
Lecture 23: 
Vectorized Execution & 
Course Retrospective



Logistics
• No class on Nov 18

• Project final reports (2+ pages with GitHub link) due on Nov 18
§ 5% extra credits for all non-trivial submissions

• In-class presentations on Nov 20
§ 10% extra credit for those selected for in-class presentations



Recap
• Columnar Storage
• Compression
• Compressed Columnar Storage



Lecture Overview
• Vectorized Execution
• Course Retrospective



Vectorized Execution



• Each tuple incurs the cost of:
• Function calls between operators.
• Deserializing, interpreting, and processing the tuples.
• Doesn't leverage the CPU's ability to process batches of data efficiently.
• Results in frequent pipeline stalls and cache misses.

Limitations of Tuple-at-a-time Processing



Vector-at-
a-Time 

Processing

SIMD 
Instructions



Limitations of Tuple-at-a-time Processing

FUNCTION CALLS NO DATA-LEVEL PARALLELISM PIPELINE STALLS + 
CACHE MISSES

COLUMN VALUE

CONSTANT

18

> 20

40

> 20

25

> 20

15

> 20



A single instruction operates on multiple 
data points simultaneously

Use SIMD (Single Instruction, Multiple Data)

Vector-at-a-time Processing

18 40 25 15

0 1 1 1

> 20

Process a vector of tuples at a time to reduce 
overhead of function calls



SIMD in Query Execution

§ Filtering 
§ Aggregations
§ Compression

SIMD Use Cases

§ Vector loads
§ Filter masks

§ Horizontal reduction

SIMD Operations



Filter timestamps using SIMD

int32x4_t ts_vec = vld1q_s32(&data.timestamps[i]); // Load timestamps

uint32x4_t mask = vandq_u32(vcgeq_s32(ts_vec, 1), 
vcleq_s32(ts_vec, end)); // Mask for range



vaddq_f32 Addition 
Operation

32-bit floating-point 
numbers

Quad-word 
(4 floats)

vcgeq_s32 Compare 
greater than or equal to

Operates on signed 
32-bit integers.

64-bit vector
(2 integers)

SIMD Instruction Naming

Data Type
SIMD 

Instruction 
Names

Operand 
and Vector 

Sizes
Operation 

Type
Vector 
Width



vld1q_s32 18 40 25 15

vcgeq_s32 > 20

0 1 1 1

vcleq_s32 < 30

1 0 1 1

vandq_u32 > 20 AND < 30

0 0 1 0

Filter timestamps using SIMD



Scalar vs SIMD Execution

Repeated 
Instruction 

for Each 
Element

One Data 
Element Per 

Cycle

Scalar 
Execution

Batch 
Execution 

with Single 
Instruction

Multiple 
Data 

Elements Per 
Cycle 

SIMD 
Execution



N/W instructions for SIMD Vector

Benefits of SIMD Execution #1

N instructions for N data points

Vectorized Instructions

Instruction-Level Efficiency



Benefits of SIMD Execution #2

Fully-Utilized Lines 
Reduce Latency

Columnar Layouts Align 
with SIMD

Access Aligns with Cache 
Lines

Cache Line Usage

SIMD Operations

Contiguous 
Memory



Benefits of SIMD Execution #3

Pipeline Stalls 
with Incorrect 

Branch Position

Masks Handle 
Conditional 

Operations & Avoid 
Pipeline Stalls

SIMD 
minimizes 
branching 

Operation Applied 
to Vector 
Elements

Scalar 
Execution

SIMD 
Execution



Permits simultaneous 
operations on multiple 

data points 

SIMD first used in systems like 
ILLIAC IV for scientific 

workloads

Supercomputers 
and Scientific 

Computing

History of SIMD #1

Pixels 100 120 140 160

+ 20

120 140 160 180

1960s-
1970s

Example: Increase the 
brightness of an image’s 

pixels by a constant value

MMX (Intel, 1996): Integer 
operations for multimedia

Multimedia 
Processing

1980s-
1990s



History of SIMD #2

SSE/AVX (Intel): 
Wide registers for 

floats and 
integers

SIMD became a 
standard in 

consumer CPUs

Integration in 
General-Purpose 

CPUs
2000s

Vectorized query 
execution (e.g., Apache 

Arrow)

SIMD now powers modern 
databases and big data 

systems

Acceleration for 
Analytical 
Workloads

2010s-
Present

NEON (ARM): 
Optimized for 

embedded and 
mobile devices



Sensor Data Analysis

struct SensorData {
int *timestamps; // Contiguous array of timestamps
float *temperatures; // Contiguous array of temperatures

SensorData(size_t count) {
timestamps = static_cast<int *>(aligned_alloc(16, sizeof(int) * count));
temperatures =

static_cast<float *>(aligned_alloc(16, sizeof(float) * count));
}

};



void generateData(SensorData &data, int count) {
std::random_device rd;
std::mt19937 gen(rd());
std::normal_distribution<float> temp_dist(25.0, 5.0);
std::uniform_int_distribution<int> time_dist(1, 5);

int timestamp = START_TIMESTAMP;
for (int i = 0; i < count; ++i) {
data.timestamps[i] = timestamp;
data.temperatures[i] = temp_dist(gen);
timestamp += time_dist(gen); // Increment timestamp

