
1 / 49

ARIES from First Principles

Lecture 9: ARIES from First Principles



2 / 49

ARIES from First Principles Recap

Recap



3 / 49

ARIES from First Principles Recap

Mains ideas of ARIES

• Mains ideas of ARIES:
▶ WAL with STEAL/NO-FORCE
▶ Fuzzy Checkpoints (snapshot of dirty page ids)
▶ Redo everything since the earliest dirty page
▶ Undo txns that never commit
▶ Write CLRs when undoing, to survive failures during restarts



4 / 49

ARIES from First Principles Recap

Mains ideas of ARIES

• Buffer Manager
▶ PinPage, UnpinPage, ReadPage, WritePage, DirtyPageTable

• Recovery Manager
▶ Restart, RecoverEarliestLSN, CreateLogRecord, RollbackTxn

• Log Manager
▶ ReadNextLogRecord, AppendLogRecord, GetMasterRecord, SetMasterRecord

• Txn Manager
▶ GetRecordInfo, SetRecordInfo, ActiveTxnTable

• Disk Manager
▶ ReadBlock, WriteBlock



5 / 49

ARIES from First Principles Recap

Today’s Agenda

• Deriving ARIES from first principles
▶ V1: Shadow Paging
▶ V2: WAL–Deferred Updates
▶ V3: WAL
▶ V4: Commit-consistent checkpoints
▶ V5: Fuzzy checkpoints
▶ V6: CLRs
▶ V7: Logical Undo
▶ V8: Avoid selective redo



6 / 49

ARIES from First Principles Definitions

Definitions



7 / 49

ARIES from First Principles Definitions

Protocol vs Algorithm

• Protocol
▶ Set of rules that govern how a system operates.
▶ Rules establish the basic functioning of the different parts, how they interact with each

other, and what constraints must be satisfied by the implementation.
• Algorithm

▶ Set of instructions to transform inputs to desired outputs. It can be a simple script, or a
complicated program. The order of the instructions is important.



8 / 49

ARIES from First Principles Definitions

Protocol vs Algorithm

• Protocol
▶ Logging and recovery protocol dictates how the buffer manager interacts with the

recovery manager to ensure the durability of changes made by committed txns.
• Algorithm

▶ A sorting algorithm may return the records in a table in alphabetical order.



9 / 49

ARIES from First Principles Definitions

Policy vs Mechanism

• Policy
▶ Specifies the desired behavior of the system (what).
▶ Example: Buffer manager may adopt the LRU policy for evicting pages from the buffer.

• Mechanism
▶ Specifies how that behavior must be realized (how)
▶ Example: We may implement the policy using: (1) uni-directional map + linked list, or (2)

bi-directional map. Optimize the code for specific hardware technology.



10 / 49

ARIES from First Principles Deriving ARIES

Deriving ARIES



11 / 49

ARIES from First Principles Deriving ARIES

Constraints

• DRAM is volatile



12 / 49

ARIES from First Principles Deriving ARIES

V1: SHADOW PAGING



13 / 49

ARIES from First Principles Deriving ARIES

V1: SHADOW PAGING



14 / 49

ARIES from First Principles Deriving ARIES

V1: SHADOW PAGING



15 / 49

ARIES from First Principles Deriving ARIES

V1: SHADOW PAGING

• Advantages
▶ No need to write log records
▶ Recovery is trivial (NO UNDO and NO REDO)

• Disadvantages
▶ Commit overhead is high (FORCE and NO STEAL)
▶ Flush every updated page to database on disk, page table, and master page
▶ Data gets fragmented over time (versioning)
▶ Need garbage collection to clean up older versions.
▶ Need to copy page table



16 / 49

ARIES from First Principles Deriving ARIES

Constraints

• DRAM is volatile
• Avoid random writes to database on disk (NO FORCE)



17 / 49

ARIES from First Principles Deriving ARIES

WAL – Deferred Updates

• If we prevent the DBMS from writing dirty records to disk until the txn commits, then
the DBMS does not need to store their original values.



18 / 49

ARIES from First Principles Deriving ARIES

V2: WAL–DEFERRED UPDATES

• Phase 1 – Analysis
▶ Read the WAL to identify active txns at the time of the crash.

• Phase 2 – Redo
▶ Start with the last entry in the log and scan backwards toward the beginning.
▶ For each update log record with a given LSN, redo the action if:
▶ pageLSN (on disk) < log record’s LSN



19 / 49

ARIES from First Principles Deriving ARIES

V2: WAL–DEFERRED UPDATES

LSN Type Where Definition

flushedLSN Memory Last LSN in log on disk
pageLSN pagex Newest update to pagex
prevLSN log record LSN of prior log record by same txn



20 / 49

ARIES from First Principles Deriving ARIES

V2: WAL–DEFERRED UPDATES

• PageLSN (on disk – page)
▶ Determine whether the log record’s update needs to be re-applied to the page.

