Lecture 18:
Query Execution

Logistics

* Programming assignment 3 (B+Tree) due on Nov 2

» Project update report due on Oct 29 (extra credit)

e Exercise sheet 2 will be released soon

ash Table to Trie & Inverted Index

» Advanced Database Implementation Course: 4423/6423

» Logging and Recovery
« Concurrency Control

= Query Optimization etc.

Recap

e | earned Index

» L earned Index using Neural Network

Lecture Overview

* Query Execution

Limitations of Hard-Coded Query

Hard to Change . .

void scanTableToBuildIndex() {
for (size_t page_itr = 0; page_itr < num_pages; page_itr++) {
for (size_t slot_itr = 0; slot_itr < MAX_SLOTS; slot_itr++) {
if (slot_array[slot_itr].empty == false) {
hash_index.insertOrUpdate(key, value); ...

}
}

void selectGroupBySum(int lowerBound, int upperBound) {
auto results = index.rangeQuery(lowerBound, upperBound);

Modular Query Execution

Scan Select Group By
Operator Operator Operator

Operators are like Lego Blocks

—p| Filtered Table
Scan Select
Operator Operator

Composability of Operators

57— Fierea b
Operator
Scan
Operator

—_— | Jolned Table

Composability of Operators

— [raie] e (7 e Taie] (55— [crouped o
Scan Select Group By
Operator Operator Operator

Benefits of Operators

Flexibility

Users compose
operators

to run different
queries

Modularity

Each operator
encapsulates a
specific data
manipulation
functionality

Reusability

Reduce
redundancy and
minimize the
chance of bugs

Operator Class

An abstract base class defining the common interface for all operators

class Operator {
public:
virtual ~Operator() = default;
virtual void open() = 8;
virtual bool next() = 8;
virtual std::vector<std::unique_ptr<Field>> getOutput() = 0;
virtual void close() = 0;

};

Operator Interface

Interface Methods

void open()

bool next()

std::vector<std::unique_ptr<Field>> getOutput()

void close()

Initializes the Progresses to Returns Cleans up
operator next tuple the tuple resources

Scan Operator

“Scans” tuples from a table’s pages on disk using Buffer Manager

ID Value

]
2 200

2,200

3,300

3 300
Scan
Operator

Scan Operator

“Scans” tuples from a table’s pages on disk using Buffer Manager

class ScanOperator : public Operator {
private:
size_t currentPagelndex = 0;
std: :unique_ptr<SlottedPage> currentPage;
size_t currentSlotIndex = O;
std: :unique_ptr<Tuple> currentluple;
BufferManager &bufferManager;
// Initialization and tuple management code here...

open()

O open(): Prepares First Page for Tuple Extraction

void ScanOperator::open() {
currentPageIndex = 8; // Reset page index
currentSlotIndex = 8; // Reset slot index
loadNextTuple();

}

next()

= next(): Sequentially moves through slots, loading tuples

bool ScanOperator::next() {
if (!currentPage)
return false; // No more pages available
loadNextTuple(); // load next tuple from page into currentTuple
return currentluple != nullptr;

}

loadNextTuple()

void loadNextTuple() {
while (currentPageIndex < bufferManager.getNumPages()) {

Slot *slot_array = reinterpret_cast<Slot *>(currentPage-
>page_data.get(§5;

while (currentSlotIndex < MAX_SLOTS) {
// Extract tuple from current slot

currentSlotIndex++;

}

currentPagelndex++; currentSlotIndex = 0;

}

// If we've reached here, no more tuples are available
currentTuple.reset();

}

getOutput()

getOutput(): Returns fields of current tuple

std: :vector<std: :unique_ptr<Field>> getOutput() override {
if (currentTuple) {
return std::move(currentTuple->fields);

}

return {}; // Return an empty vector if no tuple is available

}

close()

close(): Release resources and perform cleanup operations

void ScanOperator::close() override {
currentPage.reset();
currentTuple.reset();

}

Abstract Base Class

class Shape {

protected:
float x, y; // Location of ‘he—sivape COMMON VARIABLES

public:
Shape(float x, float y, string color) : x(x), y(y), color(color) {}
// Pure virtual function for drawing the shape

virtual void draw() corst.=_0;
// Virtual function for moving the shapg PURE VIRTUAL FUNCTION

virtual void move(float newX, float new

X = newx;
y = newy;
cout << "Moved to (" << x << ", " <<y << ") " << endl;

¥
};

Derived Class: Circle

class Circle : public Shape {
private:

float radius;
public:

// Constructor for Circle initializes Shape and radius RADIUS

Circle(float x, float y, string color, float radius)

. Shape(x, y, color), radius(radius) {}
// Implementation of the pure virtual draw function
void draw() const override {
cout << "Drawing a circle at (" << x << ", " <<y << ") with radius
<< radius << " and color " << color << "." << endl;

Derived Class: Square

class Square : public Shape {

private:
float sidelength;

public:
// Constructor for Square initializes Shape and side length
Square(float x, float y, string color, float sidelength)

: Shape(x, y, color), sidelLength(sidelLength) {) h

SIDE LENGTH
// Implementation of the pure virtual draw function

void draw() const override {
cout << "Drawing a square at (" << x << ", " <<y << ") with side length "
<< sidelength << " and color " << color << << endl;

Inheritance

Inheritance
Derived classes

can override
Base class
methods

Polymorphism
Derived classes can
override

Base class methods
with different
implementations

o
,(.l.\, Inheritance ake An Heir

ttymology of Inheritance

\Wh away
)etached

e
O
O
-
-
4p)
@)
<C

Etymology of Abstract

Shape Example and Polymorphism

Base Class Pointer int main() {

Z Shape *shapes[2];
Derived Class Object shapes[8] = new Circle();
shapes[1] = new Square();

