
Lecture 15:
Trie



Logistics
• Assignment 3 has been released
• Clarifications related to extra-credit project



Recap
• B+Tree Structure
• Range Query Processing
• Node Split



Lecture Overview
• Trie
• Binary Patricia Trie
• Inverted Index
• Web-Scale Search



Trie



Product Catalog Search

// Find all Samsung Galaxy phones in the catalog
std::vector<std::string> galaxyPhones =

productCatalog.startsWith("Samsung Galaxy");

Product Name Relevant or not
Samsung Galaxy S21 Ultra Yes

Apple iPhone XS Max No
Samsung Galaxy A55 Yes

Apple iPhone 12 No
Samsung Galaxy S27 Yes



Limitations of B+Tree

[“Samsung Galaxy S21 Ultra” | .. ]
[-|-|-]

[[“Samsung Galaxy S21 Ultra” | .. ]| ..]
[-|-|-]

[[“Samsung Galaxy A55”| | “Samsung Galaxy S21 Ultra” | |.. ] ..]
[V|V|..]

REDUNDANT 
KEY STORAGE 

SPACE OVERHEAD

SLOW SEARCH



Trie

ROOT
NODE

“Samsung Galaxy”

“Apple iPhone”

“A55”

“S21 Ultra”

“12”

“XS Max”

“S27”"

Retrieval

NO REDUNDANT 
KEY STORAGE 

FASTER SEARCH



Patricia Trie

Basic Trie Patricia Trie

“ S A M S U N G G A L A X Y ” “Samsung Galaxy”

Or Whole StringsInto Single NodeMerge Single 
Character NodesTrie



Insertion Example: “hello”

helloRoot 
Node



Insertion Example: “helium”

hel

lo

ium

Root 
Node

Node Split New 
Nodes



Retrieval: “hello” and “helicopter”

hel

lo

ium

Root 
Node

Navigate Root Node to 
Relevant Leaf Node

Each Character
Narrows Down Search



france 6

5

3

1

2

4

More Complex Trie with Key-Value Pairs

alibut

el

n

ro

h

Root 
Node

ium

lo



Patricia Trie



class PatriciaNode {
public:
bool isEndOfWord;
int value;  
std::map<std::string, PatriciaNode *> children;

PatriciaNode() : isEndOfWord(false) {}
};

Patricia Trie



Insertion

void insertHelper(PatriciaNode *node, const std::string &word, size_t index) {
// Termination case: If the whole word has been processed
if (index == word.length()) {
node->isEndOfWord = true;
return;

}
// Prepare the substring from the current index to the end
std::string remaining = word.substr(index);
...

}

Termination Case Stop Recursion Find Substring



Insertion: Identifying Common Prefixes
Common Prefix 

Length
Splits Nodes 

When Necessary
Identifies 

Common PrefixesTrie

for (auto &child : node->children) {
// Calculate common prefix length
const std::string &key = child.first;
PatriciaNode *childNode = child.second;
size_t commonLength = 0;
while (commonLength < key.length() && commonLength < remaining.length() &&

key[commonLength] == remaining[commonLength]) {
commonLength++;

}
...

}



Insertion: Handling No Common Prefix

// If no child matches the remaining part of the word
node->children[remaining] = new PatriciaNode();

// Recursively insert the remainder – e.g. “hello”
insertHelper(node->children[remaining], word, word.length(), value);



Node Splitting
if (commonLength > 0) {
if (commonLength < key.length()) {
// Split the child's key
std::string newKey = key.substr(0, commonLength); // “hel”
std::string oldKey = key.substr(commonLength);    // “lo”
PatriciaNode *newChildNode = new PatriciaNode();
newChildNode->children[oldKey] = childNode;
node->children[newKey] = newChildNode;
node->children.erase(key);
childNode = newChildNode;

}
// remainder: “ium”
insertHelper(childNode, word, index + commonLength, value);
return;

}



Complexity Comparison of Trie and B+Tree

L: Average length of the key

N:  Number of keys

Patricia Trie B+Tree
Insertion Time Complexity O(L) O(log N) 

Search Time Complexity O(L) O(log N)

