Probing

Probe sequence follows a quadratic formula.

void insertOrUpdate(int key, int value) {
size_t originalIndex = hashFunction(key);
bool inserted = false;
int i = 8; // Attempt counter
do {
if ('hashTable[index].exists) {

} else if (hashTable[index].key == key) {

3

1++;

index = (originalIndex + i * i) % capacity; // Quadratic probing
} while (index != originallndex && !inserted);

}

Benefits of Quadratic Probing

Better spread of keys; higher search efficiency

Limitation of Quadratic Probing

Secondary clustering of all keys hashed to 2.

Double Hashing

Double hashin Uses a secondary hash function to calculate the probe step,
9 offering a unique probe sequence for each key.

INDEX I = (HASHT(KEY) + K * HASH2(KEY)) % TABLE_SIZE

HASHT(KEY) = KEY % TABLE_SIZE

HASH2(KEY) = 1 + KEY % (TABLE_SIZE - 1)

Inserting 2

Insert (2, Apple)

HASH1(2) = 2; HASH2(2) =1+ (2%9) =1+2=3
K=0; INDEX|1=(2+0%3)%10=2

Inserting 12

Insert (12, Grape)

HASH1(12) = 2; HASH2(12) =1+ (12%9)=1+3 =4
K=1;INDEX1=(2+1+4)%10=6%10=6

Inserting 22

Insert (22, Kiwi)

HASH1(22) = 2; HASH2(22) =1+ (22% 9)=1+4=5
K=1;INDEX1=(2+1%*5)%10=7%10=7

Inserting 32

Insert (32, Fig)

HASH1(32) = 2; HASH2(32) =1+ (32%9)=1+5=6
K=1;INDEX1=(2+1%6)%10=8%10=8

Benefit of Double Hashing

Conclusion

e Hash Tables

e Hash Function

» Deletion and Position Tracking
» Quadratic Probing
* Double Hashing

