Lecture 1: Course Introduction &
History of Database Systems

2

JA

Welcome!

e This course focuses on the design and implementation of database management
systems (DBMSs). - N

e We will study the internals of modern database management systems.

e We will cover the core concepts and fundamentals of the components that are used in
high-performance transaction processing systems (OLTP) and large-scale analytical
systems (OLAP).

—_—

JA

JA

Today’s Agenda

e Course Outline & Logistics
e History of Database Systems

(@R Gelitds ol Course Outline & Logistics

Course Outline & Logistics

Course Outline & Logistics
Why you should take this course?

e You want to learn how to make database systems scalable, for example, to support
web or mobile applications with millions of users.

ou want to make applications that are highly available (i.e., minimizing downtime)
apd operationally robust.

You have a natural curiosity for the way things work and want to know what goes on
inside major websites and online services.
/\/Y‘;u are looking for ways of making systems easier 0 maintai
/(hey grow and as requirements and technologies d
o If

you are good enough to write code for a database system, then you can write code
on almost anything else.

n the long run,even as

JA

JA

JA

JA

JA

Course Objectives

e Learn about modern practices in database internals and systems programming.
e Students will become proficient in:

> Writing correct + performant code
> Proper documentation + testing
> Working on a systems programming project

(@R Gelitds ol Course Outline & Logistics

Course Topics

Logging & Recovery Methods
e Concurrency Control

Query Optimization, Compilation
New Hardware (NVM, FPGA, GPU)

JA

Course Outline & Logistics
Background

e T assume that you have already taken an intro course on database systems (e.g.,, GT
4400).

e We will discuss modern variations of classical algorithms that are designed for today’s
hardware.

e Things that we will not cover: SQL, Relational Algebra, Basic Algorithms + Data
Structures.

Course Outline & Logistics
Background

e All programming assignments will be written in C++11.
e You will learn how to debug and profile multi-threaded programs.

e Assignment 1 will help get you caught up with C++.

Course Logistics

Course Web Page
> Schedule: https://www.cc.gatech.edu/ jarulraj/courses/8803-s21/
Discussion Tool: Piazza

> https://www.piazza.com/gatech/spring2021/cs8803dsi
> For all technical questions, please use Piazza. Don’t email me directly.
> All non-technical questions should be sent to me

Grading Tool: Gradescope

> You will get immediate feedback on your assignment.
> You can iteratively improve your score over time.

Virtual Office Hours
> Will be posted on Piazza.

https://www.cc.gatech.edu/~jarulraj/courses/8803-s21/
https://www.piazza.com/gatech/spring2021/cs8803dsi

Course Logistics

e Course Policies
> The programming assignments and exercise sheets must be your own work.
> They are not group assignments.
> You may not copy source code from other people or the web.
> Plagiarism will not be tolerated.
e Academic Honesty

> Refer to Georgia Tech Academic Honor Code.
> If you are not sure, ask me.

Course Outline & Logistics
Late Policy

e You are allowed ten total slip days (for programming assignments and exercise sheets).
* You lose 25% of an assignment’s points for every 24 hrs it is late.

e Mark on your submission (1) how many days you are late and (2) how many late days
you have left.

Teaching Assistants

e Gaurav Tarlok Kakkar

> M.S. (Computer Science)
> Worked at Adobe (2 years).
> Research Topic: Video analytics using deep learning.

e If you are acing through the assignments, you might want to hack on the video
analytics system (codenamed EVA) that we are building.

e Drop me a note if you are interested!

https://github.com/georgia-tech-db/eva
https://github.com/georgia-tech-db/eva

(@R Gelitds ol Course Outline & Logistics

Course Rubric

Project (20%)

e Programming Assignments (45%)
Exercise Sheets (15%)

Mid-term Exam (20%)

Project - Outline

e A key component of this course will be an original research project.
e Students will organize into groups and choose to implement a project that is:

> Relevant to the topics discussed in class.
> Requires a significant programming effort from all team members.

