Lecture L1:
Hash Tahles




Logistics

» Point Solutions App
= Session |ID: database

» Exercise sheet 1 will be released on Sep 23
= 25 questions (modules 1 through 4)

= Lockdown browser
« Scratch paper allowed

e Mid-term exam on Oct 2



Recap

» Database Configuration

* Indexing In C++

« Hash Tables

e Hash Function



Lecture Overview

» Deletion and Position Tracking
» Quadratic Probing
* Double Hashing






Periodic Table of System Design Principles

Towards a Periodic Table of Computer System Design Principles

JOY ARULRAJ, Georgia Institute of Technology

System design is often taught through domain-specific solutions specific to particular domains, such as databases, operating systems,
or computer architecture, each with its own methods and vocabulary. While this diversity is a strength, it can obscure cross-cutting
principles that recur across domains. This paper proposes a preliminary “periodic table” of system design principles distilled from
several domains in computer systems. The goal is a shared, concise vocabulary that helps students, researchers, and practitioners reason
about structure and trade-offs, compare designs across domains, and communicate choices more clearly. For supporting materials and

updates, please refer to the repository at: https://github.com/jarulraj/periodic-table.

https://github.com/jarulraj/periodic-table
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https://github.com/jarulraj/periodic-table

Periodic Table of System Design Principles
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Storage manager

» Se - Semantically Expl

icit Interfaces: Make durabillity, ordering,

and visibility contracts explicit (fsync, barriers, WAL semantics).
* Ft — Fault Tolerance: Survive crashes/corruption via checksums,

recovery, replication/mnr
» At - Atomic Execution:

Irroring.
Group updates so they commit all-or-

nothing (WAL + careful flush protocol.

« Ha - Hardware-Aware

Design: Choose page/extent sizes,

alignment, and layouts (e.g., log-structured for SSDs) to fit device

traits.



Buffer manager

Lo - Locality of Reference: Exploit temporal/spatial locality via
hot-page reuse and prefetch for scans.

Ri — Reuse of |/0: Cache pages to avoid repeated disk /0.

Pm - Policy/Mechanism Separation: Pin/unpin/dirty/flush
mechanisms with pluggable eviction (LRU, CLOCK, ARC).

Ad - Adaptive Processing: Tune prefetch/eviction based on hit
rate, skew, and working-set changes.




Hash Tables

* Rc - Reuse of Computation
Build the hash table once and use it several times to quickly locate a

tuple (or key)

* Lo - Locality of Reference
Probing keeps searches near the home bucket

* Pm - Policy/Mechanism Separation
Mechanism = array + probe sequence, policies = hash/equality
functions, load-factor thresholds and resize strategy, deletion method
(tombstones vs backward-shift). You can swap these without changing

the core table.







Hash Table

Think of a hash table like a cabinet of drawers.
Each drawer can hold a piece of paper with the key and associated value.

DIRECT ACCESS USING HASH FUNCTION




Inserting Key-Value Pair

Insert (15, Apple)

HASH(KEY) =KEY % 10=15% 10 =5 (since 15=10 * 1 + 5)




Inserting Key-Value Pair

Insert (26, Grape)

HASH(KEY) = KEY % 10 =26 % 10 = 6 (since 26 = 10 * 2 + 6)




Inserting Key-Value Pair with Collision

Insert (56, Kiwi)

HASH(KEY) = KEY % 10 =56 % 10 = 6




Finding Key-Value Pair

Find value associated with key 15 = Apple

HASH(KEY) =KEY % 10=15%10=5




Finding Key-Value Pair

Find value associated with key 56 = Kiwi

HASH(KEY) = KEY % 10 = 56 % 10 = 6




Finding Key-Value Pair

Find value associated with key 86 = KEY NOT FOUND

HASH(KEY) = KEY % 10 = 86 % 10 = 6







Hash Function

Hash function maps keys to slots in the hash table

size_t hashFunction(int key) {
return key % totalSlots; // Our simple formula
}

HASH(KEY) = KEY % TABLE_SIZE




Collision Handling

Linear Probing Move to the next available slot until we find one empty.

If slot 8 Is taken, check slot 9, then O, 1, and so on.
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ni : 0 :
Linear” Probing
Formula to find the index of the next slot | after K “probes” is
“linear” with respect to K.

INDEX I = (HASHCKEY) + K) % TABLE_SIZE

HASH(KEY) = KEY % TABLE_SIZE




HashEntry Struct

HashEntry Struct Represents a piece of paper containing key and value.

struct HashEntry {
int key, value;
HashEntry(int k, int v) : key(k), value(v) {}
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Hashindex

HashTable is simply an array of drawers. Each drawer can either
hold a HashEntry or be empty (indicating no value).

class HashIndex {
std: :vector<std: :optional<HashEntry>> hashTable;

static const size_t capacity = 108; // Hard-coded capacity
HashIndex() { hashTable.resize(capacity); }
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Inserting Key-Value Pair

sertOrUndate Uses linear probing to find the next available slot for insertion or
P locate an existing key for updating.

void insertOrUpdate(int key, int value) {
size_t index = hashFunction(key);
do {
if ('hashTable[index]) {
hashTable[index] = HashEntry{key, value, true}; // Insert new entry
break;
} else if (hashTable[index]->key == key) {
hashTable[ index]->value += value; // Update existing entry
break;
}
index = (index + 1) % capacity; // Linear probing to next slot
} while (index != originallndex); // Returned to starting point

}




Finding Key-Value Pair

etValue The retrieval process employs linear probing as well to navigate
9 through potential collision sequences.

int getValue(int key) const {
size_t index = hashFunction(key);
do {
if (hashTable[index] && hashTable[index]->key == key) {
return hashTable[index]->value; // Key found
}
index = (index + 1) % capacity; // Continue probing
} while (index != originallndex);
return -1; // Key not found

}




Operation Complexity

N = Number of key-value pairs in the hash table.

