
Lecture 14:
B+Tree

Logistics
• Programming assignment 3 (B+Tree) released
• Exam 1 scores released
• Extra-credit project (+5%)

Extra-Credit Project
• LLM-based question answering over textbook using local

models on your laptop
• Find ways to better and faster answer questions from students

• https://github.com/georgia-tech-db/TokenSmith
• “What is atomicity?”, “How is OLAP different from OLTP?”
• Around 20 students from both sections will earn +5%

• Subjective evaluation only possible

https://github.com/georgia-tech-db/TokenSmith

Extra-Credit Project
• Publish code on public GitHub
• Iterate over the code and add features incrementally
• Focus on evaluating latency and accuracy metrics
• One-page project update report due on Oct 30

• Two-page project final report due on Nov 18
• In-class presentations from selected students on Nov 20

Recap
• Range Query
• Ordered Index
• B+Tree Template

Lecture Overview
• B+Tree Structure
• Range Query Processing
• Node Split
• On-disk B+Tree

B+Tree Structure

B+Tree Structure

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19]
[V|V|V]

[20|21|x]
[V|V|x]

[23|24|x]
[-|-|x]

[25|29|x]
[V|V|x]

[30|31|x]
[V|V|x]

INNER NODES

LEAF NODES

Inner Node

[20|25]
[Page 5| Page 10 | Page 15]

PAGE 5

PAGE 1

Key Value
Key > 20 Page 5

Key = 20 and < 25 Page 10
Key > 25 Page 15

INNER NODE

[1 | 2 | 4]
[Tuple 310| Tuple 102 | Tuple 115]

Leaf Node

PAGE 8

LEAF NODE

Key Value
Key = 1 Tuple 310
Key = 2 Tuple 102
Key = 4 Tuple 115

[“max_file_size” | “default_language” | “session_timeout”]
[“10 MB” | “English” | “30 minutes”]

Key and Value Types

PAGE 8

LEAF NODE

Entry Key Value
Entry 1 “max_file_size” “10 MB”
Entry 2 “default_language” “English”
Entry 3 “session_timeout” “30 minutes”

ENTRIES

Entry in C++

struct Entry {
Key key;
Value value; // Used only in leaf node entry
NodePtr next; // Used only in inner node entry

Entry(Key k, Value v) : key(k), value(v), next(nullptr) {}
};

B+Tree Node in C++

struct Node {
bool isLeaf;
std::vector<Entry> entries;
std::unique_ptr<Node> next;

Node(bool leaf) : isLeaf(leaf), next(nullptr) {}
};

isLeaf?

Vector of Entries

Entry = {Key-Value}

Next Pointer

Inserting a Key-Value Pair

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19]
[V|V|V]

[20|21|x]
[V|V|x]

[23|24|x]
[-|-|x]

[25|29|x]
[V|V|x]

[30|31|x]
[V|V|x]

1

2
3

22
Z

Inserting a Key-Value Pair

void insertOrUpdate(const Key &key, const Value &value) {
insertOrUpdateInternal(key, value, root);

}

Insertion process is recursive

Recursive Descent in an Inner Node

void insertOrUpdateInternal(const Key &key, const Value &value, NodePtr &node) {
…
else {

bool found = false;
for (auto it = node->entries.begin(); it != node->entries.end(); ++it) {

if (key < it->key) {
insertOrUpdateInternal(key, value, it->next);
found = true;
break;

}
}

}
}

Find the appropriate child node by comparing keys.

Insertion in a Leaf Node

void insertOrUpdateInternal(const Key &key, const Value &value, NodePtr &node) {
if (node->isLeaf) {
// Search for the key in the leaf node
auto it = std::find_if(node->entries.begin(), node->entries.end(),

[&](const Entry &entry) { return entry.key == key; });
// Key not found, proceed to insert in sorted order
auto comp = [](const Entry &entry, const Key &k) { return entry.key < k;};
it = std::lower_bound(node->entries.begin(), node->entries.end(), key,

comp);
node->entries.insert(it, Entry(key, value));

}
…

}

If key does not exist in leaf node, insert it at the correct position to maintain sorted order.