Draw | for (int i =0; 1 <2; ++i) {
shapes[i]->draw(); // Polymorphic call}

return 0;

}
}

Polymorphism

Etymology of Polymorphism

Polymorphism :1ny Shapes

Derived Classes of Operator

|
i
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
;
|
|
|
|
|
|
|
}
|
|
|

UnaryOperator

class UnaryOperator : public Operator {
protected:
Operator *input;

public:

explicit UnaryOperator(Operator &input) :
input(ginput) i} e P P

~UnaryOperator() override = default;

};

BinaryOperator

: A : G et
protected:
Operator *input_left;

Operator *input_right;

public:
explicit BinaryOperator(Operator &input_left,
Operator &input_right)
: ipput_left(&input_left),
input_right?ginput_r%ghtg }})

~BinaryOperator() override = default;

};

Select Operator

SELECT *
FROM employees

WHERE salary > 1000;

BASE TABLE

ID SALARY
1 500
2 1500
3 800
4 2000

-

FILTERED TABLE

ID SALARY
2 1500
4 2000

Predicate

Fields Being Compared

SALARY > 1000

LEFT FIELD PREDICATE TYPE| RIGHT FIELD

Nature of
Comparison

Predicate

class Predicate {

public:
std: :unique_ptr<Field> left_field;
std: :unique_ptr<Field> right_field;
Predicatelype predicate_type;

I¢

Predicate Type

enum class PredicateType {
EQ, // Equal
NE, // Not Equal
GT, // Greater Than
GE, // Greater Than or Equal
LT, // Less Than

LE // Less Than or Equal

Predicate Evaluation

bool checkPredicate() const {
switch (left_field->getType()) {
case INT: {
int left_val = left_field->asInt();
int right_val = right_field->asInt();
return compare(left_val, right_val);

}

Type-Safe Comparison Template

template <typename T>
bool compare(const T &left_val, const T &right_val) const {
switch (predicate_type) {
case PredicateType::EQ: return left_val == right_val;
case PredicateType::NE: return left_val !'= right_val;
case PredicateType::GT: return left_val > right_val;
case PredicateType::GE: return left_val >= right_val;
case PredicateType::LT: return left_val < right_val;
case PredicateType::LE: return left_val <= right_val;
default: std::cerr << "Invalid predicate type\n"; return false;

}

< < <

Predicate Example

// Create integer fields for comparison

std: :unique_ptr<Field> left = std::make_unique<Field>(16);

std: :unique_ptr<Field> right = std::make_unique<Field>(26);

// check if left field value is greater than the right field value
Predicate predicate(std::move(left), std::move(right), PredicateType::GT);

// Evaluate the predicate and print the result

bool result = predicate.checkPredicate();

std::cout << "Predicate result: (18 > 28) : " << std::boolalpha << result
<< std::endl;

Limitations of Predicate

10 > 20

LEFT RIGHT
CONSTANT PREDICATE TYPE CONSTANT
FIELD FIELD

Complex Predicate

SALARY > 1000
TUPLE PREDICATE C OFIilIg'II:I;NT
COLUMN TYPE FIELD

Complex Predicate

class Predicate {
public:
~ enun OperandType { DIRECT, INDIRECT };
struct Operand {
std: :unique_ptr<Field> directValue;
size_t index;
OperandType type;
Operand(std: :unique_ptr<Field> value)
. directValue(std::move(value)), type(DIRECT) {}
Operand(size_t idx) : index(idx), type(INDIRECT) {}

Complex Predicate Evaluation

bool checkPredicate(const std::vector<std::unique_ptr<Field>> &tupleFields) const {
const Field *leftField = (left_operand.type == DIRECT)
? left_operand.directValue.get()
. tupleFields[left_operand.index].get();
const Field *rightField = (right_operand.type == DIRECT)
? right_operand.directValue.get()
. tupleFields[right_operand.index].get();
return compareBasedOnType(leftField, rightField);

Example with Indirect Field Reference

Tuple Fields Vector

TUPLE|O] > TUPLE[1]
LEFT RIGHT
INDIRECT PRI.-:IRISQTE INDIRECT
FIELD FIELD

Example with Indirect Field Reference

// Construct tuple

std: :vector<std: :unique_ptr<Field>> tuplefFields;
tupleFields.push_back(std: :make_unique<Field>(10));
tupleFields.push_back(std: :make_unique<Field>(20));

// Create predicate with indirect references to fields within the tuple
Predicate predicate(Predicate::0perand(8), Predicate::0perand(1),
PredicateType::GT);

// Check predicate using the constructed tuple

bool result = predicate.checkPredicate(tupleFields);

std::cout << "Predicate result: (18 > 20) : " << std::boolalpha << result
<< std::endl;

Example with Direct Field Reference

10 > 20
LEFT RIGHT
DIRECT PRI::I.BISQTE DIRECT
FIELD FIELD

Example with Direct Field Reference

// Create direct field values
std::unique_ptr<Field> directlLeftField = std::make_unique<Field>(10);
std: :unique_ptr<Field> directRightField = std::make_unique<Field>(20);

// Create predicate with direct field references

Predicate predicate(

Prec
Prec

Prec

icate::Operand(std: :move(directlLeftField)),
icate::Operand(std: :move(directRightField)),
icateType::GT);

bool result = predicate.checkPredicate();
std::cout << "Predicate result using direct fields: (18 > 28) : "
<< std::boolalpha << result << std::endl;

Benefits of Complex Predicates

ey | B8 |«

l_'_l

DIRECT AND
INDIRECT EASY TO CHANGE TYPE-SPECIFIC
REFERENCING PREDICATE TYPE COMPARISON

Conclusion

Modular Query Execution

Scan Operator

Abstract Base Class
Operator Inheritance

Predicate