(@R Gelitds ol Course Outline & Logistics

Project - Outline

e You don’t have to pick a topic until midway through the course.
e We will provide sample project topics.

e This project can be a conversation starter in job interviews.

(@R Gelitds ol Course Outline & Logistics

Project — Deliverables

e Proposal: 2-page report + presentation
e Status Update: 3-page report + presentation

e Final: 4-page report + presentation

Project — Proposal

e Five minute presentation to the class that discusses the high-level topic.
e Each proposal must discuss:

> What is the problem being addressed by the project?
> Why is this problem important?
> How will the team solve this problem?

Course Outlne & Logistic
Project — Status Update

e Five minute presentation to update the class about the current status of your project.
e Each presentation should include:

> Current development status.
> Whether anything in your plan has changed.
> Any thing that surprised you.

Project - Final Presentation

e Ten minute presentation on the final status of your project during the finals week.

e You'll want to include any performance measurements or benchmarking numbers for
your implementation.

e Demos are always hot too.

Programming Assignments

e Five assignments based on the BuzzDB academic DBMS.
e Goal is to familiarize you with the internals of database management systems.

e We will use Gradescope for giving you immediate feedback on programming
assignments and Piazza for providing clarifications.

e We will provide you with test cases and scripts for the programming assignments.

e If you have not yet received an invite from Gradescope, you can use the entry code
that will be shared on Pig#za.

Cantom

JA

(@R Gelitds ol Course Outline & Logistics

Exercise Sheets

e Three pencil-and-paper tasks.
e You will need to upload the sheets to Gradescope.

e We will share the grading rubric for exercise sheets via Gradescope.

JA

Course Outline & Logistics
Exercise Sheet #1

/

e Hand in one page with the following information:
> Digital picture (ideally 2x2 inches of face)
> Name, interests, More details on Gradescope
e The purpose of this sheet is to help fme:
> know more about your background for tailoring the course, and
> recognize you in class

JA

JA

(@ISR Td 9 History of Database Systems

History of Database Systems

Fistory of Database Systems
History Repeats Itself

Reference
décisions in early database systems are still relevant today.

e “SQL vs. NoSQL” debate is reminiscent of “Relational vs. CODASYL"” debate.
Old adage: he who does not understand history is condemned to repeat it.

Goal: ensure that future researchers avoid replaying history.

https://people.cs.umass.edu/~yanlei/courses/CS691LL-f06/papers/SH05.pdf
JA

1960s — IBM IMS

o h(/ K{C

e Information Management System
e Early database system developed to keep track of purchase orders for Apollo moon

mission.
> Higrarchical data model.
> Programmer-defined physical storage format. /r;{‘a/&/

> Tuple-at-a-time queries.

.)

JA

JA

JA

JA

JA

History of Database Systems
Hierarchical Data Model

Schema

SUPPLIER
(sno, sname, scity, sstate)

| el

PART
(pno, pname, psize, qty, price)

JA

(@SS GO History of Database Systems

Hierarchical Data Model

9“’6\?\\(]«\ o

sname sc1ty sstate parts

M 1001 Maria New York NY part1
1002 Rahul ecahwt@s MA part-2

pname
Batteries Large

p pname psize qty price

Batteries Large 14 99

= ¢

Sl

JA

JA

JA

JA

JA

JA

JA

History of Database Systems
Hierarchical Data Model

JA

History of Database Systems
Hierarchical Data Model

e Limitations O
> L .

W is repeated

> rTree structured data model is very restrictive: Existence depends on parent tuples.

> No Physical data independence: Cannot freely change storage organization to tune a
“Jatabaseapplication because there is no guarantee that the applications will continue to

un
%ptimization: A tuple-at-a-time user interface forces the programmer to do manual query
optimization, and this is often hard.

JA

JA

JA

JA

1960s - IBS/

Integrated Data Store

~ -—

Developed interfially at GE in the early 1960s.

GE sold their computing division toHoneywell in 1969.

One of the first DBMSs: /_

> Network data model.
> Tuple-at-a-time queries.

