Lecture 20:
Select and Aggregation

Logistics

» Exercise sheet 2 released
* Programming assignment 3 (B+Tree) due on Nov 2

« Extra-credit project update report due on Oct 29 (+4 days)
« Share GitHub link iImmediately after project title

» Focus on completed concrete tasks
» Benchmarking accuracy, latency etc.

Recap

* Query Execution

« Scan Operator

 Predicate

Lecture Overview

Select Operator

Deep vs Shallow Copy
Using Select Operator
More Complex Predicate
Aggregation Operator

Database and Unix

Select Operator

Fields Being Compared

TUPLE|O] > 10

INDIRECT PREDICATE DIRECT
FIELD TYPE FIELD

Select Operator

class SelectOperator : public UnaryOperator {
private:
Predicate predicate; // Condition to evaluate on each tuple

bool has_next; // Indicator if there's a next tuple satisfying the
predicate

std::vector<std: :unique_ptr<Field>> currentOutput; // Current tuple

};

next
next() Fetches next tuple that satisfies the predicate

bool next() override {
while (input->next()) {
const auto &output = input->getOutput();
if (predicate.checkPredicate(output)) {
currentOutput = duplicateFields(output);
has_next = true;
return true;

}
}

has_next = false;

currentOutput.clear();
return false;

open and close

void open() override {
input->open(); // Initialize the input operator
has_next = false;
currentOutput.clear(); // Prepare for new output

}

void close() override {
input->close();
currentOutput.clear();

}

getOutput()

std: :vector<std: :unique_ptr<Field>> getOutput() override {
if (has_next) {
return duplicateFields(
currentOutput); // Return a copy of the current valid output
}

return {}; // Return empty if no more valid tuples

}

Deep vs Shallow Copy in C++

Field A — data
“abc” // HEAP LOCATION 1

Deep copy of Field A — data
“abc” // HEAP LOCATION 2
Shallow copy of Field A — data

Deep Copy

original.data copy.data

class Deep {
char *data;
// Deep copy constructor
Deep(const Deep &other) {
// New memory allocation
this->data = new char[strlen(other.data) + 1];
strcpy(this->data, other.data);

}
};
Deep original("Hello");
Deep copy = original; // Deep copying
copy.data[B] = 'J';

Shallow Copy

original.data

copy.data

class Shallow {
char *data;
// Shallow copy constructor
Shallow(const Shallow &other) {
// Copy the pointer
this->data = other.data;

}
g
Shallow original("Hello");
Shallow copy = original; // Shallow copying

copy.data[B] = 'J';

duplicateFields

duplicateFields

Creates an
Independent
Object Copy

Each Operator

Isolated from
Other Operators

std: :vector<std: :unique_ptr<Field>>

duplicateFields(const std::vector<std::unique_ptr<Field>> &fields) {
std: :vector<std: :unique_ptr<Field>> outputCopy;
for (const auto &field : fields) {

outputCopy.push_back(field->clone());

}
return outputCopy;

lllustrative Query with Scan & Select Operators

TUPLE [0] > 2

void executeQuery() {

ScanOperator scanOperator(buffer_manager);

Predicate predicate(Predicate::0perand(8),
Predicate: :Operand(std: :make_unique<Field>(2)),
PredicateType: :GT);

SelectOperator selectOperator(scanOperator, std::move(predicate));
selectOperator.open();

}

lllustrative Query with Scan & Select Operators

void executeQuery() {

while (selectOperator.next()) {
const auto &fields = selectOperator.getOutput();
for (const auto &field_ptr : fields) {
field_ptr->print();
std::cout << " ";

}

std::cout << "\n";

}

selectOperator.close();

}

Composability of Operators like Lego Blocks

=P | Filtered Table

Scan Operator Select Operator

Need for More Complex Predicate

SELECT *
FROM employees
WHERE salary > 16608 AND age < 30;

BASE TABLE FILTERED TABLE
ID SALARY AGE
1 500 20
ID SALARY AGE
2 1500 20
2 1500 20
3 800 40
4 2000 40

|IPredicate Interface

ﬁﬁi Common interface for all predicate types

class IPredicate {
public:
virtual ~IPredicate() = default;
virtual bool
check(const std::vector<std::unique_ptr<Field>> &tupleFields) const = 0;

};

SimplePredicate: Comparison Operator

ﬁﬁi Implements the IPredicate interface for basic comparison operations

SALARY 1000

INDIRECT DIRECT
OPERAND OPERAND

SimplePredicate: Comparison Operator

ﬁﬂi Implements the IPredicate interface for basic comparison operations

class SimplePredicate : public IPredicate {
Operand left_operand, right_operand;
ComparisonOperator comparison_operator;

bool

check(const std::vector<std::unique_ptr<Field>> &tupleFields) const override {
// Fetch fields based on operand type (DIRECT or INDIRECT)
// Compare fields based on the specified ComparisonOperator