• PrevLSN (on disk – log record)
▶ Log records of multiple transactions will be interleaved on disk
▶ PrevLSN helps quickly locate the predecessor of a log record of a particular transaction
▶ Facilitates parallel transaction-oriented undo



21 / 49

ARIES from First Principles Deriving ARIES

V2: WAL–DEFERRED UPDATES

• Advantages
▶ No need to undo changes (NO UNDO + REDO)
▶ Flush updated pages to log on disk with sequential writes
▶ Commit overhead is reduced since random writes to database are removed from the

transaction commit path
• Disadvantages

▶ Buffer manager cannot replace a dirty slot last written by an uncommitted transaction.
(NO FORCE & NO STEAL)

▶ Cannot support transactions with change sets larger than the amount of memory available



22 / 49

ARIES from First Principles Deriving ARIES

Constraints

• DRAM is volatile
• Avoid random writes to database on disk (NO FORCE)
• Support transactions with change sets > DRAM (STEAL)



23 / 49

ARIES from First Principles Deriving ARIES

V3: WAL

• Phase 1 – Analysis
▶ Read the WAL to identify dirty pages in the buffer pool and active txns at the time of the

crash.
• Phase 2 – Redo

▶ Repeat all actions starting from an appropriate point in the log.
• Phase 3 – Undo

▶ Reverse the actions of txns that did not commit before the crash.



24 / 49

ARIES from First Principles Deriving ARIES

V3: WAL

LSN Type Where Definition

flushedLSN Memory Last LSN in log on disk
pageLSN pagex Newest update to pagex
prevLSN log record LSN of prior log record by same txn
recLSN DPT Oldest update to pagex since it was last flushed
lastLSN ATT Latest action of txn Ti



25 / 49

ARIES from First Principles Deriving ARIES

V3: WAL

• RecLSN (in memory – Dirty Page Table)
▶ Determine whether page state has not made it to disk.
▶ If there is a suspicion, then page has to accessed.
▶ Serves to limit the number of pages whose PageLSN has to be examined
▶ If a file sync operation is found in the log, all the pages in the file are removed from the

dirty page table
• LastLSN (in memory – Active Transaction Table)

▶ Determine log records which have to rolled back for the yet-to-be-completely-undone
uncommitted transactions



26 / 49

ARIES from First Principles Deriving ARIES

V3: WAL

• Advantages
▶ Maximum flexibility for buffer manager

• Disadvantages
▶ Log will keep growing over time thereby slowing down recovery and taking up more

storage space.



27 / 49

ARIES from First Principles Deriving ARIES

Constraints

• DRAM is volatile
• Avoid random writes to database on disk (NO FORCE)
• Support transactions with change sets > DRAM (STEAL)
• Recovery time must be bounded.



28 / 49

ARIES from First Principles Deriving ARIES

V4: COMMIT-CONSISTENT CHECKPOINTS

LSN Type Where Definition

flushedLSN Memory Last LSN in log on disk
pageLSN pagex Newest update to pagex
prevLSN log record LSN of prior log record by same txn
recLSN DPT Oldest update to pagex since it was last flushed
lastLSN ATT Latest action of txn Ti
MasterRecord Disk LSN of latest checkpoint



29 / 49

ARIES from First Principles Deriving ARIES

V4: COMMIT-CONSISTENT CHECKPOINTS

• Phase 1 – Analysis
▶ Read the WAL starting from the latest checkpoint.

• Phase 2 – Redo
▶ Repeat all actions starting from an appropriate point in the log.

• Phase 3 – Undo
▶ Reverse the actions of txns that did not commit before the crash.



30 / 49

ARIES from First Principles Deriving ARIES

V4: COMMIT-CONSISTENT CHECKPOINTS

• Advantages
▶ Recovery time is bounded due to checkpoints.

• Disadvantages
▶ With commit consistent checkpointing, DBMS must stop processing transactions while

taking checkpoint
▶ Users will suffer long delays due to checkpointing



31 / 49

ARIES from First Principles Deriving ARIES

Constraints

• DRAM is volatile
• Avoid random writes to database on disk (NO FORCE)
• Support transactions with change sets > DRAM (STEAL)
• Recovery time must be bounded.
• Users must not suffer long delays due to checkpointing.



32 / 49

ARIES from First Principles Deriving ARIES

V5: FUZZY CHECKPOINTS

• Instead of flushing all dirty pages, only flush those dirty pages that have not been
flushed since before the previous checkpoint.

• This guarantees that, at any time, all updates of committed transactions that occurred
before the penultimate (i.e., second to last) checkpoint have been applied to database
on disk - during the last checkpoint, if not earlier.



33 / 49

ARIES from First Principles Deriving ARIES

V5: FUZZY CHECKPOINTS

• Advantages
▶ With fuzzy checkpointing, DBMS can concurrently process transactions while taking

checkpoints.
• Problem

▶ Repeated failures during recovery can lead to unbounded amount of logging during
recovery



34 / 49

ARIES from First Principles Deriving ARIES

Constraints

• DRAM is volatile
• Avoid random writes to database on disk (NO FORCE)
• Support transactions with change sets > DRAM (STEAL)
• Recovery time must be bounded.
• Users must not suffer long delays due to checkpointing.
• Cope with failures during recovery.



