| ecture 23:
\Vectorized Execution &
Lourse Retrospective

Logistics

* No class on Nov 18

» Project final reports (2+ pages with GitHub link) due on Nov 18
= 5% extra credits for all non-trivial submissions

* In-class presentations on Nov 20
= 107% extra credit for those selected for in-class presentations

Recap

» Columnar Storage
» Compression

» Compressed Columnar Storage

Lecture Overview

e VVectorized Execution

» Course Retrospective

Limitations of Tuple-at-a-time Processing

« Each tuple incurs the cost of:

-unction calls between operators.

Deserializing, interpreting, and processing the tuples.

Doesn't leverage the CPU's ability to process batches of data efficiently.

Results In frequent pipeline stalls and cache misses.

SIMD
Instructions

Vector-at-
a-Time
Processing

15
> 20

25
> 20

40
> 20

18
> 20

COLUMN VALUE
CONSTANT

Limitations of Tuple-at-a-time Processing

Vector-at-a-time Processing

Process a vector of tuples at a time to reduce
overhead of function calls

' Use SIMD (Single Instruction, Multiple Data)

A single instruction operates on multiple

‘ data points simultaneously

> 20

18

40

25

15

SIMD In Query Execution

SIMD Use Cases

= Filtering
= Aggregations
= Compression

SIMD Operations

» Vector loads
= Filter masks
» Horizontal reduction

Filter timestamps using SIMD

int32x4_t ts_vec = NldTg-s32(&data.timestamps[i]); // Load timestamps

uint32x4_t mask = Wandgiud2(vcgeg-s32(ts_vec, 1),
veleg-s32(ts_vec, end)); // Mask for range

SIMD Instruction Naming

SIMD Operand
Instruction Data Type and Vector
Names Sizes
Operation
Type
Addition 32-bit floating-point Quad-word
ddq_f32
vacda_ Operation numbers (4 floats)
veeeq $32 Compare Operates on signed 64-bit vector
8ed_ greater than or equal to 32-bit integers. (2 integers)

> 20
<30
> 20 AND < 30

15

:

40
1
0
0

Filter timestamps using SIMD

Scalar vs SIMD Execution

Scalar
Execution

ZaaN
(MPA\
Repeated
Instruction

for Each
Element

SIMD
Execution

Batch
Execution
with Single
Instruction

Benefits of SIMD Execution #1

Instruction-Level Efficiency
Vectorized Instructions

N instructions for N data points
N/W instructions for SIMD Vector

Cr

Benefits of SIMD Execution #2

1 Contiguous
- {} Memory
E SIMD Operations

Cache Line Usage

Benefits of SIMD Execution #3

SIMD
minimizes
branching

Operation Applied
to Vector
Elements

Pipeline Stalls
with Incorrect
Branch Position

SIMD
Execution

Masks Handle
Conditional
Operations & Avoid
Pipeline Stalls

History of SIMD #1

Supercomputers SIMD first used in systems like Permits simultaneous
1960s- . iegs L . .
19705 and Scientific ILLIAC IV for scientific operations on multiple
Computing workloads data points
, , Example: Increase the
1980s- Multimedia MMX (Intel, 1996): Integer brichtness of an imace’s
1990s Processing operations for multimedia 5 &

pixels by a constant value

Pixels 100 120 140 160

+ 20

120 140 160 180

History of SIMD #2

Integration in SIMD became a
2000s General-Purpose standard in
CPUs consumer CPUs
Acceleration for SIMD now powers modern
2010s- : .
Analytical databases and big data
Present

Workloads systems

SSE/AVX (Intel):
Wide registers for
floats and
Integers

NEON (ARM):
Optimized for
embedded and
mobile devices

Vectorized query
execution (e.g., Apache
Arrow)

Sensor Data Analysis

struct SensorData {
int *timestamps; // Contiguous array of timestamps
float *temperatures; // Contiguous array of temperatures

SensorData(size_t count) {
timestamps = static_cast<int *>(aligned_alloc(16, sizeof(int) * count));
temperatures =
static_cast<float *>(aligned_alloc(16, sizeof(float) * count));

Sensor Data Generation

void generateData(SensorData &data, int count) {
std: :random_device rd;
std::mt19937 gen(rd());
std: :normal_distribution<float> temp_dist(25.6, 5.8);
std::uniform_int_distribution<int> time_dist(1, 5);

int timestamp = START_TIMESTAMP;

for (int 1 = 8; i < count; ++1i) {
data.timestamps[i] = timestamp;
data.temperatures[i] = temp_dist(gen);
timestamp += time_dist(gen); // Increment timestamp

}
}

SIMD Query

Task: Calculate the average temperature within a timestamp
range

Timestamps 1 2 5 7
Temperature |[25.5 26.0 2(.2 28.3
> 2 0 1 1 0
<6 1 1 1 0
>2AND <6 0 1 1 0
Masked Temps |0 26.0 27.2 0
Sum 53.2

SIMD Query: Loading Data

Timestamps 1 2 5 7
Temperature |[25.5 26.0 2(.2 28.3
int32x4_t ts_vec = vldl1g_s32(&data.timestamps[i]); // Load 4 timestamps

float32x4_t temp_vec = v1ld1g_f32(&data.temperatures[i]); // Load 4 temperatures

SIMD Query: Filtering Timestamps

> 2 0 1 1 0
<6 1 1 1 0
>2AND <6 0 1 1 0

uint32x4_t in_range_mask =
vandg_u32(vcgeq-s32(ts_vec, vdupg-n_s32(startTimestamp)),
vcleg_s32(ts_vec, vdupg_n_s32(endTimestamp)));