JA

JA

JA

1960s — CODASYL

et

e COBOL people got together and proposeda
sstarrctard for how programs will access a

database. Lead by Charles Bachman.

N
> Network data model.

> Tuple-at-a-time queries.

JA

JA

JA

Network Data Model E [)’\

Schema
o N a Y
SUPPLIER PART
(sno, sname, scity, sstate) (pno, pname, psize)
v v
SUPPLIES SUPPLIED_BY

SUPPLY
(gty, price)

N ———

JA

JA

JA

JA

History of Database Systems
Network Data Model

e Advantages
> Graph structured data models are less restrictive
e Limitations

> Poorer physical and logical data independence: Cannot freely change storage
organizations or change application s a
low loading and recovery: Data is typically stored in one large network. This much
rger object had to be bulk-loaded all at once, leading to very long load times.

-

JA

JA

JA

JA

History of Database Systems
1970s — Relational Data Model

e Ted Codd was a mathematician working at IBM
Research.

e He saw developers spending their time
rewriting IMS and Codasyl programs every
time the database’s schema or layout changed.

e Database abstraction to avoid this maintenance:

Store database in simple data structures.

2~Access data through high-level declarative
lapguage. (\
%ysical storage left up to implementation.

JA

JA

(@IS REGGLIGTO History of Database Systems

1970s — Relational Data Model

Schema

SUPPLIER PART
(sno, snamegscity, sstate) (pno, pname, psize)
o : k F

SUPPLY

(sno, pno, qty, price)

Va

JA

JA

JA

(@ISR Td 9 History of Database Systems

Relational Data Model

X (5 gl

Cal data independence is easier with a simple data model than with a complex one.
> Query optimizers can beat all but the best tuple-at-a-time DBMS application
programmers.

e Ad¥antages

JA

History of Database Systems
1970s — Relational Data Model

e Early implementations of relational DBMS:
> System R — IBM Research
> INGRES - U.C. Berkeley
> Oracle - Larry Ellison

(A

JA

JA

JA

JA

JA

History of Database Systems
1980s — Relational Data Model

e The relational model wins.

> IBM comes out with DB2 in 1983.
» “SEQUEL” becomes the standard (SQL).

e Many new “enterprise” DBMSs, but Oracle wins marketplace.

e Examples: Teradata, Informix, Tandem, e.t.c.

Informix SSYBASE INGR=S
ORACLE “4TANDEM [ERADATA InterBase

History of Database Systems
1980s — Object-Oriented Data Model

e Avoid relational-object impedance mismatch by tightly coupling objects and
database.

e Analogy: Gluing an apple onto a pancake
e Objects are treated as a first class citizen.
e Objects may have many-to-many relationships and are accessed using pointers.

e Few of these original DBMSs from the 1980s still exist today but many of the
technologies exist in other forms (e.g., JSON, XML)

e Examples: Object Store, Mark Logic, e.t.c.

VERSANT (QbjectStore. ="MarkLogic

1980s — Object-Oriented Data Model

Application Code

class Student {
P int i
String name;
String email;
String phone|[] ; <

id;

id

name

email

1001

M.0.P.

ante@up.com

sid phone

1001 (444-444-4444

1001 [555-555-5555

Relational Schema

STUDENT

(id, name, email)

|

[

(sid, phone)

STUDENT_PHONE]

1980s — Object-Oriented Data Model

Application Code

class Student { Student
int id;
String name;
String email;

{
“id”: 1001,
String phone[]; '

“name”: “M.0.P.”

>

“email”: “ante@up.com”,
“phone”: [

“444-444-44447,
“555-555-5555”
]

}

42 /54

History of Database Systems
1990s — Boring Days

e No major advancements in database systems or application workloads.
> Microsoft forks Sybase and creates SQL Server.
> MySQL is written as a replacement for mSQL.
> Postgres gets SQL support.
> SQLite started in early 2000.

PostgreSQL

S Sorver MuSCL Wi

History of Database Systems
2000s — Internet Boom

o All the big players were heavyweight and expensive.
e Open-source databases were missing important features.

e Many companies wrote their own custom middleware to scale out database across
single-node DBMS instances.