¥
};

Crr

ComplexPredicate: Logical Operator

ﬁﬂi Implements the IPredicate interface for logical operations (AND/OR)

PREDICATE 1 PREDICATE 2

ComplexPredicate: Logical Operator

class ComplexPredicate : public IPredicate {
std: :vector<std: :unique_ptr<IPredicate>> predicates;
LogicOperator logic_operator;

bool
check(const std::vector<std::unique_ptr<Field>> &tupleFields) const override {
// Evaluate all contained predicates based on the logic operator (AND, OR)

¥
};

Evaluating Complex Predicate

if (logic_operator == AND) {
for (const auto &pred : predicates) {
if (!pred->check(tuplefields)) {
return false; // All must pass
}
}
return true;
}
else if (logic_operator == OR) {
for (const auto &pred : predicates) {
if (pred->check(tupleFields)) {
return true; // Any one can pass

}
}

return false;

}

Illustrative Complex Predicate

TUPLE [0] 2 TUPLE [0] [
INDIRECT DIRECT INDIRECT DIRECT
OPERAND OPERAND OPERAND OPERAND

PREDICATE 1 PREDICATE 2
IPREDICATE IPREDICATE

OBJECT POINTER

OBJECT POINTER

Illustrative Complex Predicate

TUPLE [0] 2 TUPLE [0] [
INDIRECT DIRECT INDIRECT DIRECT
OPERAND OPERAND OPERAND OPERAND

// Creating simple comparison predicates

auto greaterThanTwo = std::make_unique<SimplePredicate>(
SimplePredicate: :0Operand(8),
SimplePredicate: :0Operand(std: :make_unique<Field>(2)),
SimplePredicate: :ComparisonOperator::GT);

auto lessThanSix = std::make_unique<SimplePredicate>(
SimplePredicate: :0perand(8),
SimplePredicate: :0Operand(std: :make_unique<Field>(7)),
SimplePredicate: :ComparisonOperator::LT);

Illustrative Complex Predicate

PREDICATE 1 PREDICATE 2
IPREDICATE IPREDICATE
OBJECT POINTER OBJECT POINTER

// Combining predicates into a complex predicate with AND logic
auto complexPredicate =
std: :make_unique<ComplexPredicate>(ComplexPredicate: :LogicOperator::AND);

complexPredicate->addPredicate(std: :move(greaterThanTwo));
complexPredicate->addPredicate(std: :move(lessThanSix));

// Integrating ComplexPredicate with a SelectOperator for query processing
SelectOperator selectOperator(scanOperator, std::move(complexPredicate));

TUPLE
[0]

2

.

More Complex Predicate

TUPLE
[0]

/

PRED
1

PRED
2

T

TUPLE
[2]

TUPLE
[1]

PRED
3

PRED

Aggregation Query

SELECT Category_ID,
SUM(Profit) AS Total_Profit

FROM Sales_Data
WHERE MONTH(DATE) = ‘JUNE’

GROUP BY Category_ID;

HASH TABLE
KEY VALUE
1 1000
2 3000

BASE TABLE
PRODUCT | PROFIT | CATEGORY | DATE
ID ID
1 500 1 May 15
2 1000 1 June 10
3 1000 2 June 20
4 2000 2 June 30

Hash Aggregation Operator

HASH TABLE
KEY VALUE
1 1000
2 3000

BASE TABLE
PRODUCT| PROFIT | CATEGORY | DATE
ID ID
1 500 1 May 15
2 1000 1 June 10
3 1000 2 June 20
4 2000 2 June 30

Hash Aggregation Operator

—

class HashAggregationOperator : public UnaryOperator {
private:

std: :vector<size_t> group_by_attrs;

std: :vector<AggrFunc> aggr_funcs;

std: :vector<Tuple> output_tuples;

b

Hash Aggregation Operator

BASE TABLE HASH AGGREGATION OPERATOR
PRODUCT | PROFIT | CATEGORY DATE GROUP BY {3}
ID ID ' ATTRS
] 500 | May 15 AGGREGATE {SUM, 2}
2 1000 1 June 10 FLEIIoE
OUTPUT {1, 1000},
4 2000 2 June 30

Aggregation Logic

»void HashAggregationOperator: :open() {

std: :unordered_map<std: :vector<fField>, std::vector<Field>, FieldVectorHasher>
hash_table;
// Build the hash table with the aggregate tuples

}

bool HashAggregationOperator::next() {
// Iterate over the aggregate tuples in the hash table

}

Multi-Column Grouping

SELECT Category_ID,

GROUP BY Category_ID, MONTH(DATE);

