
Lecture 17:
RTree

Logistics
• Two-page project updates due on Oct 29 (extra credit)
• Programming assignment 3 (B+Tree) due on Nov 2

Recap
• Trie
• Inverted Index
• Web-Scale Search

Lecture Overview
• RTree
• ND-RTree

RTree

• B+ trees are designed for single-dimensional indexing.
• When we create a composite key, such as an index on <salary,

age>, we linearize the 2-dimensional space by sorting first by
salary, and then by age.

Limitations of B+Tree

60 X X
50 X
40 X
30
20 X X

100 K 150 K 200 K 250 K 300 K

AGE

SALARY

Limitations of B+Tree

60
50
40
30
20

100 K 150 K 200 K 250 K 300 K

AGE

SALARY

Designed for Single-Dimensional Indexing

60
50
40
30
20

100 K 150 K 200 K 250 K 300 K

AGE

SALARY

R-Tree: A Multidimensional Index

SPATIAL CLUSTERS

R-Tree groups multi-dimensional keys based on
spatial proximity

R-Tree: A Multidimensional Index

(Salary, Age): Point Clusters: Bounding Rectangles

60
50
40
30
20

100 K 150 K 200 K 250 K 300 K

AGE

SALARY

SPATIAL CLUSTERS

Supported Queries

Nearby
Cafes

Spatial Queries Nearest Neighbor Queries

Key Characteristics

AGE

SALARY

ROOT

Balanced

Bounding
Rectangle

R-Tree Data Types

Specific
location
in space

2D coordinatePoint

Encloses points
or other

rectangles

Defines a
bounding boxRectangle

R-Tree Nodes

Contains
Points; Lowest
Level of Tree

Leaf Node

Contains Child
Nodes and

their Bounding
Rectangles

Inner Node

Top-Most Inner
Node;
Entry
Point

Root Node

R-Tree
Node

R-Tree Structure

R-Tree Structure

R1 R2

R3 R4 R5 R6 R7

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

(x, y) = (salary, age)

Point

struct Point {
float x, y;
Point(float x, float y) : x(x), y(y) {}

};

(salary, age)

Rectangle

struct Rectangle {
float minX, minY, maxX, maxY;
Rectangle(float minX, float minY, float maxX, float maxY)

: minX(minX), minY(minY), maxX(maxX), maxY(maxY) {}

bool contains(const Point &p);
bool intersects(const Rectangle &other) const;

};

Defines a bounding box using its minimum and maximum coordinates

(minX, minY)

(maxX, maxY)

Rectangle: Contains

bool contains(const Point &p) const {
return (p.x >= minX && p.x <= maxX

&& p.y >= minY && p.y <= maxY);
}

Check if a point lies inside the rectangle

(minX, minY)

(maxX, maxY)

(x, y)

Rectangle: Intersection

bool intersects(const Rectangle &other) const {
return !(other.minX > maxX || other.maxX < minX

|| other.minY > maxY || other.maxY < minY);
}

Determine if two rectangles overlap

Inserting Points

Inserting Points into the R-Tree

void insert(RTreeNode * node, const Point &point, const Rectangle &rect) {
…
else {
int bestChild = chooseBestChild(node, rect);
insert(node->children[bestChild], point, rect);
node->childrenRectangles[bestChild].expand(rect);

}
}

• Recursively finds best child node
• With least enlargement of bounding rectangle

Inner
Node

Best Child with Least Enlargement

int chooseBestChild(RTreeNode * node, const Rectangle &rect) {
int bestChild = 0;
for (size_t i = 0; i < node->children.size(); ++i) {
Rectangle enlarged = node->childrenRectangles[i];
enlarged.expand(rect);
float enlargement = …
if (enlargement < minEnlargement) {
minEnlargement = enlargement;
bestChild = i;

}
}
return bestChild;

}

Leaf Node Insertion

void insert(RTreeNode * node, const Point &point, const Rectangle &rect) {
if (node->isLeaf) {
node->points.push_back(point);
if (node->points.size() > maxPoints) {
split(node); // Split the node if it exceeds max points

}
}
…

}

• Add point to the leaf node
• Split if node exceeds maximum point capacity

Leaf
Node

SEEDS

Quadratic Node Splitting Algorithm

void chooseSeeds(const std::vector<Point> &points, int &seed1, int &seed2) {
float maxDistance = -1;
for (size_t i = 0; i < points.size(); ++i) {
for (size_t j = i + 1; j < points.size(); ++j) {
float distance = std::sqrt(std::pow(points[i].x - points[j].x, 2) +

std::pow(points[i].y - points[j].y, 2));
if (distance > maxDistance) {
maxDistance = distance;
seed1 = i;
seed2 = j;

