
Lecture 18:
Query Execution

Logistics
• Programming assignment 3 (B+Tree) due on Nov 2

• Project update report due on Oct 29 (extra credit)
• Exercise sheet 2 will be released soon

§ Hash Table to Trie & Inverted Index

• Advanced Database Implementation Course: 4423/6423
§ Logging and Recovery
§ Concurrency Control

§ Query Optimization etc.

Recap
• Learned Index
• Learned Index using Neural Network

Lecture Overview
• Query Execution

Modular Query Execution

Limitations of Hard-Coded Query

void scanTableToBuildIndex() {
for (size_t page_itr = 0; page_itr < num_pages; page_itr++) {
for (size_t slot_itr = 0; slot_itr < MAX_SLOTS; slot_itr++) {
if (slot_array[slot_itr].empty == false) {
hash_index.insertOrUpdate(key, value); …

}
}
void selectGroupBySum(int lowerBound, int upperBound) {

auto results = index.rangeQuery(lowerBound, upperBound);
…

}

Hard to Change
Query Tight Coupling

Modular Query Execution

Scan
Operator

Select
Operator

Group By
Operator

Flexibility Isolation

Flexible Query
Configuration

Operator
Changes
Isolated

Operators are like Lego Blocks

Scan
Operator

Select
Operator

Table Filtered Table

Composability of Operators

Select
Operator

Join Operator

Filtered Table

Joined Table

TableScan
Operator

Composability of Operators

Select
Operator

Group By
Operator

Filtered Table Grouped TableTable

Scan
Operator

Benefits of Operators

Users compose
operators

to run different
queries

Flexibility

Each operator
encapsulates a

specific data
manipulation
functionality

Modularity

Reduce
redundancy and

minimize the
chance of bugs

Reusability

Scan Operator

Operator Class

class Operator {
public:
virtual ~Operator() = default;
virtual void open() = 0;
virtual bool next() = 0;
virtual std::vector<std::unique_ptr<Field>> getOutput() = 0;
virtual void close() = 0;

};

An abstract base class defining the common interface for all operators

Operator Interface
Interface Methods

void open()
bool next()

std::vector<std::unique_ptr<Field>> getOutput()
void close()

Progresses to
next tuple

next

Returns
the tuple

getOutput

Cleans up
resources

close

Initializes the
operator

open

Scan Operator

Scan
Operator

Table

ID Value
1 100
2 200
3 300

1, 100

2, 200

3, 300

“Scans” tuples from a table’s pages on disk using Buffer Manager

Page 1

Page 3

Page 2

class ScanOperator : public Operator {
private:
size_t currentPageIndex = 0;
std::unique_ptr<SlottedPage> currentPage;
size_t currentSlotIndex = 0;
std::unique_ptr<Tuple> currentTuple;
BufferManager &bufferManager;
// Initialization and tuple management code here...

};

Scan Operator

“Scans” tuples from a table’s pages on disk using Buffer Manager

void ScanOperator::open() {
currentPageIndex = 0; // Reset page index
currentSlotIndex = 0; // Reset slot index
loadNextTuple();

}

open()

open(): Prepares First Page for Tuple Extraction

next()

next(): Sequentially moves through slots, loading tuples

bool ScanOperator::next() {
if (!currentPage)
return false; // No more pages available

loadNextTuple(); // load next tuple from page into currentTuple
return currentTuple != nullptr;

}

loadNextTuple()

void loadNextTuple() {
while (currentPageIndex < bufferManager.getNumPages()) {
Slot *slot_array = reinterpret_cast<Slot *>(currentPage-

>page_data.get());
while (currentSlotIndex < MAX_SLOTS) {
// Extract tuple from current slot
…
currentSlotIndex++;

}
currentPageIndex++; currentSlotIndex = 0;

}
// If we've reached here, no more tuples are available
currentTuple.reset();

}

getOutput()

getOutput(): Returns fields of current tuple

std::vector<std::unique_ptr<Field>> getOutput() override {
if (currentTuple) {
return std::move(currentTuple->fields);

