il

s Q Lecture 10: Case Studies

91. \\0& L\dw(l«//]/ 09 37)

7 /

JA

JA

JA

JA

Case Studies

Crash Recovery -\
(B (&)

e Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures.

e Recovery algorithms have two parts:

> Actions during normal txn processing to ensure that the DBMS can recover from a failure.
> Actions after a failure to recover the database to a state that ensures atomicity, consistency,
and durability.

JA

JA

Case Studies

Observg;fi(i: 9 2o em / N\I ™

e Many of the early pape
is non-volatile memo
> Reference
> Battery-backed DRAM is large / finnicky
> Real NVM is finally here as of 2019!

https://dl.acm.org/doi/10.1145/38713.38730
JA

JA

JA

JA

JA

JA

JA

In—_Mﬂq_rlpatabase Systems: Recovery

ﬂ;%

JA

JA

JA

JA

JA

Case Studies

Today’s Agenda

éogging Schemes //‘\

e Case Study: Microsoft Azure SQL
e Case Study: SiloR«=—
3 Checkpoint Protocols

e Case Study: Facebook Scuba rv

JA

JA

JA

JA

Logging Schemes

Logging Schemes

Logging Schemes
Logging Schemes

e Physical Logging

> Record the changes made to a specific location in the database.
> Example: git diff

e Logical Logging

> Record the high-level operations executed by txns.
> Not necessarily restricted to single page.
> Example: The UPDATE, DELETE, and INSERT queries invoked by a txn.

Logging Schemes
Physical vs. Logical Logging

 Logical logging requires less data written in each log record than physical logging.
e Difficult to implement recovery with logical logging if you have concurrent txns.
Ce—
> Hard to determine which parts of the database may have been modified by a query before
crash.
> Also takes longer to recover because you must re-execute every txn all over again.
W

JA

JA

Logging Schemes

Log Flushing M
e Approach 1: All-at-Once Flushing
> Wait until a txn has fully committed before writing out log records to disk.

> Do not need to store abort records because uncommitted changes are never written to disk.

e Approach 2: Incremental Flushing

> Allow the DBMS to write a txn’s log records to disk before it has committed.
H

JA

JA

(@LECTIGIEN Logging Schemes

Group Commit Optimization

ogs are flushed either after a timeout or when the buffer gets full.
> Originally developed in IBM IMS FastPath in the 1980s

https://en.wikipedia.org/wiki/IBM_Information_Management_System#.22Fast_Path.22_databases
JA

JA

JA

Early Lock Release Optimization
/———P — . C

e A txn’s locks can be released before its commit record is written to disk if it does not
return results to the client before becoming durable.

e Other txns that speculatively read data updated by a pre-committed txn become
dependent on it and must wait for their predecessor’s log records to reach disk.

JA

JA

Azure SQL

JA

JA

JA

Observation

e The(delta records.ifi a DBMS that uses a n multi-versioned concurrency control
are like the log records generated in physical logging.

e Instead of generating separate data structures for MVCC angl logging, what if the
DBMS could use the same information?

JA

JA

JA

SR o
MSSQL: Constant-Time Recovery
— e

e Physical logging B@atuses the DBMS’s MVC

recovery log.

ime-travel table a$ the

Refere
> The version store is a persistent append-only storage area that is flushed to disk.
> Leverage versions meta-data to "undo" updates without having to process undo records
in WAL. e

* Recovery time is measured based on the number of version store records that must be

rw.
- bumerd

https://www.microsoft.com/en-us/research/uploads/prod/2019/06/p700-antonopoulos.pdf
JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

Sl i i ek
MSSQL: Version Store

Bt BT
Main Table Version Store

coL? C0_.2 POINTER CoL1 COL2 POINTER

/__ A, | oxxx | $444 | @ A, | xxx | $222| @ £§
™ I

B, yyy $22 B, Yyy $11 2

Cs | zzz $5 ® Ay | xxx | $333 —128
‘—b Cy | zzz $4 2

(5<v¥c,v\ 15 = VSO
s ~ 129
Kk, Ty

JA

JA

JA

JA

JA

(@ESSILIHE Case Study: Microsoft Azure SQL

MSSQL: Version Store

Main Table Version Store

coL1 COL2 POINTER coL1 COL2 POINTER

A, xxx | $444 A, xxx | $222 @ [
B, yyy | $22 — B, yyy | $11 @
Cs zz2z $5 o A; xxx | $333 ® =
Cy | zzz $4 @
A, xxx | $444 ®

JA

JA

Sl i i ek
MSSQL: Version Store

Main Table

COL1 COL2 POINTER COL1 COL2 POINTER
» As | xxx | $535 | r@— A, | xxx | $222 By
[— >
B, | yyy | $22 ® , B, | yyy | $11 @ j
Cs 777 $5 0——| (A | xxx | $333 ««
© zzz $4 (] /
A Xxx | $444

’Olt\ A((M’X{"

JA

JA

JA

JA

JA

JA

JA

Comz il Mlziszoli 2an e 0L
MSSQL CTR: Persistent Version Store

Y,

e Approach 1: In-row Versioning
> Store small updates to a tuEIe as a delta record embedded with the latest version in the

main table.
> "best-effort in-lining" technique.
e Approach 2: Off-row Versioning
> Specialized data table to store the old versions that is optimized for concurrent inserts.

> Versions from all tables are stored in a sisgle table.
» Store redo records for inserts on thi<table i .

