
Lecture 20:
Select and Aggregation

Logistics
• Exercise sheet 2 released

• Programming assignment 3 (B+Tree) due on Nov 2

• Extra-credit project update report due on Oct 29 (+4 days)
§ Share GitHub link immediately after project title
§ Focus on completed concrete tasks
§ Benchmarking accuracy, latency etc.

Recap
• Query Execution
• Scan Operator
• Predicate

Lecture Overview
• Select Operator
• Deep vs Shallow Copy
• Using Select Operator
• More Complex Predicate
• Aggregation Operator
• Database and Unix

Select Operator

Select Operator

TUPLE[0] > 10
INDIRECT

FIELD
PREDICATE

TYPE
DIRECT
FIELD

Fields Being Compared

Select Operator

class SelectOperator : public UnaryOperator {
private:
Predicate predicate; // Condition to evaluate on each tuple
bool has_next; // Indicator if there's a next tuple satisfying the

predicate
std::vector<std::unique_ptr<Field>> currentOutput; // Current tuple

};

next
Fetches next tuple that satisfies the predicatenext()

bool next() override {
while (input->next()) {
const auto &output = input->getOutput();
if (predicate.checkPredicate(output)) {
currentOutput = duplicateFields(output);
has_next = true;
return true;

}
}
has_next = false;
currentOutput.clear();
return false;

}

open and close

void open() override {
input->open(); // Initialize the input operator
has_next = false;
currentOutput.clear(); // Prepare for new output

}

void close() override {
input->close();
currentOutput.clear();

}

getOutput()

std::vector<std::unique_ptr<Field>> getOutput() override {
if (has_next) {
return duplicateFields(

currentOutput); // Return a copy of the current valid output
}
return {}; // Return empty if no more valid tuples

}

Deep vs Shallow Copy

Deep vs Shallow Copy in C++

“abc” // HEAP LOCATION 2
Shallow copy of Field A – data

Deep copy of Field A – data

“abc” // HEAP LOCATION 1
Field A – data

Deep Copy

class Deep {
char *data;
// Deep copy constructor
Deep(const Deep &other) {
// New memory allocation
this->data = new char[strlen(other.data) + 1];
strcpy(this->data, other.data);

}
};
Deep original("Hello");
Deep copy = original; // Deep copying
copy.data[0] = 'J';

original.data
Hello

copy.data
Jello

Shallow Copy

class Shallow {
char *data;
// Shallow copy constructor
Shallow(const Shallow &other) {

// Copy the pointer
this->data = other.data;

}
};
Shallow original("Hello");
Shallow copy = original; // Shallow copying
copy.data[0] = 'J';

original.data
Jello

copy.data

duplicateFields

std::vector<std::unique_ptr<Field>>
duplicateFields(const std::vector<std::unique_ptr<Field>> &fields) {
std::vector<std::unique_ptr<Field>> outputCopy;
for (const auto &field : fields) {
outputCopy.push_back(field->clone());

}
return outputCopy;

}

Creates an
Independent
Object Copy

duplicateFields

Each Operator
Isolated from

Other Operators

Using Select Operator

Illustrative Query with Scan & Select Operators

void executeQuery() {
ScanOperator scanOperator(buffer_manager);
Predicate predicate(Predicate::Operand(0),

Predicate::Operand(std::make_unique<Field>(2)),
PredicateType::GT);

SelectOperator selectOperator(scanOperator, std::move(predicate));
selectOperator.open();

}

TUPLE [0] > 2

void executeQuery() {
…
while (selectOperator.next()) {
const auto &fields = selectOperator.getOutput();
for (const auto &field_ptr : fields) {
field_ptr->print();
std::cout << " ";

}
std::cout << "\n";

}
selectOperator.close();

}

Illustrative Query with Scan & Select Operators

Composability of Operators like Lego Blocks

Scan Operator Select Operator

Table Filtered Table

More Complex Predicate

Need for More Complex Predicate

SELECT *
FROM employees
WHERE salary > 1000 AND age < 30;

ID SALARY AGE

1 500 20

2 1500 20

3 800 40

4 2000 40

ID SALARY AGE

2 1500 20

BASE TABLE FILTERED TABLE

IPredicate Interface

class IPredicate {
public:
virtual ~IPredicate() = default;
virtual bool
check(const std::vector<std::unique_ptr<Field>> &tupleFields) const = 0;

};

Common interface for all predicate types

SimplePredicate: Comparison Operator

SALARY > 1000

INDIRECT
OPERAND

COMPARISON
OPERATOR

DIRECT
OPERAND

Implements the IPredicate interface for basic comparison operations

class SimplePredicate : public IPredicate {
Operand left_operand, right_operand;
ComparisonOperator comparison_operator;

bool
check(const std::vector<std::unique_ptr<Field>> &tupleFields) const override {
// Fetch fields based on operand type (DIRECT or INDIRECT)
// Compare fields based on the specified ComparisonOperator

}
};