Patricia Trie B+Tree
Insertion Time Complexity O(L) O(log N) 

Search Time Complexity O(L) O(log N)

Space Complexity O(N * L) O(N)



Complexity Comparison of Trie and B+Tree

Patricia Trie B+Tree
Target Use Case Fast prefix queries Fast range queries

Patricia Trie B+Tree
Target Use Case Fast prefix queries Fast range queries

Memory 
Efficiency

Less efficient 
with dissimilar keys

More efficient, 
stores many keys per node

Patricia Trie B+Tree
Target Use Case Fast prefix queries Fast range queries

Memory 
Efficiency

Less efficient 
with dissimilar keys

More efficient, 
stores many keys per node

Range Queries Supported but not efficient Highly efficient



Inverted Index



Inverted Index

Word Positions
russia 10, 20

napolean 25

Map words to the positions in which they appear in a document. 



Proximity Search

Word Positions
russia 10, 20

napoleon 25

distance(“russia”, “napoleon”) less than ten words



Library Search

Word Document ID, Position

russia (1, 10), (1, 20)
napoleon (1, 25), (2, 30), (3, 50)

Map words to the documents in which they appear. 



Why Inverted Index?

Inverted 
Index Proximity 

Search
Word

Search
Text 
Data

Internals Values are
Doc IDs, 

Positions

Keys are 
Words

Hash Table 
Foundation



Structure of an Inverted Index

std::unordered_map<
std::string,
std::unordered_map<int, std::vector<int>>

>

{1: {5, 20}, 2: {10}}Value“russia”Key



Core Functions



Core Functions

addDocument getDocuments proximitySearch



Adding Documents to the Inverted Index

void addDocument(int docID, const std::string &content) {
documents.push_back(content);
std::vector<std::string> words = split(toLower(content));
for (size_t i = 0; i < words.size(); ++i) {
index[words[i]][docID].push_back(i);

}
}

Convert word to 
lowercase if 

needed

Map to Doc ID 
and Word 
Position

Add Word to 
unordered_map



Retrieving Documents Containing a Term

std::unordered_set<int> getDocuments(
const std::string &word) {
std::string lowerWord = toLower(word);
if (index.find(lowerWord) != index.end()) {
std::unordered_set<int> docIDs;
for (const auto &entry : index[lowerWord]) {
docIDs.insert(entry.first);

}
return docIDs;

}
return {};

}

Converts input 
word to lowercase

Returns list of 
document IDs



Proximity Search: Finding Words Near Each Other
std::unordered_set<int> proximitySearch(const std::string &word1, 

const std::string &word2, int k)
{

…
if (index.find(lowerWord1) != index.end() && index.find(lowerWord2) != index.end()) 

{
for (const auto &entry1 : index[lowerWord1]) {
int docID = entry1.first;
if (index[lowerWord2].find(docID) != index[lowerWord2].end()) {
const auto &positions1 = entry1.second;
const auto &positions2 = index[lowerWord2].at(docID);
for (int pos1 : positions1) { for (int pos2 : positions2) {

if (std::abs(pos1 - pos2) <= k) { result.insert(docID); break; }
}

…
}



Benefits of Inverted Index

Fast lookup for individual wordsEfficient

Scales to large document collectionsScalable

Proximity search and Boolean queriesComplexity



Challenges with Inverted Index

Large 
Storage

Footprint

Compression: 
Delta Encoding

Disk-Based 
Storage

Management



Web-Scale Search



Héctor García-Molina    Sergey Brin   Larry Page

Stanford Digital Library Project (1995)



Web-Scale Search

Web-Scale Inverted Index

Replication

Sharding



Distributed Inverted Index

Shards (subset of Words) Replicas
Shard 1 (Words 1…100) Servers A, B

Shard 2 (Words 101 … 200) Servers C, D
... …

Word-Based Sharding



Document Ranking

Documents Prioritized by 
Relevance

Relevant 
Ranking

PageRank or
Machine Learning

Ranking
Algorithm

Inverted Index
Narrows Down

Indexing 
and Ranking



Conclusion
• Trie
• Binary Patricia Trie
• Inverted Index
• Web-Scale Search


