
Lecture 13:
Range Query &
Ordered Index

Logistics
• Point Solutions App

§ Session ID: database

• Exercise Sheet 1 is due on Sep 30
• Exam on Oct 2

Recap
• Parallel Index Construction
• Fine-Grained Locking
• Shared Mutex
• Simulation Framework

Lecture Overview
• Range Query
• Ordered Index
• B+Tree Template

Range Query

Range Query vs Point Query

Range Query

Products priced
between

$10 and $20

Tuples where a
column is in a

Range of Values

Point Query

Tuples where a
column is equal to

a Single Value

Products priced
$30

Range Query vs Point Query

$10 $20 $30

RANGE QUERY POINT QUERY

All Tuples in Range
Specific
Value

Point Query Using Hash Table Index

std::vector<int> tuple_ids = productIndex.getValue(30);

POINT QUERY

Look up a key in the hash table with O(1) average complexity.

0 1 2 3 4 5 6 7 8 9
$30 $12 $25 $17

[103,
105]

[104] [101] [106,
102]

0 1 2 3 4 5 6 7 8 9
$30 $12 $25 $17

[103,
105]

[104] [101] [106,
102]

RANGE QUERY

Point Query Using Hash Table Index

Not ordered based on keyHash Table Iterate through entire table

std::vector<int> rangeQuery(int lowerBound, int upperBound) const {
std::vector<int> results;
for (size_t i = 0; i < capacity; ++i) {
if (hashTable[i].exists && hashTable[i].key >= lowerBound &&

hashTable[i].key <= upperBound) {
results.push_back(hashTable[i].value);

}
}
return results;

}

Point Query Using Hash Table Index

void performRangeQueryWithHashIndex(int lowerBound, int upperBound) {
auto results = index.rangeQuery(lowerBound, upperBound);
std::cout << "Found " << results.size() << " records in the range.\n";

}

Range Query in BuzzDB

buzzDB

Ordered Index

Ordered Index

0 1 2 3 4 5 6 7 8 9
$12 $17 $25 $30

[104] [106,
102]

[101] [103,
105]

RANGE QUERY [$10, $20]

Unordered Index

0 1 2 3 4 5 6 7 8 9
$30 $12 $25 $17

[103,
105]

[104] [101] [106,
102]

RANGE QUERY [$10, $20]

B+Tree Data Structure

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19
]

[V|V|V]

[20|21|x
]

[V|V|x]

[23|24|x
]

[-|-|x]

[25|29|x
]

[V|V|x]

[30|31|x
]

[V|V|x]

ROOT NODE

LEAF NODES

Height of the Tree

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19
]

[V|V|V]

[20|21|x
]

[V|V|x]

[23|24|x
]

[-|-|x]

[25|29|x
]

[V|V|x]

[30|31|x
]

[V|V|x]

Height = 2

ROOT NODE

LEAF NODES

Fan-Out of the Tree

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19
]

[V|V|V]

[20|21|x
]

[V|V|x]

[23|24|x
]

[-|-|x]

[25|29|x
]

[V|V|x]

[30|31|x
]

[V|V|x]

TREE FAN-OUT = 3

Disk Accesses

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19
]

[V|V|V]

[20|21|x
]

[V|V|x]

[23|24|x
]

[-|-|x]

[25|29|x
]

[V|V|x]

[30|31|x
]

[V|V|x]

DISK PAGE 3 DISK READS

Values in Leaf and Inner Nodes

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19
]

[V|V|V]

[20|21|x
]

[V|V|x]

[23|24|x
]

[-|-|x]

[25|29|x
]

[V|V|x]

[30|31|x
]

[V|V|x]

NODE POINTERS
Example: [Page 10]

ACTUAL VALUES
Example: [Tuple 104]

Keys in Leaf and Inner Nodes

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19
]

[V|V|V]

[20|21|x
]

[V|V|x]

[23|24|x
]

[-|-|x]

[25|29|x
]

[V|V|x]

[30|31|x
]

[V|V|x]

2 keys, 3 values
K-1 keys, K values

3 keys, 3 values
K keys, K values

Leaf Sibling Pointers for Range Queries

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19
]