SimplePredicate: Comparison Operator

Implements the IPredicate interface for basic comparison operations

ComplexPredicate: Logical Operator

PREDICATE 1 AND/OR PREDICATE 2

LOGICAL
OPERATOR

Implements the IPredicate interface for logical operations (AND/OR)

class ComplexPredicate : public IPredicate {
std::vector<std::unique_ptr<IPredicate>> predicates;
LogicOperator logic_operator;

bool
check(const std::vector<std::unique_ptr<Field>> &tupleFields) const override {
// Evaluate all contained predicates based on the logic operator (AND, OR)

}
};

ComplexPredicate: Logical Operator

Evaluating Complex Predicate
if (logic_operator == AND) {
for (const auto &pred : predicates) {
if (!pred->check(tupleFields)) {
return false; // All must pass

}
}
return true;

}
else if (logic_operator == OR) {
for (const auto &pred : predicates) {

if (pred->check(tupleFields)) {
return true; // Any one can pass

}
}
return false;

}

Illustrative Complex Predicate

TUPLE [0] > 2 TUPLE [0] > 7

INDIRECT
OPERAND

COMPARISON
OPERATOR

DIRECT
OPERAND

INDIRECT
OPERAND

COMPARISON
OPERATOR

DIRECT
OPERAND

PREDICATE 1 AND PREDICATE 2

IPREDICATE
OBJECT POINTER

LOGICAL
OPERATOR

IPREDICATE
OBJECT POINTER

// Creating simple comparison predicates
auto greaterThanTwo = std::make_unique<SimplePredicate>(

SimplePredicate::Operand(0),
SimplePredicate::Operand(std::make_unique<Field>(2)),
SimplePredicate::ComparisonOperator::GT);

auto lessThanSix = std::make_unique<SimplePredicate>(
SimplePredicate::Operand(0),
SimplePredicate::Operand(std::make_unique<Field>(7)),
SimplePredicate::ComparisonOperator::LT);

Illustrative Complex Predicate
TUPLE [0] > 2 TUPLE [0] > 7

INDIRECT
OPERAND

COMPARISON
OPERATOR

DIRECT
OPERAND

INDIRECT
OPERAND

COMPARISON
OPERATOR

DIRECT
OPERAND

// Combining predicates into a complex predicate with AND logic
auto complexPredicate =

std::make_unique<ComplexPredicate>(ComplexPredicate::LogicOperator::AND);

complexPredicate->addPredicate(std::move(greaterThanTwo));
complexPredicate->addPredicate(std::move(lessThanSix));

// Integrating ComplexPredicate with a SelectOperator for query processing
SelectOperator selectOperator(scanOperator, std::move(complexPredicate));

Illustrative Complex Predicate
PREDICATE 1 AND PREDICATE 2

IPREDICATE
OBJECT POINTER

LOGICAL
OPERATOR

IPREDICATE
OBJECT POINTER

More Complex Predicate

TUPLE
[0] > 2 TUPLE

[0] > 7 TUPLE
[2] < TUPLE

[1]

PRED
1 AND PRED

2

PRED
3 OR PRED

4

Aggregation Operator

Aggregation Query
SELECT Category_ID,

SUM(Profit) AS Total_Profit
FROM Sales_Data
WHERE MONTH(DATE) = ‘JUNE’
GROUP BY Category_ID;

PRODUCT
ID

PROFIT CATEGORY
ID

DATE

1 500 1 May 15

2 1000 1 June 10

3 1000 2 June 20

4 2000 2 June 30

KEY VALUE

1 1000

2 3000

BASE TABLE HASH TABLE

Hash Aggregation Operator

PRODUCT
ID

PROFIT CATEGORY
ID

DATE

1 500 1 May 15

2 1000 1 June 10

3 1000 2 June 20

4 2000 2 June 30

BASE TABLE

KEY VALUE

1 1000

2 3000

HASH TABLE

output_tuples

group_by_attrs

class HashAggregationOperator : public UnaryOperator {
private:

std::vector<size_t> group_by_attrs;
std::vector<AggrFunc> aggr_funcs;
std::vector<Tuple> output_tuples;
…

};
aggr_funcs vector

Hash Aggregation Operator

Hash Aggregation

Unary Operator Class

PRODUCT
ID

PROFIT CATEGORY
ID

DATE

1 500 1 May 15

2 1000 1 June 10

3 1000 2 June 20

4 2000 2 June 30

GROUP BY
ATTRS

{3}

AGGREGATE
FUNCTIONS

{SUM, 2}

OUTPUT
TUPLES

{1, 1000},
{2, 3000}

BASE TABLE HASH AGGREGATION OPERATOR

Hash Aggregation Operator

Aggregation Logic

void HashAggregationOperator::open() {
std::unordered_map<std::vector<Field>, std::vector<Field>, FieldVectorHasher>

hash_table;
// Build the hash table with the aggregate tuples

}

bool HashAggregationOperator::next() {
// Iterate over the aggregate tuples in the hash table

}

Multi-Column Grouping
SELECT Category_ID,

MONTH(DATE),
SUM(Profit) AS Total_Profit

FROM Sales_Data
GROUP BY Category_ID, MONTH(DATE);

CATEGORY
ID

MONTH
(DATE)

