L ecture 13
Range Query o
Ordered Inaex

Logistics

» Point Solutions App
= Session |ID: database

» Exercise Sheet 11s due on Sep 30

e Exam on Oct 2

Recap

e Parallel Index Construction
» Fine-Grained Locking
e Shared Mutex

« Simulation Framework

Lecture Overview

* Range Query
» Ordered Index

» B+Tree Template

Range Query vs Point Query

Range Query

Tuples where a
columnisina
Range of Values

r

_

Products priced
between

$10 and $20

~N

Point Query

Tuples where a
column is equal to
a Single Value

J

Products priced
$30

Range Query vs Point Query

RANGE QUERY

——

All Tuples in Range

POINT QUERY

|

Specific
Value

Point Query Using Hash Table Index

Look up a key in the hash table with O(1) average complexity.

std: :vector<int> tuple_ids = productIndex.getValue(30);

POINT QUERY

0 1 2 3 4 5 6 7 8 9
S30 512 $25 S17

[103, [104] [101] [106,
105] 102]

Point Query Using Hash Table Index

Hash Table = Not ordered based on key Iterate through entire table

RANGE QUERY

Point Query Using Hash Table Index

std: :vector<int> rangeQuery(int lowerBound, int upperBound) const {
std: :vector<int> results;
for (size_t i = 0; i < capacity; ++i) {
if (hashTable[i].exists && hashTable[i].key >= lowerBound &&
hashTable[i].key <= upperBound) {
results.push_back(hashTable[i].value);

}
}

return results;

}

Range Query in BuzzDB

2y DB

void performRangeQueryWithHashIndex(int lowerBound, int upperBound) {
auto results = index.rangeQuery(lowerBound, upperBound);
std::cout << "Found " << results.size() << " records in the range.\n";

}

Oraered Index

RANGE QUERY [S10, $20]

[103,
105]

Unordered Index

RANGE QUERY [S10, $20]

[103,
105]

B+Tree Data Structure

(LI

[5lllj [23]x] I_[30|x1
I 11 [-]-1x]
LT

LEAF NODES

Height of the Tree

LEAF NODES

Fan-Out of the Tree

|

|_L|

[5“1—' [23]x] I_[30|x1
I 11 [-]-1x]
 Histvnal e fon o 1 s

Disk Accesses

4 DISK PAGE 3 DISK READS

Values in Leaf and Inner Nodes

NODE POINTERS
X Example: [Page 10}

[5] 11—| [23] x] I_[30|x]
[- | | x] [-]-1x]
1212141 | L 51617 ' '
V|V|V [VIV[V]

« ACTUAL VALUES
Example: [Tuple 104]

Cr

Keys In Leaf and Inner Nodes

2 keys, 3 values
K-1 keys, K values

3 keys, 3 values
K keys, K values

Leaf Sibling Pointers for Range Queries

I [20]25] |
[

L L

Sibling Pointers
In Leaf Nodes

Fast Range Queries Using B+ Trees

The sorted nature and linked leaf nodes allow B+ trees to execute range
queries by simply traversing the leaf nodes that fall within the range

std: :vector<Value> rangeQuery(const Key &lowerBound, const Key &upperBound) const {
// Traverse to the correct leaf node and then follow the linked leaf nodes.
// While traversing the leaf nodes, collect all the key-value pairs in the range

}

Cr

Fast Range Queries Using B+ Trees

[20]25]
RANGE:[5, 23] | T

L L

[23]x] I_[30|x1
[-]-1x] [-1-1x]

Templates In C++

lions & Classes
Templates perate with

ineric Types

template <typename T> T add(T a, T b) {
return a + b;

}

Type Safety Ensured at Compile Time

Template Instantiation

Add Function Instantiated with Different Types

int resultl = add<int>(b, 3);
/] returns 8

std::string result3 = add<std::string>("Hello, ", "world!");
// returns “Hello, world!”

B+Tree Template in C++

Placeholders B+ Tree Handles Enhance Code

Reusability &
Maintainability

Replaced at Any Key and
Compile Time Value Types

template <typename Key, typename Value> class BPlusTree {
struct Node; // Node definition
using NodePtr = std::unique_ptr<Node>;
// Node and Entry structures omitted for brevity

};

B+Tree Template Instantiation #1

Example: Employee ID (int) = Salary (int)

BPlusTree<int, int> idToSalary;

// Employee ID and salary are inserted into the tree.
idToSalary.insertOrUpdate (16081, 56000);

// Retrieve the salary of an employee by their ID quickly.
int salary = idToSalary.getValue(1601);

B+Tree Template Instantiation #2

Example: Product Name (string) - Price (int)

BPlusTree<std::string, int> productloPrice;

// Prices of products are stored in the B+ tree
productToPrice.insertOrUpdate("Apple iPhone 12", 999);

// Quickly find the price of a specific product.
int price = productToPrice.getValue("Apple iPhone 12");

B+Tree Template Instantiation #3

Example: TicketKey (user-defined type) > Name (int)

struct TicketKey {
std::string eventDate;
int seatNumber;
// Overload the comparison operators for ordering in the B+ tree
bool operator<(const TicketKey &other) const {
if (eventDate == other.eventDate) {
return seatNumber < other.seatNumber;

}

return eventDate < other.eventDate;

¥
};

B+Tree Template Instantiation #3

Example: TicketKey (user-defined type) > Name (int)

BPlusTree<TicketKey, std::string> concertlickets;

// When a ticket is booked, it is entered into B+ tree using its composite key.
concertTickets.insertOrUpdate(TicketKey("2030-12-25", 1681), "John Doe");
concertTickets.insertOrUpdate(TicketKey("2630-12-25", 182), "Jane Smith");

// Retrieve the booking information for a specific seat on a particular date.

std::string ticketHolder =
concertTickets.getValue(TicketKey("26830-12-25", 101));
std::cout << "Seat 101 is booked by: " << ticketHolder << std::endl;

Ordered Index Class in BuzzDB

We implement Orderedindex class by encapsulating a BPlusTree

class OrderedIndex {
BPlusTree<int, int> bptree;

public:
void insertOrUpdate(int key, int value) {
bptree.insertOrUpdate(key, value);

}

std: :vector<int> rangeQuery(int lowerBound, int upperBound) const {
return bptree.rangeQuery(lowerBound, upperBound);

¥
};

Conclusion

* Range Query
» Ordered Index

3+

ree

emplate