[V|V|V]

[20|21|x
]

[V|V|x]

[23|24|x
]

[-|-|x]

[25|29|x
]

[V|V|x]

[30|31|x
]

[V|V|x]

Sibling Pointers
in Leaf Nodes

Fast Range Queries Using B+ Trees

std::vector<Value> rangeQuery(const Key &lowerBound, const Key &upperBound) const {
// Traverse to the correct leaf node and then follow the linked leaf nodes.
// While traversing the leaf nodes, collect all the key-value pairs in the range

}

The sorted nature and linked leaf nodes allow B+ trees to execute range
queries by simply traversing the leaf nodes that fall within the range

Fast Range Queries Using B+ Trees

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19
]

[V|V|V]

[20|21|x
]

[V|V|x]

[23|24|x
]

[-|-|x]

[25|29|x
]

[V|V|x]

[30|31|x
]

[V|V|x]

RANGE: [6, 23]

1

2

3 4 5 6

B+Tree Template

Templates in C++

template <typename T> T add(T a, T b) {
return a + b;

}

Type Safety Ensured at Compile Time

Functions & Classes
Operate with

Generic Types

Enable Generic
ProgrammingTemplates

Template Instantiation

int result1 = add<int>(5, 3);
// returns 8

std::string result3 = add<std::string>("Hello, ", "world!");
// returns “Hello, world!”

Add Function Instantiated with Different Types

B+Tree Template in C++

template <typename Key, typename Value> class BPlusTree {
struct Node; // Node definition
using NodePtr = std::unique_ptr<Node>;
// Node and Entry structures omitted for brevity

};

Support Key &
Value Types

Placeholders
Replaced at

Compile Time

B+ Tree Handles
Any Key and
Value Types

Enhance Code
Reusability &

Maintainability

B+ Trees Use
C++

Templates

B+Tree Template Instantiation #1

BPlusTree<int, int> idToSalary;

// Employee ID and salary are inserted into the tree.
idToSalary.insertOrUpdate(1001, 50000);

// Retrieve the salary of an employee by their ID quickly.
int salary = idToSalary.getValue(1001);

Example: Employee ID (int) → Salary (int)

B+Tree Template Instantiation #2

BPlusTree<std::string, int> productToPrice;

// Prices of products are stored in the B+ tree
productToPrice.insertOrUpdate("Apple iPhone 12", 999);

// Quickly find the price of a specific product.
int price = productToPrice.getValue("Apple iPhone 12");

Example: Product Name (string) → Price (int)

B+Tree Template Instantiation #3

struct TicketKey {
std::string eventDate;
int seatNumber;
// Overload the comparison operators for ordering in the B+ tree
bool operator<(const TicketKey &other) const {
if (eventDate == other.eventDate) {

return seatNumber < other.seatNumber;
}
return eventDate < other.eventDate;

}
};

Example: TicketKey (user-defined type) → Name (int)

BPlusTree<TicketKey, std::string> concertTickets;
// When a ticket is booked, it is entered into B+ tree using its composite key.
concertTickets.insertOrUpdate(TicketKey("2030-12-25", 101), "John Doe");
concertTickets.insertOrUpdate(TicketKey("2030-12-25", 102), "Jane Smith");

// Retrieve the booking information for a specific seat on a particular date.
std::string ticketHolder =

concertTickets.getValue(TicketKey("2030-12-25", 101));
std::cout << "Seat 101 is booked by: " << ticketHolder << std::endl;

Example: TicketKey (user-defined type) → Name (int)

B+Tree Template Instantiation #3

Ordered Index Class in BuzzDB

class OrderedIndex {
BPlusTree<int, int> bptree;

public:
void insertOrUpdate(int key, int value) {

bptree.insertOrUpdate(key, value);
}

std::vector<int> rangeQuery(int lowerBound, int upperBound) const {
return bptree.rangeQuery(lowerBound, upperBound);

}
};

We implement OrderedIndex class by encapsulating a BPlusTree

Conclusion
• Range Query
• Ordered Index
• B+Tree Template

