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Point Query Using Hash Table Index

Look up a key in the hash table with O(1) average complexity.

std: :vector<int> tuple_ids = productIndex.getValue(30);
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Point Query Using Hash Table Index

Hash Table = Not ordered based on key Iterate through entire table

RANGE QUERY




Point Query Using Hash Table Index

std: :vector<int> rangeQuery(int lowerBound, int upperBound) const {
std: :vector<int> results;
for (size_t i = 0; i < capacity; ++i) {
if (hashTable[i].exists && hashTable[i].key >= lowerBound &&
hashTable[i].key <= upperBound) {
results.push_back(hashTable[i].value);

}
}

return results;

}




Range Query in BuzzDB

2y DB

void performRangeQueryWithHashIndex(int lowerBound, int upperBound) {
auto results = index.rangeQuery(lowerBound, upperBound);
std::cout << "Found " << results.size() << " records in the range.\n";

}






Oraered Index
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Unordered Index
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B+Tree Data Structure
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Disk Accesses
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Values in Leaf and Inner Nodes
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Keys In Leaf and Inner Nodes
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Leaf Sibling Pointers for Range Queries
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Fast Range Queries Using B+ Trees

The sorted nature and linked leaf nodes allow B+ trees to execute range
queries by simply traversing the leaf nodes that fall within the range

std: :vector<Value> rangeQuery(const Key &lowerBound, const Key &upperBound) const {
// Traverse to the correct leaf node and then follow the linked leaf nodes.
// While traversing the leaf nodes, collect all the key-value pairs in the range

}
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Fast Range Queries Using B+ Trees
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Templates In C++

lions & Classes
Templates  perate with

ineric Types

template <typename T> T add(T a, T b) {
return a + b;

}

Type Safety Ensured at Compile Time




Template Instantiation

Add Function Instantiated with Different Types

int resultl = add<int>(b, 3);
/] returns 8

std::string result3 = add<std::string>("Hello, ", "world!");
// returns “Hello, world!”




B+Tree Template in C++

Placeholders B+ Tree Handles Enhance Code

Reusability &
Maintainability

Replaced at Any Key and
Compile Time Value Types

template <typename Key, typename Value> class BPlusTree {
struct Node; // Node definition
using NodePtr = std::unique_ptr<Node>;
// Node and Entry structures omitted for brevity

};




B+Tree Template Instantiation #1

Example: Employee ID (int) = Salary (int)

BPlusTree<int, int> idToSalary;

// Employee ID and salary are inserted into the tree.
idToSalary.insertOrUpdate (16081, 56000);

// Retrieve the salary of an employee by their ID quickly.
int salary = idToSalary.getValue(1601);




B+Tree Template Instantiation #2

Example: Product Name (string) - Price (int)

BPlusTree<std::string, int> productloPrice;

// Prices of products are stored in the B+ tree
productToPrice.insertOrUpdate("Apple iPhone 12", 999);

// Quickly find the price of a specific product.
int price = productToPrice.getValue("Apple iPhone 12");




B+Tree Template Instantiation #3

Example: TicketKey (user-defined type) > Name (int)

struct TicketKey {
std::string eventDate;
int seatNumber;
// Overload the comparison operators for ordering in the B+ tree
bool operator<(const TicketKey &other) const {
if (eventDate == other.eventDate) {
return seatNumber < other.seatNumber;

}

return eventDate < other.eventDate;

¥
};



B+Tree Template Instantiation #3

Example: TicketKey (user-defined type) > Name (int)

BPlusTree<TicketKey, std::string> concertlickets;

// When a ticket is booked, it is entered into B+ tree using its composite key.
concertTickets.insertOrUpdate(TicketKey("2030-12-25", 1681), "John Doe");
concertTickets.insertOrUpdate(TicketKey("2630-12-25", 182), "Jane Smith");

// Retrieve the booking information for a specific seat on a particular date.

std::string ticketHolder =
concertTickets.getValue(TicketKey("26830-12-25", 101));
std::cout << "Seat 101 is booked by: " << ticketHolder << std::endl;




Ordered Index Class in BuzzDB

We implement Orderedindex class by encapsulating a BPlusTree

class OrderedIndex {
BPlusTree<int, int> bptree;

public:
void insertOrUpdate(int key, int value) {
bptree.insertOrUpdate(key, value);

}

std: :vector<int> rangeQuery(int lowerBound, int upperBound) const {
return bptree.rangeQuery(lowerBound, upperBound);

¥
};
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