Binary Search using a Lambda Function

// Key not found, proceed to insert in sorted order
auto comp = [](const Entry &entry, const Key &k)

{ return entry.key < k; };
it = std::lower_bound(node->entries.begin(),

node->entries.end(),
key, comp);

node->entries.insert(it, Entry(key, value));

Function

Anonymous

Short Functions

Comparator

Binary Search using a Lambda Function

Function

lower_bound

iterator

Sorted Order

// Key not found, proceed to insert in sorted order
auto comp = [](const Entry &entry, const Key &k)

{ return entry.key < k; };
it = std::lower_bound(node->entries.begin(),

node->entries.end(),
key, comp);

node->entries.insert(it, Entry(key, value));

Range Query Processing

Inefficient Range Query Processing

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19]
[V|V|V]

[20|21|x]
[V|V|x]

[23|24|x]
[-|-|x]

[25|29|x]
[V|V|x]

[30|31|x]
[V|V|x]

RANGE QUERY
Lower Bound = 19
Upper Bound = 23 1

2

4 5 6 73 8 9

Inefficient Range Query Processing
The rangeQuery method begins at the root and traverses down to the left-most

leaf, then continues horizontally through the leaves collecting all qualifying values.

std::vector<Value> rangeQuery(const Key &lowerBound,
const Key &upperBound) const {

std::vector<Value> result;
// Traverse to leftmost leaf
while (!currentNode->isLeaf) {
currentNode = currentNode->entries.front().next.get();

}
// Traverse all the leaf nodes
while (currentNode != nullptr) {
// Add relevant entries within lower and upper bounds
currentNode = currentNode->next.get();

}
}

Efficient Range Query Processing

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19]
[V|V|V]

[20|21|x]
[V|V|x]

[23|24|x]
[V|V|x]

[25|29|x]
[V|V|x]

[30|31|x]
[V|V|x]

RANGE QUERY
Lower Bound = 19
Upper Bound = 23 1

2

3 4 5

Vertical Traversal to Leaf Node
Move to appropriate child until a leaf node is reached by comparing lowerBound
with node key, ensuring the starting point is as close as possible to lowerBound.

std::vector<Value> rangeQuery(const Key &lowerBound,
const Key &upperBound) const {

auto node = root;
while (node && !node->isLeaf) {
size_t i = 0;
while (i < node->keys.size() && lowerBound > node->keys[i]) {
++i;

}
node = node->children[i];

}
…

}

Vertical Traversal to Leaf Node

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19]
[V|V|V]

[20|21|x]
[V|V|x]

[23|24|x]
[V|V|x]

[25|29|x]
[V|V|x]

[30|31|x]
[V|V|x]

RANGE QUERY
Lower Bound = 19
Upper Bound = 23 1

2

3

Horizontal Traversal Across Leaf Nodes
Once the appropriate leaf node is reached, the function iterates only through

relevant nodes using the linked nature of leaf nodes in a B+Tree.

while (node) {
for (size_t i = 0; i < node->keys.size(); ++i) {
if (node->keys[i] > upperBound)
return result;

if (node->keys[i] >= lowerBound) {
result.push_back(node->values[i]);

}
}
node = node->next;

}

Horizontal Traversal Across Leaf Nodes

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19]
[V|V|V]

[20|21|x]
[V|V|x]

[23|24|x]
[V|V|x]

[25|29|x]
[V|V|x]

[30|31|x]
[V|V|x]

RANGE QUERY
Lower Bound = 19
Upper Bound = 23

4 5

Node Split

Separate Vectors for Keys and Values

Node contains keys and values in separate vectors.

template <typename Key, typename Value> class BPlusTree {
struct Node {
std::vector<Key> keys;
std::vector<Value> values; // Only used in leaf nodes
std::vector<std::shared_ptr<Node>> children; // Only used in internal nodes
std::shared_ptr<Node> next = nullptr; // Next leaf node
bool isLeaf = false;
Node(bool leaf) : isLeaf(leaf) {}

};
size_t maxKeys; // Order of the tree
std::shared_ptr<Node> root;

};

Node Split: Inserting [8, Z]

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19]
[V|V|V]

[20|21|x]
[V|V|x]

[23|24|x]
[V|V|x]

[25|29|x]
[V|V|x]

[30|31|x]
[V|V|x]

Max Number of
Keys in a Leaf Node = 3 1

2

3

8
Z

Node Split: Inserting [8, Z]

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19]
[V|V|V]

[20|21|x]
[V|V|x]

[23|24|x]
[V|V|x]

[25|29|x]
[V|V|x]

[30|31|x]
[V|V|x]

[7|8|x]
[V|Z|x]