SIMD Query: Mask Application

Masked Temps |0 26.0 27.2 0

float32x4_t masked_temps = vmulg_f32(temp_vec, vcvtg_f32_u32(in_range_mask));

sum_vec = vaddg_f32(sum_vec, masked_temps);

SIMD Query: Final Steps

Sum 53.2

float total_sum = vaddvg_f32(sum_vec);
for (int 1 = count - (count % 4); i < count;
i

if (data.timestamps
data.timestamps|

1

>= startTimestamp &&
<= endTimestamp) {

total_sum += data.temperatures[i];

}
}

++i) §

Advanced SIMD: Hash Join Algorithm

// Load probe keys
int32x4_t probe_keys = v1d1g_s32(&probe_table.keys[i]);
// Compute hash
1nt32x4_t hash_vec =
vmodg_s32(vmulg_s32(probe_keys, hash_multiplier), hash_table_size);
// Gather hash table values
int32x4_t hash_table_vals = v1ld1g_s32(&hash_table[hash_vec]);
// Compare keys
uint32x4_t match_mask = vceqq_s32(probe_keys, hash_table_vals);

Looking Ahead: What's Next/

» CS 6423 (Advanced Database Implementation)
- Logging and Recovery
- Concurrency Control
- Query Optimization

» Building on this course

- Deeper insights into how databases optimize for efficiency.
- Expanding your knowledge of system-level guarantees.

Logging and Recovery

 Example: A system crash during a transfer:

--— Money transfer from Account 1 to Account 2

BEGIN TRANSACTION

UPDATE accounts SET balance
--- System crash

UPDATE accounts SET balance
END TRANSACTION

balance - 160 WHERE 1d

balance + 180 WHERE 1d

Logging and Recovery

 Mechanisms to restore the database to a consistent state after
crashes.

« Write-Ahead Logging (WAL)
- Log changes before applying them.

* Checkpointing and Crash Recovery
- Periodically save the database state to reduce recovery time.

- Redo/Undo logs to reconstruct committed transactions and roll back
uncommitted ones.

Concurrency Control

 Example: Two users simultaneously trying to update the same
row

--- Deposit from User 1 into Account 1

BEGIN TRANSACTION

UPDATE accounts SET balance = balance + 1688 WHERE id = 1;
END TRANSACTION

--- Deposit from User 2 into Account 1

BEGIN TRANSACTION

UPDATE accounts SET balance = balance + 188 WHERE 1id
END TRANSACTION

|
—
~~ o

Concurrency Control

* Ensuring correctness and consistency when multiple users
access the database simultaneously.

* Locks and Latches
- Types of locks (shared, exclusive); Deadlock detection and prevention.

« Multi-Version Concurrency Control (MVCC)
- Readers don't block writers: writers don't block readers.

* |solation Levels
- Read Committed, Repeatable Read, Serializable.

Query Optimization

« Example: Push filters before the join. Use an indexed join when
available.

--- Orders from customers based in Atlanta

SEEECTE

FROM orders

JOIN customers ON orders.customer_id = customers.id
WHERE customers.city = 'Atlanta’;

Query Optimization

» Selecting the best execution plan for a query.
» Goal: Minimize execution cost (e.g., time, memory, [/0).

» Execution Plans: Logical vs. physical plans.

» Cost Models: Estimating costs for different plans.
* Heuristics and Rules: Simplifying query plan tree

» Advanced Techniques
- Dynamic Programming (e.g., System R algorithm).
- Cardinality Estimation

Course Feedbhack & Project Presentations

» Please share your feedback via CIOS

» +17 extra credit for entire class If we get 80%+ participation
* No class on Nov 18

* In-class presentations on Nov 21

» Tentatively prepare a 5-minute presentation!

Takeaways from the Course

» Let's take a step back and reflect on what you've accomplished.

» Systems programming is challenging.

Delving into internals teaches attention to detail
It forces understanding of how things work under the hood.

* Foundational systems knowledge beyond databases.
- Threading, memory management, and |/0O.
- You how have tools to approach any system-level problem.
- Do reflect on how much you've learned and grown as a programmer.

Big [deas from the Course

» Database Systems Are Awesome
- They solve real-world problems elegantly.
- But they are not magic!

» Abstractions Are "Magic’
- Elegant abstractions are the "'magic’ enabling usability and
performance

» Declarativity Rules
- Declarative query models make complex systems usable.
- Taken to the extreme -- Google search or ChatGPT query!

Big [deas from the

Course

» Building Systems Is More Than Hacking

- It's about design, principles, and reusability.

» Recurring System Design Principles

- Recognizing motifs

ke optimizi

work avoidance (ind
framework).

exing), com

ng for t

nosabillli

ne common case (caching),

ty and modularity (operator

Periodic Table of System Design Principles

Towards a Periodic Table of Computer System Design Principles

JOY ARULRAJ, Georgia Institute of Technology

System design is often taught through domain-specific solutions specific to particular domains, such as databases, operating systems,
or computer architecture, each with its own methods and vocabulary. While this diversity is a strength, it can obscure cross-cutting
principles that recur across domains. This paper proposes a preliminary “periodic table” of system design principles distilled from
several domains in computer systems. The goal is a shared, concise vocabulary that helps students, researchers, and practitioners reason
about structure and trade-offs, compare designs across domains, and communicate choices more clearly. For supporting materials and

updates, please refer to the repository at: https://github.com/jarulraj/periodic-table.

https://github.com/jarulraj/periodic-table

Cr

https://github.com/jarulraj/periodic-table

You can contribute to Database Systems!

» Database Systems is evolving; you can contribute to its history!