}
}

Sensor Data Generation



SIMD Query



SIMD Query

Timestamps 1 2 5 7
Temperature 25.5 26.0 27.2 28.3

> 2 0 1 1 0
< 6 1 1 1 0
> 2 AND < 6 0 1 1 0

Masked Temps 0 26.0 27.2 0
Sum 53.2

Task: Calculate the average temperature within a timestamp 
range



int32x4_t ts_vec = vld1q_s32(&data.timestamps[i]); // Load 4 timestamps

float32x4_t temp_vec = vld1q_f32(&data.temperatures[i]); // Load 4 temperatures

SIMD Query: Loading Data

Timestamps 1 2 5 7
Temperature 25.5 26.0 27.2 28.3



uint32x4_t in_range_mask =
vandq_u32(vcgeq_s32(ts_vec, vdupq_n_s32(startTimestamp)),

vcleq_s32(ts_vec, vdupq_n_s32(endTimestamp)));

SIMD Query: Filtering Timestamps

> 2 0 1 1 0
< 6 1 1 1 0
> 2 AND < 6 0 1 1 0



float32x4_t masked_temps = vmulq_f32(temp_vec, vcvtq_f32_u32(in_range_mask));

sum_vec = vaddq_f32(sum_vec, masked_temps);

SIMD Query: Mask Application

Masked Temps 0 26.0 27.2 0



float total_sum = vaddvq_f32(sum_vec);
for (int i = count - (count % 4); i < count; ++i) {
if (data.timestamps[i] >= startTimestamp &&

data.timestamps[i] <= endTimestamp) {
total_sum += data.temperatures[i];

}
}

SIMD Query: Final Steps

Sum 53.2



// Load probe keys
int32x4_t probe_keys = vld1q_s32(&probe_table.keys[i]);
// Compute hash
int32x4_t hash_vec =

vmodq_s32(vmulq_s32(probe_keys, hash_multiplier), hash_table_size);
// Gather hash table values
int32x4_t hash_table_vals = vld1q_s32(&hash_table[hash_vec]);
// Compare keys
uint32x4_t match_mask = vceqq_s32(probe_keys, hash_table_vals);

Advanced SIMD: Hash Join Algorithm



What’s Next?



Looking Ahead: What’s Next?

• CS 6423 (Advanced Database Implementation)
• Logging and Recovery
• Concurrency Control
• Query Optimization

• Building on this course
• Deeper insights into how databases optimize for efficiency.
• Expanding your knowledge of system-level guarantees.



Logging and Recovery

• Example: A system crash during a transfer:

--- Money transfer from Account 1 to Account 2
BEGIN TRANSACTION
UPDATE accounts SET balance = balance – 100 WHERE id = 1;
--- System crash
UPDATE accounts SET balance = balance + 100 WHERE id = 2;
END TRANSACTION



Logging and Recovery

• Mechanisms to restore the database to a consistent state after 
crashes.

• Write-Ahead Logging (WAL)
• Log changes before applying them.

• Checkpointing and Crash Recovery
• Periodically save the database state to reduce recovery time.
• Redo/Undo logs to reconstruct committed transactions and roll back 

uncommitted ones.



Concurrency Control

• Example: Two users simultaneously trying to update the same 
row

--- Deposit from User 1 into Account 1
BEGIN TRANSACTION
UPDATE accounts SET balance = balance + 100 WHERE id = 1;
END TRANSACTION

--- Deposit from User 2 into Account 1
BEGIN TRANSACTION
UPDATE accounts SET balance = balance + 100 WHERE id = 1;
END TRANSACTION



Concurrency Control

• Ensuring correctness and consistency when multiple users 
access the database simultaneously.

• Locks and Latches
• Types of locks (shared, exclusive); Deadlock detection and prevention.

• Multi-Version Concurrency Control (MVCC)
• Readers don’t block writers; writers don’t block readers.

• Isolation Levels
• Read Committed, Repeatable Read, Serializable.



Query Optimization

• Example: Push filters before the join. Use an indexed join when
available.

--- Orders from customers based in Atlanta
SELECT *
FROM orders
JOIN customers ON orders.customer_id = customers.id
WHERE customers.city = 'Atlanta';



Query Optimization

• Selecting the best execution plan for a query.
• Goal: Minimize execution cost (e.g., time, memory, I/O).
• Execution Plans: Logical vs. physical plans.
• Cost Models: Estimating costs for different plans.
• Heuristics and Rules: Simplifying query plan tree
• Advanced Techniques
• Dynamic Programming (e.g., System R algorithm).
• Cardinality Estimation



Course Feedback & Project Presentations

• Please share your feedback via CIOS
• +1% extra credit for entire class if we get 80%+ participation
• No class on Nov 18

• In-class presentations on Nov 21

• Tentatively prepare a 5-minute presentation!



Course Retrospective



Takeaways from the Course
• Let’s take a step back and reflect on what you’ve accomplished.
• Systems programming is challenging.
• Delving into internals teaches attention to detail.
• It forces understanding of how things work under the hood.

• Foundational systems knowledge beyond databases.
• Threading, memory management, and I/O.
• You now have tools to approach any system-level problem.
• Do reflect on how much you’ve learned and grown as a programmer.



Big Ideas from the Course

• Database Systems Are Awesome
• They solve real-world problems elegantly.
• But they are not magic!

• Abstractions Are “Magic”
• Elegant abstractions are the "magic" enabling usability and 

performance

• Declarativity Rules
• Declarative query models make complex systems usable.
• Taken to the extreme -- Google search or ChatGPT query!



Big Ideas from the Course

• Building Systems Is More Than Hacking
• It’s about design, principles, and reusability.

• Recurring System Design Principles
• Recognizing motifs like optimizing for the common case (caching), 

work avoidance (indexing), composability and modularity (operator 
framework).



Periodic Table of System Design Principles

https://github.com/jarulraj/periodic-table

https://github.com/jarulraj/periodic-table


You can contribute to Database Systems!

• Database Systems is evolving; you can contribute to its history!