8
Z

7

Max Number of
Keys in Inner Node = 2

x
x

Node Split: Inserting [8, Z]

[20|x]
[-|-|x]

[5|x]
[-|-|x]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|x]
[V|V|x]

[7|8|x]
[V|Z|x]

[11|17|19]
[V|V|V]

[23|24|x]
[V|V|x]

[25|29|x]
[V|V|x]

[30|31|x]
[V|V|x]

[7|x]
[-|-|x]

Max Number of
Keys in Inner Node = 2

[11|x]
[-|-|x]

[20|21|x]
[V|V|x]

[25|x]
[-|-|x]

if (node->keys.size() > maxKeys) {
splitNode(path, node);

}

Node Split in C++

buzzDB Node Exceeds Capacity à Split Node

Insertion

auto node = root;
std::vector<std::shared_ptr<Node>> path; // Track the path for backtracking
while (!node->isLeaf) {
path.push_back(node);
auto it = std::upper_bound(node->keys.begin(), node->keys.end(), key);
size_t index = it - node->keys.begin();
node = node->children[index];

}

Path Tracking and Backtracking

[20|25]
[| |]

[5|11]
[-|-|-]

[23|x]
[-|-|x]

[30|x]
[-|-|x]

[1|2|4]
[V|V|V]

[5|6|7]
[V|V|V]

[11|17|19]
[V|V|V]

[20|21|x]
[V|V|x]

[23|24|x]
[-|-|x]

[25|29|x]
[V|V|x]

[30|31|x]
[V|V|x]

X

Y

Z

PATH = {X, Y, Z}

Insertion in Leaf Node

auto it = std::lower_bound(node->keys.begin(), node->keys.end(), key);
if (it != node->keys.end() && *it == key) {
size_t pos = std::distance(node->keys.begin(), it);
node->values[pos] += value; // Update existing key’s value

}
else {
size_t pos = it - node->keys.begin();
node->keys.insert(node->keys.begin() + pos, key);
node->values.insert(node->values.begin() + pos, value);

}

Node Splitting in Leaf Node

if (node->isLeaf) {
auto newNode = std::make_shared<Node>(true); // Create a new leaf node
size_t mid = node->keys.size() / 2; // Calculate the middle index
// Move the second half of keys and values to the new node
std::move(node->keys.begin() + mid, node->keys.end(),

std::back_inserter(newNode->keys));
std::move(node->values.begin() + mid, node->values.end(),

std::back_inserter(newNode->values));
newNode->next = node->next;
node->next = newNode;

}

Node Splitting in Inner Node

else { // Handling internal nodes
auto newNode = std::make_shared<Node>(false); // Create a new internal node
size_t mid = node->keys.size() / 2; // Middle index
Key midKey = node->keys[mid]; // Key that will move to the parent
// Move keys and children to the new node
std::move(node->keys.begin() + mid + 1, node->keys.end(),

std::back_inserter(newNode->keys));
std::move(node->children.begin() + mid + 1, node->children.end(),

std::back_inserter(newNode->children));
}

Backtracking to Parent Node

else {
auto parent = path.back(); // Get the parent node
path.pop_back(); // Remove the last tracked node
size_t pos = std::distance(

parent->keys.begin(),
std::lower_bound(parent->keys.begin(), parent->keys.end(), midKey));

parent->keys.insert(parent->keys.begin() + pos, midKey); // Insert median key
parent->children.insert(parent->children.begin() + pos + 1, newNode); // Insert

}

Determines
Parent Node

Path Vector

Parent Node May
Exceed Capacity

Median Key
Insertion

Can Travel Up to
Root Node

Recursion

Backtracking to Root Node

if (path.empty()) {
// New root for the tree
auto newRoot = std::make_shared<Node>(false);
newRoot->keys.push_back(midKey); // Add median key
newRoot->children.push_back(node); // Left child
newRoot->children.push_back(newNode); // Right child
// Update root pointer
root = newRoot;

}

Backtracking

Empty Path Vector

New Root Node

Two Children

Tree Height += 1

On-Disk B+Tree

Need for On-Disk B+Tree

Due to Disk
Capacity

Can Index
Large TablesScalability

Due to Disk
Durability

Index Rebuild
Unnecessary at
System Restart

Durability

Adaptation for Disk

struct Node {
Key keys[MAX_KEYS]; // Array to store keys
uint32_t children[MAX_KEYS + 1]; // File offsets for child nodes
uint32_t next; // File offset for the next leaf node
bool isLeaf;
int keyCount;