TOTAL
PROFIT

1 May 500

1 June 1000

AGGREGATED TABLEBASE TABLE

PRODUCT
ID

PROFIT CATEGORY
ID

DATE

1 500 1 May 15

2 1000 1 June 10

3 1000 2 June 20

4 2000 2 June 30
2 June 3000

Field Vector Hasher

struct FieldVectorHasher {
std::size_t operator()(const std::vector<Field> &fields) const {
std::size_t hash = 0;
for (const auto &field : fields) {
std::hash<std::string> hasher;
std::size_t fieldHash = 0;
fieldHash = hasher(…);
hash ^= fieldHash + 0x9e3779b9 + (hash << 6) + (hash >> 2);

}
return hash;

}
};

Calculates
Hash Values

FIELD OVERALL HASH VALUE FIELD HASH VALUE

0

123 0x1f3… std::hash(“123”)

“May” 0x9e5… std::hash(“May”)

Hash Aggregation Operator

Update Aggregate

CATEGORY
ID

MONTH
(DATE)

TOTAL
PROFIT

1 May 500

1 June 1000

AGGREGATED TABLE

SELECT Category_ID,
MONTH(DATE),
SUM(Profit) AS Total_Profit

FROM Sales_Data
GROUP BY Category_ID, MONTH(DATE);

BASE TABLE

PRODUCT
ID

PROFIT CATEGORY
ID

DATE

1 500 1 May 15

2 1000 1 June 10

3 1000 2 June 20

4 2000 2 June 30
2 June 10003000

Field updateAggregate(const AggrFunc &aggrFunc, const Field ¤tAggr,
const Field &newValue) {

// Check for type consistency
if (currentAggr.getType() != newValue.getType()) {
throw std::runtime_error("Mismatched Field types in aggregation.");

}
// Perform the specified aggregation operation
switch (aggrFunc.func) {
case AggrFuncType::SUM:
return Field(currentAggr.asInt() + newValue.asInt());
// other cases...

}
}

Update Aggregate

Aggregate Tuples

getOutput

for (const auto &entry : hash_table) {
const auto &group_keys = entry.first;
const auto &aggr_values = entry.second;
for (const auto &key : group_keys) {
// Add group keys to the tuple
output_tuple.addField(std::make_unique<Field>(key));

}
for (const auto &value : aggr_values) {
// Add aggregated values to the tuple
output_tuple.addField(std::make_unique<Field>(value));

}
}

and Aggregate Value

Appends Group Keys

Database and Unix

Hard-Coded Query Function

SELECT column1, SUM(column2)
FROM tableName
WHERE column1 > 2 AND column1 < 7
GROUP BY column1;

Groups
Filters
Tuples

Filters
Tuples
from

Column 1

Selects
Tuples
from
Table

Sums
Values of
Column 2

int main() {
db.scanTableToBuildIndex();
…
int lowerBound = 2;
int upperBound = 7;
db.selectGroupBySum(lowerBound, upperBound);

}

Hard-Coded Query Function

Sums Value of
Column 2

Groups Filtered
Tuples

Scans Tuples &
Builds Index

selectGroupBySum

Relational Operator-Based Query Pipeline

Select
Operator

Hash Aggregation
Operator

Filtered Table Grouped TableTable

Scan
Operator

void executeQuery() {
…
SelectOperator selectOperator(scanOperator, std::move(complexPredicate));
std::vector<AggrFunc> aggrFuncs{{AggrFuncType::SUM, 1}};
std::vector<size_t> groupByAttrs{0};
HashAggregationOperator hashAggregationOperator(selectOperator, groupByAttrs,

aggrFuncs);
hashAggregationOperator.open();
while (hashAggregationOperator.next()) {
const auto &aggregatedFields = hashAggregationOperator.getOutput();
// Output key and aggregated value

}
hashAggregationOperator.close();

}

Relational Operator-Based Query Pipeline

Unix Operating System and Relational Database

Unix Operating System Relational Database

Timeline 1970s 1970s

Team Dennis Ritchie, Ken Thompson,
and others

Ted Codd, System R Team,
and others

Location AT&T Bell Labs IBM

Simplicity and Modularity

// GREP TOOL
grep “error” file.txt

// SELECT OPERATOR
SELECT *
FROM TableName
WHERE Message LIKE '%error%';

Each tool should do one and only one task well

Pipelining and Composability

// UNIX TOOL PIPELINE
cat file.txt | grep "error" | sort | uniq –c

// QUERY PIPELINE
SELECT ErrorMessage, COUNT(*) AS ErrorCount
FROM LogTable
WHERE ErrorMessage LIKE '%error%'
GROUP BY ErrorMessage
ORDER BY ErrorMessage;

#
∃

Standardized Interface

Unix Tool

Output Text FileInput Text File

Relational Operator

Output TableInput Table

Extensibility

New Relational
Operator / FunctionNew Unix Tool

Add Custom
Tool into
Existing
System

Define
Custom

Operator or
Custom

Function

Extensibility

Conclusion
• Select Operator
• Deep vs Shallow Copy
• Using Select Operator
• More Complex Predicate
• Aggregation Operator
• Database and Unix

