
Lecture 11:
Hash Tables

Logistics
• Point Solutions App

§ Session ID: database

• Exercise sheet 1 will be released on Sep 23
§ 25 questions (modules 1 through 4)
§ Lockdown browser
§ Scratch paper allowed

• Mid-term exam on Oct 2

Recap
• Database Configuration
• Indexing in C++
• Hash Tables
• Hash Function

Lecture Overview
• Deletion and Position Tracking
• Quadratic Probing
• Double Hashing

Periodic Table

Periodic Table of System Design Principles

https://github.com/jarulraj/periodic-table

https://github.com/jarulraj/periodic-table

Periodic Table of System Design Principles

Storage manager
• Se – Semantically Explicit Interfaces: Make durability, ordering,

and visibility contracts explicit (fsync, barriers, WAL semantics).
• Ft – Fault Tolerance: Survive crashes/corruption via checksums,

recovery, replication/mirroring.
• At – Atomic Execution: Group updates so they commit all-or-

nothing (WAL + careful flush protocol).
• Ha – Hardware-Aware Design: Choose page/extent sizes,

alignment, and layouts (e.g., log-structured for SSDs) to fit device
traits.

Buffer manager
• Lo – Locality of Reference: Exploit temporal/spatial locality via

hot-page reuse and prefetch for scans.
• Ri – Reuse of I/O: Cache pages to avoid repeated disk I/O.
• Pm – Policy/Mechanism Separation: Pin/unpin/dirty/flush

mechanisms with pluggable eviction (LRU, CLOCK, ARC).
• Ad – Adaptive Processing: Tune prefetch/eviction based on hit

rate, skew, and working-set changes.

Hash Tables
• Rc – Reuse of Computation

Build the hash table once and use it several times to quickly locate a
tuple (or key)

• Lo – Locality of Reference
Probing keeps searches near the home bucket

• Pm – Policy/Mechanism Separation
Mechanism = array + probe sequence; policies = hash/equality
functions, load-factor thresholds and resize strategy, deletion method
(tombstones vs backward-shift). You can swap these without changing
the core table.

Hash Table

Hash Table

Think of a hash table like a cabinet of drawers.
Each drawer can hold a piece of paper with the key and associated value.

0 1 2 3 4 5 6 7 8 9
15

Apple

DIRECT ACCESS USING HASH FUNCTION

Inserting Key-Value Pair

Insert (15, Apple)

0 1 2 3 4 5 6 7 8 9
15

Apple

HASH(KEY) = KEY % 10 = 15 % 10 = 5 (since 15 = 10 * 1 + 5)

Inserting Key-Value Pair

Insert (26, Grape)

0 1 2 3 4 5 6 7 8 9
15 26

Apple Grape

HASH(KEY) = KEY % 10 = 26 % 10 = 6 (since 26 = 10 * 2 + 6)

Inserting Key-Value Pair with Collision

Insert (56, Kiwi)

0 1 2 3 4 5 6 7 8 9
15 26 56

Apple Grape Kiwi

HASH(KEY) = KEY % 10 = 56 % 10 = 6

Finding Key-Value Pair

Find value associated with key 15 = Apple

0 1 2 3 4 5 6 7 8 9
15 26 56

Apple Grape Kiwi

HASH(KEY) = KEY % 10 = 15 % 10 = 5

Finding Key-Value Pair

Find value associated with key 56 = Kiwi

0 1 2 3 4 5 6 7 8 9
15 26 56

Apple Grape Kiwi

HASH(KEY) = KEY % 10 = 56 % 10 = 6

Finding Key-Value Pair

Find value associated with key 86 = KEY NOT FOUND

0 1 2 3 4 5 6 7 8 9
15 26 56

Apple Grape Kiwi

HASH(KEY) = KEY % 10 = 86 % 10 = 6

Hash Function

Hash Function

Hash function maps keys to slots in the hash table

HASH(KEY) = KEY % TABLE_SIZE

size_t hashFunction(int key) {
return key % totalSlots; // Our simple formula

}

Collision Handling

0 1 2 3 4 5 6 7 8 9
80 11 15 26 56 18 79
Lime Date Apple Grape Kiwi Fig Pear

Move to the next available slot until we find one empty.Linear Probing

If slot 8 is taken, check slot 9, then 0, 1, and so on.

"Linear" Probing

Formula to find the index of the next slot I after K “probes” is
“linear” with respect to K.