}
return {}; // Return an empty vector if no tuple is available

}

close()

close(): Release resources and perform cleanup operations

void ScanOperator::close() override {
currentPage.reset();
currentTuple.reset();

}

Abstract Base Class (ABC)

Abstract Base Class

class Shape {
protected:
float x, y; // Location of the shape

public:
Shape(float x, float y, string color) : x(x), y(y), color(color) {}
// Pure virtual function for drawing the shape
virtual void draw() const = 0;
// Virtual function for moving the shape
virtual void move(float newX, float newY) {
x = newX;
y = newY;
cout << "Moved to (" << x << ", " << y << ")." << endl;

}
};

COMMON VARIABLES

PURE VIRTUAL FUNCTION

Derived Class: Circle

class Circle : public Shape {
private:

float radius;
public:

// Constructor for Circle initializes Shape and radius
Circle(float x, float y, string color, float radius)

: Shape(x, y, color), radius(radius) {}
// Implementation of the pure virtual draw function
void draw() const override {
cout << "Drawing a circle at (" << x << ", " << y << ") with radius "

<< radius << " and color " << color << "." << endl;
}

};

RADIUS

Derived Class: Square

class Square : public Shape {
private:

float sideLength;
public:

// Constructor for Square initializes Shape and side length
Square(float x, float y, string color, float sideLength)

: Shape(x, y, color), sideLength(sideLength) {

// Implementation of the pure virtual draw function
void draw() const override {
cout << "Drawing a square at (" << x << ", " << y << ") with side length "

<< sideLength << " and color " << color << "." << endl;
}

};

SIDE LENGTH

Inheritance

Inheritance
Derived classes

can override
Base class
methods

Polymorphism
Derived classes can

override
Base class methods

with different
implementations

Etymology of Inheritance

Make An HeirEnheriterInheritance

Etymology of Abstract

Drawn away
/DetachedAbstractusAbstract

Shape Example and Polymorphism

int main() {
Shape *shapes[2];
shapes[0] = new Circle();
shapes[1] = new Square();

for (int i = 0; i < 2; ++i) {
shapes[i]->draw(); // Polymorphic call}
return 0;

}
}

Derived Class Object

Base Class Pointer

Draw

Polymorphism

Etymology of Polymorphism

Many ShapesPoly-morphPolymorphism

Operator Inheritance

Derived Classes of Operator

UnaryOperator

class UnaryOperator : public Operator {
protected:
Operator *input;

public:
explicit UnaryOperator(Operator &input) :

input(&input) {}

~UnaryOperator() override = default;
};

BinaryOperator

class BinaryOperator : public Operator {
protected:
Operator *input_left;
Operator *input_right;

public:
explicit BinaryOperator(Operator &input_left,

Operator &input_right)
: input_left(&input_left),

input_right(&input_right) {}

~BinaryOperator() override = default;
};

Predicate

ID SALARY
1 500
2 1500
3 800
4 2000

Select Operator
SELECT *
FROM employees
WHERE salary > 1000;

ID SALARY
2 1500
4 2000

BASE TABLE FILTERED TABLE

SALARY > 1000

LEFT FIELD PREDICATE TYPE RIGHT FIELD

Predicate

Fields Being Compared

Nature of
Comparison

Predicate

class Predicate {
public:
std::unique_ptr<Field> left_field;
std::unique_ptr<Field> right_field;
PredicateType predicate_type;

};

Predicate Type

enum class PredicateType {
EQ, // Equal
NE, // Not Equal
GT, // Greater Than
GE, // Greater Than or Equal
LT, // Less Than
LE // Less Than or Equal

};

Predicate Evaluation

bool checkPredicate() const {
switch (left_field->getType()) {
case INT: {
int left_val = left_field->asInt();
int right_val = right_field->asInt();
return compare(left_val, right_val);