}
}

}
}

Quadratic Node Splitting Algorithm

Range & Nearest Neighbor Query

Range Query in R-Tree

60
50
40
30
20

100 K 150 K 200 K 250 K 300 K

AGE

SALARY

100 K < Salary < 200 K 40 < Age < 60

void query(RTreeNode * node, const Rectangle &rect,
std::vector<Point> &results) {

if (node->isLeaf) {
for (const Point &p : node->points) {
if (rect.contains(p)) {
results.push_back(p);

}
}

} else {
for (size_t i = 0; i < node->children.size(); ++i) {
if (rect.intersects(node->childrenRectangles[i])) {
query(node->children[i], rect, results);

}
}

}
}

Range Query in R-Tree

Nearest Neighbor Query in R-Tree

60
50
40
30
20

100 K 150 K 200 K 250 K 300 K

AGE

SALARY

Salary ~ 200 K Age ~ 50

Nearest Neighbor Query: Inner Node

void nearestNeighbor(RTreeNode * node, const Point &queryPoint, int k,
std::priority_queue<std::pair<float, Point>> &pq) {

…
else {
std::vector<std::pair<float, R - TreeNode *>> childDistances;
for (size_t i = 0; i < node->children.size(); ++i) {
float distance = node->childrenRectangles[i].minDistance(queryPoint);
childDistances.push_back({distance, node->children[i]});

}
std::sort(childDistances.begin(), childDistances.end());
for (const auto &child : childDistances) {
nearestNeighbor(child.second, queryPoint, k, pq);

}
}

}

Nearest Neighbor Query: Leaf Node

void nearestNeighbor(RTreeNode * node, const Point &queryPoint, int k,
std::priority_queue<std::pair<float, Point>> &pq) {

if (node->isLeaf) {
for (const Point &p : node->points) {
float distance = std::sqrt(std::pow(p.x - queryPoint.x, 2) +

std::pow(p.y - queryPoint.y, 2));
pq.push(std::make_pair(distance, p));
if (pq.size() > k)

pq.pop();
}

}
…

}

Applications

Restaurant Search on Maps

USER QUERY
RECTANGLERESTAURANTS

Ride Matching

Point driver({latitude, longitude}, "DriverID");
tree.insert(driver);

Point riderLocation({rider_latitude, rider_longitude}, "RiderLocation");
int k = 10; // We want the nearest drivers
std::vector<Point> nearestDrivers = tree.nearestNeighbor(riderLocation, k);

Latitude Longitude

Higher
Dimensional
Applications

N
Dimensions

ND R-Tree

Cannot
Support
Higher

Dimensions

Limitation of R-Tree

Only
2D

Indexing

R-Tree

ND RTree

ND R-Tree: A Multidimensional Index

Efficiently manage data in tens of dimensions

ND R-Tree Structure

N-dimensional PointPoint

N-dimensional Rectangle
Hyper-

Rectangle

Nodes Leaf Node Inner Node Root Node

N-Dimensional Point

struct Point {
std::vector<float> coordinates;
std::string label;

};

Example: 512-dimensional point with image features

N-Dimensional Hyperrectangle

struct Rectangle {
std::vector<float> minCoords, maxCoords;
bool contains(const Point &p) const;

};

(minX, minY)

(maxX, maxY)

Game Engine

Point gameObject({x, y, z}, "GameObjectID");
tree.insert(gameObject);

Rectangle collisionArea({minX, minY, minZ}, {maxX, maxY, maxZ});
std::vector<Point> nearbyObjects = tree.query(collisionArea);

Challenge

Balanced
Efficient Queries

Rectangle Overlap
Fewer Subtrees

ND R-Tree

• As the number of dimensions (n) increases, the volume of space grows
exponentially.

• Data points become sparsely distributed, making it difficult for algorithms like R-
Trees to efficiently manage and query data.

• The intuitive notion of "closeness" in lower dimensions becomes less meaningful in
high-dimensional spaces.

Curse of Dimensionality in R-Trees

• Inefficiency in Node Splitting:

• In high-dimensional spaces, minimum bounding rectangles (MBRs) tend to overlap
significantly.

• Increased overlap makes it difficult for R-trees to prune search space efficiently,
leading to more nodes being visited during queries.

Curse of Dimensionality in R-Trees

• Increased Query Time:

• The expected number of node accesses grows as dimensionality increases, which
reduces the performance of range queries and nearest neighbor searches.

• R-trees perform well in 2D or 3D, but as the number of dimensions grows (e.g., >10),
their performance degrades.

Curse of Dimensionality in R-Trees

• Large Minimum Bounding Rectangle (MBR) Volumes:

• Minimum Bounding Rectangles expand disproportionately with additional
dimensions, causing them to enclose vast empty regions of space.

• Many queries will require searching through multiple large MBRs, even if relevant
data points are scarce in those areas.

Curse of Dimensionality in R-Trees

Conclusion
• RTree
• ND-RTree