INDEX I = (HASH(KEY) + K) % TABLE_SIZE

HASH(KEY) = KEY % TABLE_SIZE

HashEntry Struct

struct HashEntry {
int key, value;
HashEntry(int k, int v) : key(k), value(v) {}

};

Represents a piece of paper containing key and value.HashEntry Struct

HashIndex

HashTable is simply an array of drawers. Each drawer can either
hold a HashEntry or be empty (indicating no value).

class HashIndex {
std::vector<std::optional<HashEntry>> hashTable;

static const size_t capacity = 100; // Hard-coded capacity
HashIndex() { hashTable.resize(capacity); }

};

Inserting Key-Value Pair

void insertOrUpdate(int key, int value) {
size_t index = hashFunction(key);
do {
if (!hashTable[index]) {
hashTable[index] = HashEntry{key, value, true}; // Insert new entry
break;

} else if (hashTable[index]->key == key) {
hashTable[index]->value += value; // Update existing entry
break;

}
index = (index + 1) % capacity; // Linear probing to next slot

} while (index != originalIndex); // Returned to starting point
}

Uses linear probing to find the next available slot for insertion or
locate an existing key for updating.insertOrUpdate

Finding Key-Value Pair

int getValue(int key) const {
size_t index = hashFunction(key);
do {
if (hashTable[index] && hashTable[index]->key == key) {

return hashTable[index]->value; // Key found
}
index = (index + 1) % capacity; // Continue probing

} while (index != originalIndex);
return -1; // Key not found

}

The retrieval process employs linear probing as well to navigate
through potential collision sequences.getValue

Operation Complexity

N = Number of key-value pairs in the hash table.

NO/FEW COLLISIONS LOTS OF COLLISIONS
INSERT O(1) O(N)
FIND O(1) O(N)

Clustering Problem with High Collision Rates

Bad Hash Function: HASH(KEY) = 5

0 1 2 3 4 5 6 7 8 9
15 26 56

Apple Grape Kiwi

HASH(KEY) = 5

Deletion & Position Tracking

Finding key 32

Find value associated with key 32 = Fig

0 1 2 3 4 5 6 7 8 9
2 13 34 32

Apple Grape Kiwi Fig

HASH(KEY) = KEY % 10 = 32 % 10 = 2

Deletion

Delete key 13

0 1 2 3 4 5 6 7 8 9
2 13 34 32

Apple Grape Kiwi Fig

HASH(KEY) = KEY % 10 = 13 % 10 = 3

Deletion

Delete key 13

0 1 2 3 4 5 6 7 8 9
2 34 32

Apple Kiwi Fig

HASH(KEY) = KEY % 10 = 13 % 10 = 3

Finding key 32 After Deletion

Find key 32 = Not Found

0 1 2 3 4 5 6 7 8 9
2 34 32

Apple Kiwi Fig

HASH(KEY) = KEY % 10 = 32 % 10 = 2

Find value associated with key 32 = Not Found

Solution #1: Rehashing All Keys

Insert all keys into another empty hash table.

0 1 2 3 4 5 6 7 8 9
2 32 34

Apple Fig Kiwi

HASH(KEY) = KEY % 10

Solution #2: Lazy Deletion

Mark a hash entry as deleted without removing it.

0 1 2 3 4 5 6 7 8 9
2 13 34 32

Apple Grape Kiwi Fig
1 1 1 0 1 1 1 1 1 1

Finding key 32 After Deletion

Find value associated with key 32 = Fig

0 1 2 3 4 5 6 7 8 9
2 13 34 32

Apple Grape Kiwi Fig
1 1 1 0 1 1 1 1 1 1

HASH(KEY) = KEY % 10 = 32 % 10 = 2

Lazy Deletion using Exists Flag

struct HashEntry {
int key;
int value;
bool exists; // Indicates if the entry is active or deleted

// Updated constructor includes position
HashEntry(int k, int v, int pos) : key(k), value(v), exists(true) {}

};

Vector to Static-Sized Array

class HashIndex {
private:
static const size_t capacity = 100; // Hard-coded capacity
HashEntry hashTable[capacity]; // Static-sized array

};

Position Tracking

Position is used for tracking the location of each entry within the hash table.

struct HashEntry {
int key;
int value;
int position; // Tracks the final position in the array
bool exists; // Indicates if the entry is active

// Updated constructor includes position
HashEntry(int k, int v, int pos)

: key(k), value(v), position(pos), exists(true) {}
};

Position Tracking

void insertOrUpdate(int key, int value) {
size_t originalIndex = hashFunction(key);
bool inserted = false;
do {
if (!hashTable[index].exists) {

hashTable[index] = HashEntry(key, value, true);
hashTable[index].position = index;
inserted = true;
break;

}
…

}
}

0 1 2 3 4 5 6 7 8 9
2 12 22 32

Apple Grape Kiwi Fig

HASH(KEY) = KEY % 10

Limitations of Linear Probing

Clustering increases likelihood of collision; searches become inefficient

Quadratic Probing

Quadratic Probing

Formula to find the index of the next slot I after K “probes”
is “quadratic” with respect to K.

