
Lecture 12:
Thread-Safe Hash Table

Logistics
• Point Solutions App

§ Session ID: database

Recap
• Hash Tables
• Hash Function
• Deletion and Position Tracking
• Quadratic Probing
• Double Hashing

Lecture Overview
• Parallel Index Construction
• Fine-Grained Locking
• Shared Mutex
• Simulation Framework

Parallel Index Construction

Parallel Index Construction

With multi-core CPUs, parallelizing index construction offers a significant
performance boost by distributing the workload across multiple threads.

Shared
Hash Index

Thread 1 Thread 2

Page Assignment

Divide the total number of pages (num_pages) by the number of available
threads (num_threads), assign each thread a specific range of pages to process.

void parallelProcessPages(size_t num_threads = 5) {
auto num_pages = buffer_manager.getNumPages();
size_t pages_per_thread = num_pages / num_threads;
std::vector<std::thread> threads;
for (size_t i = 0; i < num_threads; i++) {
size_t start_page = i * pages_per_thread;
size_t end_page =…; // Last thread gets any remaining pages
threads.emplace_back(&BuzzDB::processPageRange, this, start_page,

end_page);
}
…

}

Page Assignment

Page
1

Page
2

Page
3

Page
4

Page
5

Page
6

Page
7

Thread 1 Thread 2

Thread Safety

With parallel index construction, the challenge is that concurrent operations
on the index by multiple threads may lead to inconsistent state.

Shared
Hash Index

Thread 1 Thread 2

Thread Safety

Thread 1: Insert (15, Fig) Thread 2: Insert (25, Pear)

0 1 2 3 4 5 6 7 8 9

HASH(KEY) = KEY % 10

5
15
Fig

5
25
Pear

Race Condition

Thread 1 Thread 2

1 HASH key 15
2 PROBE slot 5
3 HASH key 25
4 PROBE slot 5
5 STORE key 15 in slot 5
6 STORE key 25 in slot 5

Time

std::mutex

Mutex "serializes" access to the shared index structure.

Shared
Hash Index

Thread 1 Thread 2

Mutex

std::lock_guard

lock_guard automatically acquires a lock on creation and releases it on destruction.

class HashIndex {
private:
mutable std::mutex indexMutex; // Mutex for thread-safe access

void insertOrUpdate(int key, int value) {
// RAII-style mutex management
std::lock_guard<std::mutex> guard(indexMutex);
// Perform thread-safe update on the index

}
};

Thread Safety with Mutex
Thread 1

1 Lock Index Mutex
2 HASH key 15
3 PROBE slot 5 WAIT on Index Mutex
4 STORE key 15 in slot 5 WAIT on Index Mutex
5 Unlock Index Mutex WAIT on Index Mutex
6 Lock Index Mutex
7 HASH key 25
8 PROBE slot 5 and see key 15
9 PROBE slot 6
10 STORE key 25 in slot 6
11 Unlock Index Mutex

Time

Thread 2

1 Lock Index Mutex
2 HASH key 25
3 WAIT on Index Mutex PROBE slot 5
4 WAIT on Index Mutex STORE key 25 in slot 5
5 WAIT on Index Mutex Unlock Index Mutex
6 Lock Index Mutex
7 HASH key 15
8 PROBE slot 5 and see key 25
9 PROBE slot 6
10 STORE key 15 in slot 6
11 Unlock Index Mutex

Thread Safety with Mutex
Thread 1

Time

Thread 2

Order of Thread Execution

0 1 2 3 4 5 6 7 8 9
15 25
Fig Pear

0 1 2 3 4 5 6 7 8 9
25 15
Pear Fig

Thread 1 Thread 2

Thread 2 Thread 1

Fine-Grained Locking

Limited Concurrency
Using a single lock for the entire hash table severely limits parallelism.

Single Mutex

Thread 1
Insert

(12, Fig)

0 1 2 3 4 5 6 7 8 9

Thread 2
Insert

(27, Pear)

Fine-Grained Locking
Using a lock for each slot increases parallelism.

Thread 1
Insert

(12, Fig)

Thread 2
Insert

(27, Pear)

0 1 2 3 4 5 6 7 8 9

M9M8M0 M1 M2 M3 M4 M5 M6 M7

Fine-Grained Locking

Each slot in the hash table has an associated mutex.

std::vector<std::unique_ptr<std::mutex>> mutexes;
void insertOrUpdate(int key, int value) {
size_t index = hashFunction(key); // Determine the slot index for the key
do {
// Lock only the mutex for the specific slot
std::lock_guard<std::mutex> lock(*mutexes[index]);
// Attempt to insert or update the slot
if (conditions_met) {…}

} while (not_inserted);
}

vector<mutex> vs vector<unique_ptr<mutex>>

Vector<element> requires element to be movable.

Mutex
NOT MOVABLE

unique_ptr<mutex>
MOVABLE

Fine-Grained Locking

By locking only the specific slot being accessed, rather than the entire hash table,
fine-grained locking enables higher concurrency.

int getValue(int key) const {
size_t index = hashFunction(key);
size_t originalIndex = index;
do {

// Lock only the specific slot's mutex
std::lock_guard<std::mutex> lock(*mutexes[index]);
// Check if the key is inside the slot or not
// Calculate next slot index

} while (index != originalIndex);
}

Benefits of Fine-Grained Locking

Increased
Parallelism Reduced Contention

0 1 2 3 4 5 6 7 8 9

Limitations of Fine-Grained Locking

Increased Lock
Acquisition/
Release Cost

Increased
Lock Memory
Consumption

Shared Mutex

Limitations of std::mutex

SLOT 5

Thread 2
Find 15
READ

std::mutex
Thread 3
Find 35
READ

Thread 1
Insert (25, Fig)