NO/FEW COLLISIONS LOTS OF COLLISIONS

INSERT
FIND




Clustering Problem with High Collision Rates

Bad Hash Function: HASH(KEY) = 5

HASH(KEY) = 5







Finding key 32

Find value associated with key 32 = Fig

HASH(KEY) = KEY % 10=32% 10 = 2




Deletion

Delete key 13

HASH(KEY) = KEY % 10=13% 10 = 3




Deletion

Delete key 13

HASH(KEY) =KEY % 10=13% 10 = 3




Finding key 32 After Deletion

Find value associated with key 32 = Not Found

HASH(KEY) = KEY % 10=32% 10 = 2




Solution #1: Rehashing All Keys

Insert all keys into another empty hash table.

HASH(KEY) = KEY % 10




Solution #2: Lazy Deletion

Mark a hash entry as deleted without removing it.




Finding key 32 After Deletion

Find value associated with key 32 = Fig

HASH(KEY) = KEY % 10=32% 10 = 2




Lazy Deletion using Exists Flag

struct HashEntry {
int key;
int value;
bool exists; // Indicates if the entry is active or deleted

// Updated constructor includes position
HashEntry(int k, int v, int pos) : key(k), value(v), exists(true) {}




Vector to Static-Sized Array

class HashIndex {

private:
static const size_t capacity = 108; // Hard-coded capacity
HashEntry hashTable[capacity]; // Static-sized array
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Position Tracking

Position is used for tracking the location of each entry within the hash table.

struct HashEntry {
int key;
int value;
int position; // Tracks the final position in the array
bool exists; // Indicates if the entry is active

// Updated constructor includes position
HashEntry(int k, int v, int pos)
. key(k), value(v), position(pos), exists(true) {}




Position Tracking

void insertOrUpdate(int key, int value) {

size_t originalIndex = hashFunction(key);
bool inserted = false;

do {
if ('hashTable[index].exists) {
hashTable[index] = HashEntry(key, value, true);

haszaolefindex:.position = index;
inserted = true;
break;

}




Limitations of Linear Probing

Clustering increases likelihood of collision; searches become inefficient

HASH(KEY) = KEY % 10







Quadratic Probing
Formula to find the index of the next slot | after K “probes”
Is “quadratic” with respect to K.

INDEX I = (HASH(KEY) + K?%) % TABLE_SIZE

HASH(KEY) = KEY % TABLE_SIZE




Inserting 2

Insert (2, Apple)

HASH(2) =2; K=0; INDEX | = (2+0%)% 10 =2




Inserting 12

Insert (12, Grape)

HASH(12) =2; K=1; INDEX1=(2+12)% 10 = 3




Inserting 22

Insert (22, Kiwi)

HASH(22) = 2; K=2; INDEX 1=(2+22)%10=16%10=6




Inserting 32

Insert (32, Fig)

HASH(32) =2; K=3; INDEX1=(2+3°)%10=11%10=1




Quadratic Probing

Probe sequence follows a quadratic formula.

void insertOrUpdate(int key, int value) {
size_t originalIndex = hashFunction(key);
bool inserted = false;
int i = 8; // Attempt counter
do {
if ('hashTable[index].exists) {

} else if (hashTable[index].key == key) {
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1++;

index = (originalIndex + i * i) % capacity; // Quadratic probing
} while (index != originallndex && !inserted);

}




Benefits of Quadratic Probing

Better spread of keys; higher search efficiency




Limitation of Quadratic Probing

Secondary clustering of all keys hashed to 2.







Double Hashing

Double hashin Uses a secondary hash function to calculate the probe step,
9 offering a unique probe sequence for each key.

INDEX I = (HASHT(KEY) + K * HASH2(KEY)) % TABLE_SIZE

HASHT(KEY) = KEY % TABLE_SIZE

HASH2(KEY) = 1 + KEY % (TABLE_SIZE - 1)




Inserting 2

Insert (2, Apple)

HASH1(2) = 2; HASH2(2) =1+ (2%9) =1+2=3
K=0; INDEX|1=(2+0%3)%10=2




Inserting 12

Insert (12, Grape)

HASH1(12) = 2; HASH2(12) =1+ (12%9)=1+3 =4
K=1;INDEX1=(2+1+4)%10=6%10=6




Inserting 22

Insert (22, Kiwi)

HASH1(22) = 2; HASH2(22) =1+ (22% 9)=1+4=5
K=1;INDEX1=(2+1%*5)%10=7%10=7




Inserting 32

Insert (32, Fig)

HASH1(32) = 2; HASH2(32) =1+ (32%9)=1+5=6
K=1;INDEX1=(2+1%6)%10=8%10=8




Benefit of Double Hashing




Conclusion

e Hash Tables

e Hash Function

» Deletion and Position Tracking
» Quadratic Probing
* Double Hashing