History of Database Systems
2000s — Data Warehouses

e Rise of the special purpose OLAP DBMSs.

» Distributed / Shared-Nothing
> Relational / SQL
» Usually closed-source.

e Significant performance benefits from using Decomposition Storage Model (i.e.,
columnar storage)

N)NETEZZA PARACCEL monetdb)

Greenplum DATAllegro \/'||=RT|C/\I

Fistory of Database Systems
2000s — NoSQL Systems

e Focus on high-availability & high-scalability:
» Schema-less (i.e., “Schema Last”)
Non-relational data models (document, key/value, etc)
No ACID transactions
Custom APIs instead of SQL
Usually open-source

N
HEASE gmazon, . mongoDB O @
e redis @RethlnkDB NOSQL 1"
S

Couchbase @DGOAJ CouchDB

>
»
>
>

cassandra § rl q k NDB

History of Database Systems
2010s — NewSQL

e Provide same performance for OLTP workloads as NoSQL DBMSs without giving up
ACID:

> Relational / SQL
> Distributed
> Usually closed-source

AbSharels - Clustrix
ste= [{)-Store |
OyScaleAc XY aus VOLTDB 0
@) AANVENMSQL HyPer __store.w.

T Cockroach LaBs

History of Database Systems
2010s — Hybrid Systems

e Hybrid Transactional-Analytical Processing.

e Execute fast OLTP like a NewSQL system while also executing complex OLAP queries
like a data warehouse system.

> Distributed / Shared-Nothing
> Relational / SQL
> Mixed open/closed-source.

AMAMEMSQL A HyPer E= SNAPPY W

JustEOe.w. SB/!!&‘& &% Peloton

Fistory of Database Systems
2010s — Cloud Systems

e First database-as-a-service (DBaaS) offerings were containerized versions of existing
DBMSs.

e There are new DBMSs that are designed from scratch explicitly for running in a cloud
environment.

xeround Googe
a - amazon The Cloud Database S p anner

Amazon

/flc e
y F/\ U N A mazon: Aurora O?,

B Microsoft

History of Database Systems
2010s — Specialized Systems

Shared-disk DBMSs
Embedded DBMSs
Times Series DBMS
Multi-Model DBMSs
Blockchain DBMSs

History of Database Systems
2010s — Specialized Systems

(gl AxiBASE A JI I
ClickHouse BIGDHA'N DB E evelpB

w y LEaNSZCALE [tilelDB & GoshakaB

Trafodion > n *Flureen: accurmuco” Stardog’
@BLAZINGDB @T'Da'mmé"hsmﬂﬂb 2 SequoiaDB ~ cRATE 10 |
G
WIREDT E"@YugaByte Kinsstica 4’ actoros ‘1" presto \

I
mldb.ai ﬂ R CUBRID
LELEMENT SQREQM 0.0'0 VeCtOI'WISe a

CALUE iooteDB . ‘-_@Al’angoDB @ SPQI'K %

.@p Hortomwo
EA% SS‘LUQ VITESSE DATA ‘-] g‘-’fm&i’kﬁj a e

~ OrientDB’ Ex ‘MariaDB -
‘lNFINITEGRADH

................. J S . .
lHarperDB FAT:EMI)IS @ "’lﬂUde lMDB SCYLLA
o - & TivESCALE
HYPERTABLE) paradigm4 (a/ citusdata #= pockspp

Course Introduction EWIET

Conclusion

Conclusion
Parting Thoughts

e There are many innovations that come from both industry and academia.

> Lots of ideas start in academia but few build complete DBMSs to verify them.
> IBM was the vanguard during 1970-1980s but now there is no single trendsetter.
> The era of cloud systems has begun.

e The relational model has won for operational databases.

JA

Conclusion
Next Class

e Recap of topics covered in the first course
e Submit exercise sheet #1 via Gradescope.

	Course Introduction
	Course Outline & Logistics
	History of Database Systems
	Conclusion