35 / 49

ARIES from First Principles Deriving ARIES

V6: COMPENSATION LOG RECORDS

• Problems: (1) compensating compensations and (2) duplicate compensations



36 / 49

ARIES from First Principles Deriving ARIES

V6: COMPENSATION LOG RECORDS



37 / 49

ARIES from First Principles Deriving ARIES

V6: COMPENSATION LOG RECORDS

LSN Type Where Definition

flushedLSN Memory Last LSN in log on disk
pageLSN pagex Newest update to pagex
prevLSN log record LSN of prior log record by same txn
recLSN DPT Oldest update to pagex since it was last flushed
lastLSN ATT Latest action of txn Ti
MasterRecord Disk LSN of latest checkpoint
undoNextLSN log record LSN of prior to-be-undone record



38 / 49

ARIES from First Principles Deriving ARIES

Constraints

• DRAM is volatile
• Avoid random writes to database on disk (NO FORCE)
• Support transactions with change sets > DRAM (STEAL)
• Recovery time must be bounded.
• Users must not suffer long delays due to checkpointing.
• Cope with repeated failures during recovery.
• Increase concurrency of undo.



39 / 49

ARIES from First Principles Deriving ARIES

V7: LOGICAL UNDO

• Record logical operations to be undone instead of physical offsets
▶ Undo action need not be exact physical inverse of original action (i.e., page offsets need

not be recorded)
▶ Example: Insert key X in B+tree
▶ X can be initially inserted in Page 10 by T1
▶ X may be moved to Page 20 by another txn T2 before T1 commits
▶ Later, if T1 is aborted, logical undo (Delete key X in B+tree) will automatically remove it

from Page 20



40 / 49

ARIES from First Principles Deriving ARIES

V7: LOGICAL UNDO

• Logical undo enables:
▶ Highly-parallel transaction-oriented logical undo
▶ Works with fast page-oriented physical redo
▶ Hence, this protocol performs physiological logging

• Record logical ops for index and space management (i.e., garbage collection)
▶ Avoid rebuilding indexes from scratch during recovery
▶ Reclaim storage space of deleted records
▶ Example: Put in slot 5 (instead of Put at offset 30)



41 / 49

ARIES from First Principles Deriving ARIES

Constraints

• DRAM is volatile
• Avoid random writes to database on disk (NO FORCE)
• Support transactions with change sets > DRAM (STEAL)
• Recovery time must be bounded.
• Users must not suffer long delays due to checkpointing.
• Cope with repeated failures during recovery.
• Increase concurrency of undo (logical undo).
• Support record-level locking



42 / 49

ARIES from First Principles Deriving ARIES

V8: AVOID SELECTIVE REDO

• Problem-free scenario



43 / 49

ARIES from First Principles Deriving ARIES

V8: AVOID SELECTIVE REDO

• Problematic scenario: UNDOing non-existent changes



44 / 49

ARIES from First Principles Deriving ARIES

V8: AVOID SELECTIVE REDO

• Problematic scenario:
▶ Does not work with logical undo
▶ Example: Consider a B+tree index with non-unique keys
▶ T1 inserted key X in Page 10 and committed
▶ T2 inserted key X in Page 10 and is not committed
▶ T3 inserted key Y in Page 10 and committed
▶ Only T1’s changes make it to disk
▶ While redoing T3, we push the LSN forward
▶ We must undo T2 (since pageLSN > T2’s log record’s LSN)
▶ Executing Delete key X will incorrectly remove T1’s changes



45 / 49

ARIES from First Principles Deriving ARIES

V8: AVOID SELECTIVE REDO

• Solution:
▶ Replay history of both committed and uncommitted transactions
▶ Rather than selectively redo-ing committed transactions.
▶ Then state of database guaranteed to be equivalent to that at the time of failure



46 / 49

ARIES from First Principles Deriving ARIES

Summary

• DRAM is volatile
• Avoid random writes to database on disk (NO FORCE)
• Support transactions with change sets > DRAM (STEAL)
• Recovery time must be bounded.
• Users must not suffer long delays due to checkpointing.
• Cope with repeated failures during recovery.
• Increase concurrency of undo (logical undo)
• Support record-level locking (avoid selective redo)



47 / 49

ARIES from First Principles Conclusion

Conclusion



48 / 49

ARIES from First Principles Conclusion

Parting Thoughts

• Protocols evolve over time to better handle user, workload, and hardware constraints.
• Deconstructing protocols will help you better appreciate the internals of complex

software systems and learn the art of designing protocols.



49 / 49

ARIES from First Principles Conclusion

Next Class

• Case Studies


	ARIES from First Principles
	Recap
	Definitions
	Deriving ARIES
	Conclusion


