Lecture 1):
Irie

Logistics

» Assignment 3 has been released

 Clarifications related to extra-credit project

Recap

e B+Tree Structure

» Range Query Processing
* Node Split

Lecture Overview

e Trie

» Binary Patricia Trie
e |Inverted Index
« \Web-Scale Search

Product Catalog Search

Product Name

Relevant or not

Samsung Galaxy S21 Ultra Yes
Apple iIPhone XS Max No
Samsung Galaxy A55 Yes

Apple iIPhone 12 No
Samsung Galaxy S27 Yes

// Find all Samsung Galaxy phones in the catalog

std: :vector<std::string> galaxyPhones

productCatalog.startsWith("Samsung Galaxy");

Limitations of B+Tree

[“Samsung Galaxy S21 Ultra” | ..]

c-1-1-]

[“Samsung Galaxy S21 Ultra” | ..] REDUNDANT
-]-1-] KEY STORAGE
SPACE OVERHEAD
SLOW SEARCH

”I

[“Samsung Galaxy A55” | “Samsung Galaxy $21 Ultra

[VIV]..]

Trie

Retrieval “A55"
"Samsung Galaxy" 4 “S21 Ultra"
NO REDUNDANT
KEY STORAGE
IISZ?""
“"Apple iPhone" XS Max”

M'I 2"

il

FASTER SEARCH

Patricia Trie

Merge Single
Character Nodes

Basic Trie

I hole Strings

{4

7)
r

Patricia Trie

"Samsung Galaxy"

Gr

Insertion Example: “hello”

Insertion Example: “helium”

lod
Node

Node Split ey

Nodes

is] |-

Retrieval: “hello” and “helicopter”

Navigate Root Node to
Relevant Leaf Node “
Root
hel
Node
Each Character IE

Narrows Down Search

More Complex Trie with Key-Value Pairs

alibut
R \EE

&
:

Root
Node

H - E
H H

france

Patricia Trie

» class PatriciaNode {
public:

bool isEndOfWord;
int value;
std::map<std::string, PatriciaNode *> children;

PatriciaNode() : isEndOfWord(false) {}
};

Insertion

Stop Recursion Find Substring

void insertHelper(PatriciaNode *node, const std::string &word, size_t index) {
// Termination case: If the whole word has been processed
if (index == word.length()) {
node->isEndOfWord = true;
return;

}

// Prepare the substring from the current index to the end
std::string remaining = word.substr(index);

Insertion: Identifying Common Prefixes

N
Trie r

for (auto &child : node->children) {
// Calculate common prefix length
const std::string &key = child.first;
PatriciaNode *childNode = child.second;
size_t commonlLength = 0;
while (commonLength < key.length() && commonLength < remaining.length() &&

key[commonLength] == remaining[commonLength]) {
commonLength++;

}

Insertion: Handling No Common Prefix

// If no child matches the remaining part of the word
node->children[remaining] = new PatriciaNode();

// Recursively insert the remainder - e.g. “hello”
insertHelper(node->children[remaining], word, word.length(), value);

Node Splitting

if (commonLength > 8) {
if (commonLength < key.length()) {

// Split the child's key
std::string newKey = key.substr(8, commonLength); // “hel”
std::string oldKey = key.substr(commonLength); /] “lo”
PatriciaNode *newChildNode = new PatriciaNode();
newChildNode->children[oldKey] = childNode;
node->children[newKey] = newChildNode;

node->children.erase(key);
childNode = newChildNode;

}

[/ remainder: “ium
insertHelper(childNode, word, index + commonLength, value);
return;

M

}

Complexity Comparison of Trie and B+Tree

L: Average length of the key
N: Number of keys

Insertion Time Complexity O(L) O(log N)
Search Time Complexity O(L) O(log N)
Space Complexity O(N * L) O(N)

Complexity Comparison of Trie and B+Tree

Target Use Case Fast prefix queries Fast range queries
Memory Less efficient More efficient,
Efficiency with dissimilar keys stores many keys per node

Range Queries Supported but not efficient Highly efficient

Inverted Index

Map words to the positions in which they appear in a document.

Word Positions
russia 10, 20
napolean 25

Proximity Search

Y J A { |

distance(“russia”, “napoleon”) less than ten words

Word Positions
russia 10, 20
napoleon 25

Library Search

Map words to the documents in which they appear.

Word Document ID, Position

russia (1,10), (1, 20)
napoleon (1, 25), (2, 30), (3, 50)

Why Inverted Index?

Inverted
Index

Hash Table
Foundation

'roximity

Search

Structure of an Inverted Index

Key “russia” {1: {5, 20}, 2: {10}}

std: :unordered_map<
std: :string,
std: :unordered_map<int, std::vector<int>>

7
-
O
e
O
-
-
L
5
-
o
O

Core Functions

_

addDocument

r

.

getDocuments

.

proximitySearch

Adding Documents to the Inverted Index

void addDocument(int docID, const std::string &content) {
documents.push_back(content);
std: :vector<std::string> words = split(toLower(content));
for (size_t i = 0; i < words.size(); ++i) {
index[words[i]][docID].push_back(i);
}
}

Retrieving Documents Containing a Term

std: :unordered_set<int> getDocuments(
const std::string &word) {

Hut std::string lowerWord = tolLower(word);
case if (index.find(lowerWord) != index.end()) {
std: :unordered_set<int> docIDs;

for (const auto &entry : index[lowerWord]) {
docIDs.insert(entry.first);

}

return doclDs;

}

return {};

}

Proximity Search: Finding Words Near Each Other

std: :unordered_set<int> proximitySearch(const std::string &word1,
const std::string &word2, int k)

{

{ if (index.find(lowerWord1) != index.end() && index.find(lowerWord2) !'= index.end())

for (const auto &ntryl : index[lowerWordl1]) {
int docID = entryl.first;
if (index[lowerWord2].find(docID) !'= index[lowerWord2].end()) {
const auto &positionsl = entryl.second;
const auto &positions? = index[lowerWord2].at(docID);
for (int pos1 : positions1) { for (int pos2 : positions?2) {
if (std::abs(pos1 - pos2) <= k) { result.insert(docID); break; }

Benefits of Inverted Index

@ Fast lookup for individual words

Scalable Scales to large document collections

Challenges with Inverted Index

_

Large
Storage
Footprint

Compression:
Delta Encoding

_ _/

Disk-Based
Storage
Management

_ /

Stanford Digital Library Project (1995)

o

Héctor Garcia-Molina Sergey Brin Larry Page

X_
=S |
=
<
ge
Q
)
S
Q
>
<
A
(O
O
-
i i

Web-Scale Search

Distributed Inverted Index

Word-Based Sharding

Shards (subset of Words) Replicas
Shard 1 (Words 1...100) Servers A, B
Shard 2 (Words 101 ... 200) Servers C, D

Document Ranking

Relevant
Ranking

Ranking
Algorithm

Indexing
and Rankin

Conclusion

e Trie

» Binary Patricia Trie
e |Inverted Index
« \Web-Scale Search

