
1 / 54

Course Introduction

Lecture 1: Course Introduction &
History of Database Systems

JA



2 / 54

Course Introduction

Welcome!

• This course focuses on the design and implementation of database management
systems (DBMSs).

• We will study the internals of modern database management systems.
• We will cover the core concepts and fundamentals of the components that are used in

high-performance transaction processing systems (OLTP) and large-scale analytical
systems (OLAP).

JA

JA



3 / 54

Course Introduction

Today’s Agenda

• Course Outline & Logistics
• History of Database Systems



4 / 54

Course Introduction Course Outline & Logistics

Course Outline & Logistics



5 / 54

Course Introduction Course Outline & Logistics

Why you should take this course?

• You want to learn how to make database systems scalable, for example, to support
web or mobile applications with millions of users.

• You want to make applications that are highly available (i.e., minimizing downtime)
and operationally robust.

• You have a natural curiosity for the way things work and want to know what goes on
inside major websites and online services.

• You are looking for ways of making systems easier to maintain in the long run,even as
they grow and as requirements and technologies change.

• If you are good enough to write code for a database system, then you can write code
on almost anything else.

JA

JA

JA

JA

JA



6 / 54

Course Introduction Course Outline & Logistics

Course Objectives

• Learn about modern practices in database internals and systems programming.
• Students will become proficient in:

▶ Writing correct + performant code
▶ Proper documentation + testing
▶ Working on a systems programming project



7 / 54

Course Introduction Course Outline & Logistics

Course Topics

• Logging & Recovery Methods
• Concurrency Control
• Query Optimization, Compilation
• New Hardware (NVM, FPGA, GPU)

JA



8 / 54

Course Introduction Course Outline & Logistics

Background

• I assume that you have already taken an intro course on database systems (e.g.,, GT
4400).

• We will discuss modern variations of classical algorithms that are designed for today’s
hardware.

• Things that we will not cover: SQL, Relational Algebra, Basic Algorithms + Data
Structures.



9 / 54

Course Introduction Course Outline & Logistics

Background

• All programming assignments will be written in C++11.
• You will learn how to debug and profile multi-threaded programs.
• Assignment 1 will help get you caught up with C++.



10 / 54

Course Introduction Course Outline & Logistics

Course Logistics

• Course Web Page
▶ Schedule: https://www.cc.gatech.edu/ jarulraj/courses/8803-s21/

• Discussion Tool: Piazza
▶ https://www.piazza.com/gatech/spring2021/cs8803dsi
▶ For all technical questions, please use Piazza. Don’t email me directly.
▶ All non-technical questions should be sent to me

• Grading Tool: Gradescope
▶ You will get immediate feedback on your assignment.
▶ You can iteratively improve your score over time.

• Virtual Office Hours
▶ Will be posted on Piazza.

https://www.cc.gatech.edu/~jarulraj/courses/8803-s21/
https://www.piazza.com/gatech/spring2021/cs8803dsi


11 / 54

Course Introduction Course Outline & Logistics

Course Logistics

• Course Policies
▶ The programming assignments and exercise sheets must be your own work.
▶ They are not group assignments.
▶ You may not copy source code from other people or the web.
▶ Plagiarism will not be tolerated.

• Academic Honesty
▶ Refer to Georgia Tech Academic Honor Code.
▶ If you are not sure, ask me.



12 / 54

Course Introduction Course Outline & Logistics

Late Policy

• You are allowed ten total slip days (for programming assignments and exercise sheets).
• You lose 25% of an assignment’s points for every 24 hrs it is late.
• Mark on your submission (1) how many days you are late and (2) how many late days

you have left.



13 / 54

Course Introduction Course Outline & Logistics

Teaching Assistants

• Gaurav Tarlok Kakkar
▶ M.S. (Computer Science)
▶ Worked at Adobe (2 years).
▶ Research Topic: Video analytics using deep learning.

• If you are acing through the assignments, you might want to hack on the video
analytics system (codenamed EVA) that we are building.

• Drop me a note if you are interested!

https://github.com/georgia-tech-db/eva
https://github.com/georgia-tech-db/eva


14 / 54

Course Introduction Course Outline & Logistics

Course Rubric

• Project (20%)
• Programming Assignments (45%)
• Exercise Sheets (15%)
• Mid-term Exam (20%)



15 / 54

Course Introduction Course Outline & Logistics

Project - Outline

• A key component of this course will be an original research project.
• Students will organize into groups and choose to implement a project that is:

▶ Relevant to the topics discussed in class.
▶ Requires a significant programming effort from all team members.



16 / 54

Course Introduction Course Outline & Logistics

Project - Outline

• You don’t have to pick a topic until midway through the course.
• We will provide sample project topics.
• This project can be a conversation starter in job interviews.



17 / 54

Course Introduction Course Outline & Logistics

Project – Deliverables

• Proposal: 2-page report + presentation
• Status Update: 3-page report + presentation
• Final: 4-page report + presentation



18 / 54

Course Introduction Course Outline & Logistics

Project – Proposal

• Five minute presentation to the class that discusses the high-level topic.
• Each proposal must discuss:

▶ What is the problem being addressed by the project?
▶ Why is this problem important?
▶ How will the team solve this problem?