INDEX I = (HASH(KEY) + K2) % TABLE_SIZE

HASH(KEY) = KEY % TABLE_SIZE

Inserting 2

Insert (2, Apple)

0 1 2 3 4 5 6 7 8 9
2

Apple

HASH(2) = 2; K = 0; INDEX I = (2 + 02) % 10 = 2

Inserting 12

Insert (12, Grape)

0 1 2 3 4 5 6 7 8 9
2 12

Apple Grape

HASH(12) = 2; K = 1; INDEX I = (2 + 12) % 10 = 3

Inserting 22

Insert (22, Kiwi)

0 1 2 3 4 5 6 7 8 9
2 12 22

Apple Grape Kiwi

HASH(22) = 2; K = 2; INDEX I = (2 + 22) % 10 = 16 % 10 = 6

Inserting 32

Insert (32, Fig)

0 1 2 3 4 5 6 7 8 9
32 2 12 22
Fig Apple Grape Kiwi

HASH(32) = 2; K = 3; INDEX I = (2 + 32) % 10 = 11 % 10 = 1

Quadratic Probing

Probe sequence follows a quadratic formula.

void insertOrUpdate(int key, int value) {
size_t originalIndex = hashFunction(key);
bool inserted = false;
int i = 0; // Attempt counter
do {
if (!hashTable[index].exists) {

…
} else if (hashTable[index].key == key) {

…
}
i++;
index = (originalIndex + i * i) % capacity; // Quadratic probing

} while (index != originalIndex && !inserted);
}

Benefits of Quadratic Probing

Better spread of keys; higher search efficiency

0 1 2 3 4 5 6 7 8 9
32 2 12 22
Fig Apple Grape Kiwi

Limitation of Quadratic Probing

Secondary clustering of all keys hashed to 2.

0 1 2 3 4 5 6 7 8 9
32 2 12 22
Fig Apple Grape Kiwi

Double Hashing

Double Hashing

INDEX I = (HASH1(KEY) + K * HASH2(KEY)) % TABLE_SIZE

HASH1(KEY) = KEY % TABLE_SIZE

HASH2(KEY) = 1 + KEY % (TABLE_SIZE – 1)

Uses a secondary hash function to calculate the probe step,
offering a unique probe sequence for each key.Double hashing

Inserting 2

Insert (2, Apple)

0 1 2 3 4 5 6 7 8 9
2

Apple

HASH1(2) = 2; HASH2(2) = 1 + (2 % 9) = 1 + 2 = 3
K = 0; INDEX I = (2 + 0 * 3) % 10 = 2

Inserting 12

Insert (12, Grape)

0 1 2 3 4 5 6 7 8 9
2 12

Apple Grape

HASH1(12) = 2; HASH2(12) = 1 + (12 % 9) = 1 + 3 = 4
K = 1; INDEX I = (2 + 1 * 4) % 10 = 6 % 10 = 6

Inserting 22

Insert (22, Kiwi)

0 1 2 3 4 5 6 7 8 9
2 12 22

Apple Grape Kiwi

HASH1(22) = 2; HASH2(22) = 1 + (22 % 9) = 1 + 4 = 5
K = 1; INDEX I = (2 + 1 * 5) % 10 = 7 % 10 = 7

Inserting 32

Insert (32, Fig)

0 1 2 3 4 5 6 7 8 9
2 12 22 32

Apple Grape Kiwi Fig

HASH1(32) = 2; HASH2(32) = 1 + (32 % 9) = 1 + 5 = 6
K = 1; INDEX I = (2 + 1 * 6) % 10 = 8 % 10 = 8

Benefit of Double Hashing

0 1 2 3 4 5 6 7 8 9
2 12 22 32

Apple Grape Kiwi Fig

Conclusion
• Hash Tables
• Hash Function
• Deletion and Position Tracking
• Quadratic Probing
• Double Hashing