Profit) AS Total_Profit

MONTH(DATE),
SUM(
FROM Sales_Data
BASE TABLE
PRODUCT | PROFIT | CATEGORY | DATE

ID ID
] 500 1 May 15
2 1000 1 June 10
3 1000 2 June 20
4 2000 2 June 30

AGGREGATED TABLE
CATEGORY | MONTH TOTAL

ID (DATE) PROFIT

1 May 500

1 June 1000

2 June 3000

Field Vector Hasher

struct FieldVectorHasher {
std::size_t operator()(const std::vector<Field> &fields) const {
std::size_t hash = 9;
for (const auto &field : fields) {
std: :hash<std: :string> hasher;
std::size_t fieldHash = 0;
fieldHash = hasher(...);
hash "= fieldHash + 8x9e3779h9 + (hash << 6) + (hash >> 2);
}
return hash;
}
I

Hash Aggregation Operator

FIELD

OVERALL HASH VALUE

FIELD HASH VALUE

Update Aggregate

SELECT Category_ID,

MONTH(DATE),

SUM(Profit) AS Total_Profit
FROM Sales_Data
GROUP BY Category_ID, MONTH(DATE);

BASE TABLE AGGREGATED TABLE
PRODUCT | PROFIT | CATEGORY | DATE
D D CATEGORY | MONTH TOTAL
: 500 ID (DATE) PROFIT
] May 500
2 1000
1000
3 1000 2 June 20
4 2000 2 June 30

Update Aggregate

»Field updateAggregate(const AggrFunc &aggrFunc, const Field ¤tAggr,
const Field &newValue) {
// Check for type consistency
if (currentAggr.getType() != newValue.getType()) {
throw std::runtime_error("Mismatched Field types in aggregation.");
}
// Perform the specified aggregation operation
switch (aggrFunc.func) {
case AggrFuncType::SUM:
return Field(currentAggr.asInt() + newValue.asInt());
// other cases...

}

getOutput

for (const auto &entry : hash_table) {
const auto &group_keys = entry.first;

const auto &aggr_values = entry.second;
for (const auto &ey : group_keys) {
// Add group keys to the tuple
and Aggregate Value output_tuple.addField(std: :make_unique<Field>(key));

}

||- Aggregate Tuples for (const auto &value : aggr_values) {
// Add aggregated values to the tuple

output_tuple.addField(std: :make_unique<Field>(value));

}
}

Cr

Hard-Coded Query Function

Selects
Tuples

from
Table

Sums

Values of
Column 2

S
F
W
G

ELECT column1, SUM(column2)

ROM tableName

HERE column1 > 2 AND column1 < 7
ROUP BY columni;

Hard-Coded Query Function

selectGroupBySum

Groups Filtered
Tuples

Sums Value of
Column 2

int main() {
db.scanTableToBuildIndex();

int lowerBound = ?2;
int upperBound = /;
db.selectGroupBySum(lowerBound, upperBound);

}

Relational Operator-Based Query Pipeline

~—
~d ™~ k.

- | e\

‘{’}a = | Table |=p = | Filtered Table |=p ~ ’ .

Scan Select Hash Aggregation
Operator Operator Operator

Grouped Table

Relational Operator-Based Query Pipeline

-void executeQuery() {
|

SelectOperator selectOperator(scanOperator, std::move(complexPredicate));
std: :vector<AggrFunc> aggrFuncs{{AggrFuncType::SUM, 1}};
std::vector<size_t> groupByAttrs{6};
~ HashAggregationOperator hashAggregationOperator(selectOperator, groupByAttrs,
aggrfuncs);
hashAggregationOperator.open();
while (hashAggregationQOperator.next()) {
const auto &aggregatedFields = hashAggregationOperator.getOutput();
// Output key and aggregated value

}
hashAggregationOperator.close();

}

Unix Operating System and Relational Database

Unix Operating System Relational Database
Timeline 1970s 1970s
Team Dennis Ritchie, Ken Thompson, Ted Codd, System R Team,
and others and others

Location AT&T Bell Labs IBM

Simplicity and Modularity

Each tool should do one and only one task well

/] GREP TOOL
grep “error” file.txt

// SELECT OPERATOR

SELECT *

FROM TableName

WHERE Message LIKE '%errork’';

Pipelining and Composability

// UNIX TOOL PIPELINE
.......‘ cat file.txt | grep "error" | sort | uniq —c

// QUERY PIPELINE
SELECT ErrorMessage, COUNT(*) AS ErrorCount
FROM LogTable

WHERE ErrorMessage LIKE '%errorf’
GROUP BY ErrorMessage
ORDER BY ErrorMessage;

Standardized Interface

Input Text File

nput Table ‘

Unix Tool

Relational Operator

Output Text File

‘ Output Table

Extensibility

Add Custom Define
Tool into Custom
Existing Operator or
System Custom
Function

New Relational
Operator / Function

New Unix Tool

Conclusion

» Select Operator

» Deep vs Shallow Copy

» Using Select Operator
 More Complex Predicate
* Aggregation Operator

e Database and Unix