19 / 54

Course Introduction Course Outline & Logistics

Project – Status Update

• Five minute presentation to update the class about the current status of your project.
• Each presentation should include:

▶ Current development status.
▶ Whether anything in your plan has changed.
▶ Any thing that surprised you.



20 / 54

Course Introduction Course Outline & Logistics

Project – Final Presentation

• Ten minute presentation on the final status of your project during the finals week.
• You’ll want to include any performance measurements or benchmarking numbers for

your implementation.
• Demos are always hot too.



21 / 54

Course Introduction Course Outline & Logistics

Programming Assignments

• Five assignments based on the BuzzDB academic DBMS.
• Goal is to familiarize you with the internals of database management systems.
• We will use Gradescope for giving you immediate feedback on programming

assignments and Piazza for providing clarifications.
• We will provide you with test cases and scripts for the programming assignments.
• If you have not yet received an invite from Gradescope, you can use the entry code

that will be shared on Piazza.

JA



22 / 54

Course Introduction Course Outline & Logistics

Exercise Sheets

• Three pencil-and-paper tasks.
• You will need to upload the sheets to Gradescope.
• We will share the grading rubric for exercise sheets via Gradescope.

JA



23 / 54

Course Introduction Course Outline & Logistics

Exercise Sheet #1

• Hand in one page with the following information:
▶ Digital picture (ideally 2x2 inches of face)
▶ Name, interests, More details on Gradescope

• The purpose of this sheet is to help me:
▶ know more about your background for tailoring the course, and
▶ recognize you in class

JA

JA



24 / 54

Course Introduction History of Database Systems

History of Database Systems



25 / 54

Course Introduction History of Database Systems

History Repeats Itself

• Reference
• Design decisions in early database systems are still relevant today.
• The “SQL vs. NoSQL” debate is reminiscent of “Relational vs. CODASYL” debate.
• Old adage: he who does not understand history is condemned to repeat it.
• Goal: ensure that future researchers avoid replaying history.

https://people.cs.umass.edu/~yanlei/courses/CS691LL-f06/papers/SH05.pdf
JA



26 / 54

Course Introduction History of Database Systems

1960s – IBM IMS

• Information Management System
• Early database system developed to keep track of purchase orders for Apollo moon

mission.
▶ Hierarchical data model.
▶ Programmer-defined physical storage format.
▶ Tuple-at-a-time queries.

JA

JA

JA

JA

JA



27 / 54

Course Introduction History of Database Systems

Hierarchical Data Model

JA



28 / 54

Course Introduction History of Database Systems

Hierarchical Data Model

students
sno sname scity sstate parts

1001 Maria New York NY part-1
1002 Rahul rahul@cs MA part-2

part-1
pno pname psize qty price
999 Batteries Large 10 100

part-2
pno pname psize qty price
999 Batteries Large 14 99

JA

JA

JA

JA

JA

JA

JA



29 / 54

Course Introduction History of Database Systems

Hierarchical Data Model

• Advantages
▶ No need to reinvent the wheel for every application
▶ Logical data independence: New record types may be added as the logical requirements

of an application may change over time.

JA



30 / 54

Course Introduction History of Database Systems

Hierarchical Data Model

• Limitations
▶ Information is repeated.
▶ Tree structured data model is very restrictive: Existence depends on parent tuples.
▶ No Physical data independence: Cannot freely change storage organization to tune a

database application because there is no guarantee that the applications will continue to
run

▶ Optimization: A tuple-at-a-time user interface forces the programmer to do manual query
optimization, and this is often hard.

JA

JA

JA

JA



31 / 54

Course Introduction History of Database Systems

1960s – IDS

• Integrated Data Store
• Developed internally at GE in the early 1960s.
• GE sold their computing division toHoneywell in 1969.
• One of the first DBMSs:

▶ Network data model.
▶ Tuple-at-a-time queries.

JA

JA

JA



32 / 54

Course Introduction History of Database Systems

1960s – CODASYL

• COBOL people got together and proposeda
standard for how programs will access a
database. Lead by Charles Bachman.
▶ Network data model.
▶ Tuple-at-a-time queries.

JA

JA

JA



33 / 54

Course Introduction History of Database Systems

Network Data Model

JA

JA

JA

JA



34 / 54

Course Introduction History of Database Systems

Network Data Model

• Advantages
▶ Graph structured data models are less restrictive

• Limitations
▶ Poorer physical and logical data independence: Cannot freely change storage

organizations or change application schema
▶ Slow loading and recovery: Data is typically stored in one large network. This much

larger object had to be bulk-loaded all at once, leading to very long load times.

JA

JA

JA

JA



35 / 54

Course Introduction History of Database Systems

1970s – Relational Data Model

• Ted Codd was a mathematician working at IBM
Research.