WRITE

3 1

2

Limitations of std::mutex

SLOT 5

Thread 2
Find 15
READ

std::shared_mutex
Thread 3
Find 35
READ

Thread 1
Insert (25, Fig)

WRITE

1 1

2

std::unique_lock<std::shared_mutex>

std::shared_mutex allows multiple threads to hold a read (shared) lock
simultaneously while ensuring exclusive access for write operations.

mutable std::shared_mutex mutexes[capacity];
std::vector<std::unique_ptr<std::mutex>> mutexes;
void insertOrUpdate(int key, int value) {
size_t index = hashFunction(key); // Determine the slot
do {
// Exclusive lock for writing
std::unique_lock<std::shared_mutex> lock(mutexes[index]);
// Attempt to insert or update the slot
if (conditions_met) {…}

} while (not_inserted);
}

std::unique_lock<std::shared_mutex>

std::shared_lock<std::shared_mutex> allows multiple threads to read from the
same slot concurrently, provided no thread is writing to it.

int getValue(int key) const {
size_t index = hashFunction(key);
size_t originalIndex = index;
do {
// Shared lock for reading
std::shared_lock<std::shared_mutex> lock(mutexes[index]);
// Check if the key is inside the slot or not
// Calculate next slot index

} while (index != originalIndex);
}

}

Exclusive Write Lock

Shared Resource One Hash Table Slot

Mutex Type std::unique_lock
<std::shared_mutex>

Currently Accessing Threads Thread 2 (WRITE)

Waiting Threads
Thread 1 (READ)
Thread 3 (READ)

…

Shared Read Lock

Shared Resource One Hash Table Slot

Mutex Type std::shared_lock
<std::shared_mutex>

Currently Accessing Threads Thread 1 (READ)
Thread 3 (READ)

Waiting Threads Thread 2 (WRITE)
…

Simulation

Need for Simulation

REAL THREADS & MUTEXES SIMULATED THREADS & MUTEXES

Too fast for qualitative analysis Controlled environment

Non-deterministic Deterministic

Real deal Only an approximation

Simulated Mutex

Allows only one thread to access the shared resource at a time.

def try_acquire(self):
if not self.is_locked:

self.is_locked = True
return 'acquired’

return 'waiting’

Simulated Shared Mutex

try_acquire_read Grants read access unless a write lock is held

try_acquire_write Grants write access if no reads or writes are
active

release_read Releases read lock

release_write Releases write lock

Allows multiple readers or a single writer.

Concurrent Hash Table

GLOBAL MUTEX One mutex for entire table

MUTEX_PER_SLOT One mutex for each slot

SHARED_MUTEX_PER_SLOT One shared mutex for each slot

Models a hash table with three concurrency control protocols:

Protocol #1: global_mutex

0 1 2 3 4 5 6 7 8 9

M

Thread 2
Insert (12, Fig)

WRITE

Protocol #2: mutex_per_slot

Thread 2
Insert (12, Fig)

WRITE

0 1 2 3 4 5 6 7 8 9

Thread 1
Find 27
READ

M9M8M0 M1 M2 M3 M4 M5 M6 M7

Protocol #3: shared_mutex_per_slot

Thread 2
Insert (12, Fig)

WRITE

Thread 1
Find 27
READ

Thread 3
Find 47
READ

0 1 2 3 4 5 6 7 8 9

M9M8M0 M1 M2 M3 M4 M5 M6 M7

SimulatedThread

State Description

Lock Acquire lock

Find Read to current slot

Insert Write to current slot

Unlock Release lock

Unlock_and_relock Release lock and move to next slot

Simulates a thread performing a series of operations on the hash table. Step function
manages the thread's operations based on its current state.

Thread-Safe Hash Table Simulator

Each thread can take only one step in a logical time step, and a
thread can acquire a lock only if it was released in prior time step.

Time Step: 10
Thread-0: Attempt to lock for insert on slot 2 - waiting
Thread-1: Key 25 found at slot 5
Thread-2: Released lock on slot 3 – released

Hash Table Operation Trace

Each thread performs a sequence of operations:

Thread-0: insert (25, v25), find 25, find 15
Thread-1: find 35, insert (35, v35), find 25
Thread-2: find 45, find 25

Logical Time Step Count

GLOBAL MUTEX 30 steps

MUTEX_PER_SLOT 21 steps

SHARED_MUTEX_PER_SLOT 15 steps

Comparing the total logical time steps taken by different concurrency control
protocols reveals insights into their efficiency for various operation traces.

Global Mutex

Time Step: 15
Thread-1: Released lock on table - released
Thread-2: Attempt to lock table - waiting

Time Step: 16
Thread-1: Attempt to lock table - acquired
Thread-2: Attempt to lock table - waiting

Mutex Per Slot

Time Step: 7
Thread-0: Attempt to lock slot 6 - acquired
Thread-1: Attempt to lock slot 5 – acquired
Thread-2: Attempt to lock slot 5 - waiting

Time Step: 8
Thread-0: Key 15 not found.
Thread-1: Found another key 25 at slot 5
Thread-2: Attempt to lock slot 5 - waiting

Shared Mutex Per Slot

Time Step: 7
Thread-0: Attempt to lock for find on slot 6 – acquired_read
Thread-1: Attempt to lock for insert on slot 5 – acquired_write
Thread-2: Attempt to lock for find on slot 6 – acuired_read

Time Step: 8
Thread-0: Key 15 not found.
Thread-1: Found another key 25 at slot 5
Thread-2: Key 45 not found.

Conclusion
• Parallel Index Construction
• Fine-Grained Locking
• Shared Mutex
• Simulation Framework