};

std::vector<uint8_t> serializeNodeToBytes(const DiskNode &node);
void deserializeNodeFromBytes(const std::vector<uint8_t> &buffer,

DiskNode &node);

Calculating Size of Node Struct

Size of Node struct with m keys =
m × (size of key + size of value) + size of an extra value +
size of next pointer + size of isLeaf + size of keyCount =

m × (4 + 4) + 4 + 4 + 1 + 4 = m × 8 + 13

Next
Pointer

(file
offset)
4 bytes

Value
(file

offset)
4 bytes

Key
(int)

4 bytes

isLeaf flag

1 byte

keyCount

4 bytes

Aligning Node Struct with Disk Page Size

// 4 KB disk page size
m × 8 + 13 <= 4096 bytes
m ~= 510 keys

// 16 KB disk page size
m x 8 + 13 <= 16384 bytes
m ~= 2046 keys

SSD

Page

4 kB Page

M = 510 keys

16 kB Page

M = 2046 keys

Capacity of a B+Tree

High Fan OutSuper ShortReally Wide

4 kB

Page Size

510

Fan Out

3

Levels

510 ^ (LEVELS -1) = 510 ^ (3 -1) = 510 ^ 2 PAGES Leaf Pages

510 ^ (LEVELS) = 510 ^ 3 = 132 Million KEYSMax Keys

510 ^ 2 PAGES * 4 KB / PAGE = 1 GBB+Tree File Size

Capacity of a B+Tree (4 Levels)

4 kB

Page Size

510

Fan Out

3

Levels

4

510 ^ (LEVELS -1) = 510 ^ (4 -1) = 510 ^ 3 PAGES Leaf Pages

510 ^ (LEVELS) = 510 ^ 4 = 67 Billion KEYSMax Keys

510 ^ 3 PAGES * 4 KB / PAGE = 0.5 TBB+Tree File Size

Serialization & Deserialization

Serialization

std::vector<uint8_t> serializeNodeToBytes(const DiskNode &node) {
std::vector<uint8_t> buffer;
// Assuming each key and offset is of fixed size, e.g., 4 bytes for int keys
for (const auto &key : node.keys) {
auto bytes = reinterpret_cast<const uint8_t *>(&key);
buffer.insert(buffer.end(), bytes, bytes + sizeof(Key));

}
…
return buffer;

}

Convert an in-memory DiskNode structure to a byte stream suitable for disk

Deserialization

void deserializeNodeFromBytes(const std::vector<uint8_t> &buffer, DiskNode &node) {
size_t offset = 0;
// Assuming we know the number of keys and that Key is of a fixed size
for (int i = 0; i < node.keyCount; ++i) {
Key key;
std::memcpy(&key, buffer.data() + offset, sizeof(Key));
node.keys[i] = key;
offset += sizeof(Key);

}
…

}

Convert a byte stream read from disk back to an in-memory Node

Node Storage in On-Disk File

FILE OFFSET
0 NODE 1
4 KB NODE 2
12 KB NODE 3
16 KB NODE 4
20 KB NODE 5
24 KB NODE 6
30 KB NODE 7
… …

B+Tree

Minimizing Disk Reads

N 1 N 5 N 2

N 9 N 6 N 10
Cached
Nodes

N 1 N 2 N 3 N 4
N 5 N 6 N 7 N 8
N 9 N 10 N 11

B+Tree

DRAM

Disk

ROOT Node
Cached

Cache B+Tree
Nodes

Reduce Disk
Operations

Node 1

Node 5 Node 9 Node 10

Node 2 Node 3 Node 4 Node 6 Node 8 Node 7 Node 11

Minimizing Disk Reads: Finding a Key in Node 4

1

2

3

Minimizing Disk Writes

N 1 N 5 N 2

N 9 N 6 N 10
Cached
Nodes

N 1 N 2 N 3 N 4
N 5 N 6 N 7 N 8
N 9 N 10 N 11

B+Tree

DRAM

Disk

Node evicted from buffer pool when it is full Node Eviction

Advantages of B+Trees on Disk

Uniform Height

All operations
need same

number of disk
reads/writes

Short Height

Higher-level
inner nodes are
buffered leading

to fewer page
misses

Linked Leaves

Range queries
can be

processed
efficiently

B+Trees are designed for storage on disk

Conclusion
• Range Query
• Ordered Index
• B+Tree Template