• He saw developers spending their time
rewriting IMS and Codasyl programs every
time the database’s schema or layout changed.

• Database abstraction to avoid this maintenance:
▶ Store database in simple data structures.
▶ Access data through high-level declarative

language.
▶ Physical storage left up to implementation.

JA

JA



36 / 54

Course Introduction History of Database Systems

1970s – Relational Data Model

JA

JA

JA



37 / 54

Course Introduction History of Database Systems

Relational Data Model

• Advantages
▶ Set-a-time languages are good, regardless of the data model, since they offer physical data

independence
▶ Logical data independence is easier with a simple data model than with a complex one.
▶ Query optimizers can beat all but the best tuple-at-a-time DBMS application

programmers.

JA



38 / 54

Course Introduction History of Database Systems

1970s – Relational Data Model

• Early implementations of relational DBMS:
▶ System R – IBM Research
▶ INGRES – U.C. Berkeley
▶ Oracle – Larry Ellison

JA

JA

JA

JA

JA



39 / 54

Course Introduction History of Database Systems

1980s – Relational Data Model

• The relational model wins.
▶ IBM comes out with DB2 in 1983.
▶ “SEQUEL” becomes the standard (SQL).

• Many new “enterprise” DBMSs, but Oracle wins marketplace.
• Examples: Teradata, Informix, Tandem, e.t.c.



40 / 54

Course Introduction History of Database Systems

1980s – Object-Oriented Data Model

• Avoid relational-object impedance mismatch by tightly coupling objects and
database.

• Analogy: Gluing an apple onto a pancake
• Objects are treated as a first class citizen.
• Objects may have many-to-many relationships and are accessed using pointers.
• Few of these original DBMSs from the 1980s still exist today but many of the

technologies exist in other forms (e.g., JSON, XML)
• Examples: Object Store, Mark Logic, e.t.c.



41 / 54

Course Introduction History of Database Systems

1980s – Object-Oriented Data Model



42 / 54

Course Introduction History of Database Systems

1980s – Object-Oriented Data Model



43 / 54

Course Introduction History of Database Systems

1990s – Boring Days

• No major advancements in database systems or application workloads.
▶ Microsoft forks Sybase and creates SQL Server.
▶ MySQL is written as a replacement for mSQL.
▶ Postgres gets SQL support.
▶ SQLite started in early 2000.



44 / 54

Course Introduction History of Database Systems

2000s – Internet Boom

• All the big players were heavyweight and expensive.
• Open-source databases were missing important features.
• Many companies wrote their own custom middleware to scale out database across

single-node DBMS instances.



45 / 54

Course Introduction History of Database Systems

2000s – Data Warehouses

• Rise of the special purpose OLAP DBMSs.
▶ Distributed / Shared-Nothing
▶ Relational / SQL
▶ Usually closed-source.

• Significant performance benefits from using Decomposition Storage Model (i.e.,
columnar storage)



46 / 54

Course Introduction History of Database Systems

2000s – NoSQL Systems

• Focus on high-availability & high-scalability:
▶ Schema-less (i.e., “Schema Last”)
▶ Non-relational data models (document, key/value, etc)
▶ No ACID transactions
▶ Custom APIs instead of SQL
▶ Usually open-source



47 / 54

Course Introduction History of Database Systems

2010s – NewSQL

• Provide same performance for OLTP workloads as NoSQL DBMSs without giving up
ACID:
▶ Relational / SQL
▶ Distributed
▶ Usually closed-source



48 / 54

Course Introduction History of Database Systems

2010s – Hybrid Systems

• Hybrid Transactional-Analytical Processing.
• Execute fast OLTP like a NewSQL system while also executing complex OLAP queries

like a data warehouse system.
▶ Distributed / Shared-Nothing
▶ Relational / SQL
▶ Mixed open/closed-source.



49 / 54

Course Introduction History of Database Systems

2010s – Cloud Systems

• First database-as-a-service (DBaaS) offerings were containerized versions of existing
DBMSs.

• There are new DBMSs that are designed from scratch explicitly for running in a cloud
environment.



50 / 54

Course Introduction History of Database Systems

2010s – Specialized Systems

• Shared-disk DBMSs
• Embedded DBMSs
• Times Series DBMS
• Multi-Model DBMSs
• Blockchain DBMSs



51 / 54

Course Introduction History of Database Systems

2010s – Specialized Systems



52 / 54

Course Introduction Conclusion

Conclusion



53 / 54

Course Introduction Conclusion

Parting Thoughts

• There are many innovations that come from both industry and academia.
▶ Lots of ideas start in academia but few build complete DBMSs to verify them.
▶ IBM was the vanguard during 1970-1980s but now there is no single trendsetter.
▶ The era of cloud systems has begun.

• The relational model has won for operational databases.

JA



54 / 54

Course Introduction Conclusion

Next Class

• Recap of topics covered in the first course
• Submit exercise sheet #1 via Gradescope.


	Course Introduction
	Course Outline & Logistics
	History of Database Systems
	Conclusion