}
…

}

Type-Safe Comparison Template

template <typename T>
bool compare(const T &left_val, const T &right_val) const {

switch (predicate_type) {
case PredicateType::EQ: return left_val == right_val;
case PredicateType::NE: return left_val != right_val;
case PredicateType::GT: return left_val > right_val;
case PredicateType::GE: return left_val >= right_val;
case PredicateType::LT: return left_val < right_val;
case PredicateType::LE: return left_val <= right_val;
default: std::cerr << "Invalid predicate type\n"; return false;
}

}

Predicate Example

// Create integer fields for comparison
std::unique_ptr<Field> left = std::make_unique<Field>(10);
std::unique_ptr<Field> right = std::make_unique<Field>(20);
// check if left field value is greater than the right field value
Predicate predicate(std::move(left), std::move(right), PredicateType::GT);

// Evaluate the predicate and print the result
bool result = predicate.checkPredicate();
std::cout << "Predicate result: (10 > 20) : " << std::boolalpha << result

<< std::endl;

Complex Predicate

Limitations of Predicate

10 > 20
LEFT

CONSTANT
FIELD

PREDICATE TYPE
RIGHT

CONSTANT
FIELD

Complex Predicate

SALARY > 1000

TUPLE
COLUMN

PREDICATE
TYPE

RIGHT
CONSTANT

FIELD

Complex Predicate

class Predicate {
public:
enum OperandType { DIRECT, INDIRECT };
struct Operand {

std::unique_ptr<Field> directValue;
size_t index;
OperandType type;
Operand(std::unique_ptr<Field> value)

: directValue(std::move(value)), type(DIRECT) {}
Operand(size_t idx) : index(idx), type(INDIRECT) {}

};
};

Complex Predicate Evaluation

bool checkPredicate(const std::vector<std::unique_ptr<Field>> &tupleFields) const {
const Field *leftField = (left_operand.type == DIRECT)

? left_operand.directValue.get()
: tupleFields[left_operand.index].get();

const Field *rightField = (right_operand.type == DIRECT)
? right_operand.directValue.get()
: tupleFields[right_operand.index].get();

return compareBasedOnType(leftField, rightField);
}

Example with Indirect Field Reference

TUPLE[0] > TUPLE[1]
LEFT

INDIRECT
FIELD

PREDICATE
TYPE

RIGHT
INDIRECT

FIELD

Tuple Fields Vector

Example with Indirect Field Reference
// Construct tuple
std::vector<std::unique_ptr<Field>> tupleFields;
tupleFields.push_back(std::make_unique<Field>(10));
tupleFields.push_back(std::make_unique<Field>(20));

// Create predicate with indirect references to fields within the tuple
Predicate predicate(Predicate::Operand(0), Predicate::Operand(1),

PredicateType::GT);

// Check predicate using the constructed tuple
bool result = predicate.checkPredicate(tupleFields);
std::cout << "Predicate result: (10 > 20) : " << std::boolalpha << result

<< std::endl;

Example with Direct Field Reference

10 > 20

LEFT
DIRECT
FIELD

PREDICATE
TYPE

RIGHT
DIRECT
FIELD

Example with Direct Field Reference

// Create direct field values
std::unique_ptr<Field> directLeftField = std::make_unique<Field>(10);
std::unique_ptr<Field> directRightField = std::make_unique<Field>(20);

// Create predicate with direct field references
Predicate predicate(Predicate::Operand(std::move(directLeftField)),

Predicate::Operand(std::move(directRightField)),
PredicateType::GT);

bool result = predicate.checkPredicate();
std::cout << "Predicate result using direct fields: (10 > 20) : "

<< std::boolalpha << result << std::endl;

Benefits of Complex Predicates

DIRECT AND
INDIRECT

REFERENCING
TYPE-SPECIFIC
COMPARISON

EASY TO CHANGE
PREDICATE TYPE

Conclusion
• Modular Query Execution
• Scan Operator
• Abstract Base Class
• Operator Inheritance
• Predicate