JA

JA

JA

JA

JA

C o i

MSSQL CTR: In-row Versioning

e Store small updates to a tuple as a delta record
embedded with the latest version in the main
table.

e The delta record space is not pre-allocated per
tuple in a disk-oriented DBMS.
— o

Main Table
0 0
Ay |Ixxx |$444 [[}
B, Jyyy | $22 (/] *—
Cs |zzz| $5 (2% *—

e €

!

JA

JA

JA

JA

S S
MSSQL CTR: In-row Versioning

Main Table

e Store small updates to a tuple as a delta record
embedded with the latest version in the main
table. B, |yyy|$22|7 @8 | e—

coL2 DELTA POINTER

I

e The delta record space is not pre-allocated per Co |zzz| 5| @ bt
tuple in a disk-oriented DBMS.

JA

S S
MSSQL CTR: In-row Versioning
Main Table /

e Store small updates to a tuple as a delta record o o
embedded with the latest version in the main
table.

e The delta record space is not pre-allocated per
tuple in a disk-oriented DBMS.

JA

JA

JA

Case Study: Microsot Azure SQL
MSSQL CTR: Recovery Protocol

R

e Phase 1: Analysis

> Identify the sﬂtg of every txn in the log.
e Phase 2: Redo
> Recover the main table and version store to their state at the time of the crash.
> The database is available and online after this phase.
Pha

> Mark uncommitted txns as aborted in a glo
their versions.

> Incrementally remove older versiongfvia logical revert.

ksvl; /\,m/ny

n state map so that future txns ignore

JA

JA

JA

JA

JA

JA

JA

JA

(@-LEEIIEIE Case Study: Microsoft Azure SQL

MSSQL CTR: Logical Revert

o —

e Approach 1: Background Cleanup

» GC thread scans all blocks and removes reclaimable versions.

> If latest ver'sion in main table is from an aborted txn, then it will move the committed
puiiehaiib

version back to main table.
e Approach 2: Aborted Version Overwrite

> Txns can overwrite the latest version in the main table if that version is from an aborted
txn.

JA

JA

JA

Case Study: SiloR

Case Study: SiloR

(@-LEEINEIES Case Study: SiloR

e In-memory OLTP DBMSArom Harvard/MIT.

> Single-versioned OCC with epoch-b C.
» Same authors of the Masstr die Kohler et al.).

e SiloR uses physical logging + checkpoints to ensure durability of txns.
». Reference
> It achieves high performance by parallelizing all aspects of logging, checkpointing, and
recovery. —_

https://dl.acm.org/doi/10.5555/2685048.2685085
JA

JA

JA

JA

JA

JA

JA

(@-LEEINEIES Case Study: SiloR

SiloR: w&ﬁotoml
Physia lag™d

e The DBMS assumes that there is one storage device per CPU socket.
> Assigns one logger thread per device.
> Worker threads are grouped per CPU socket.
e As the worker executes a txn, it creates new log records that contain the values that
were written to the database (i.e.,, REDO).

JA

Case Study: SiloR
SiloR: Logging Protocol

e Each logger thread maintains a pool of log buffers that are given to its WMU;QQQS-

e When a worker’s buffer is full, it gives it back to the logger thread to flush to disk and
attempts to acquire a new one.

> If there are no available buffers, then it stalls.
~

\pkdéK)W

JA

JA

Case Study: SiloR
SiloR: Log Files

e The logger threads write buffers out to files:

> After 100 epochs, it creates a new file.

> The old file is renamed with a marker indicating the max epoch of records that it contains.
e Log record format:

> Id of the txn that modified the record (TID
> A set of value log triplets (Table, Key, Value).
> The value can be a list of affribute T value pairs.

UPDATE employees —

SET salary = 1000 { SAJ)
WHERE name IN ('Mozart', 'Beethoven') WW/A /
—_— — 'y

JA

JA

JA

JA

JA

Case Studies

SiloR: Architecture

W 7, Logger ﬁ Storage
Free Flushing
Buffers Buffers

D /
epol

00

Epoch
Thread

ool €7\ o

Qe 29 / 64

JA

JA

JA

JA

(@-LEEINEIE Case Study: SiloR

SiloR: Architecture

#W I_-‘Z Logger E Storage

Free Flushing

Buffers Buffers

epoch=100

Epoch
Thread

JA

JA

JA

(@-LEEINEIE Case Study: SiloR

SiloR: Architecture

£ Worker I% Logger Q Storage
Free Flushing

Buffers Buffers

Log Files

[B
epoch=100

Epoch
Thread

(@-LEEINEIE Case Study: SiloR

SiloR: Architecture

£ Worker 7, Logger. Q Storage
ee Flushing
Buffers Buffers
= =g
Log Files
epoch=100
Epoch

Thread

JA

(@-LEEINEIE Case Study: SiloR

SiloR: Architecture

£ Worker |_=7J Logger E Storage
Free Flushing

BBBBB Buffers Buffers
MH+I'~l::'I Enas] IEEI

Log Files

epoch=100

Epoch
Thread

(@-LEEINEIE Case Study: SiloR

SiloR: Architecture

£ Worker [, Logger i Storage
Free Flushing

Buffers Buffers Iiiiﬂﬂ
[mumaa) Eéa
I I Log Files

epoch=200

Epoch
Thread

JA

(@-LEEINEIE Case Study: SiloR

SiloR: Architecture

VLl

£ Worker kd Storage
Flushi;
..... Blpers| Buffers
:}I'I‘::!l [Eamas) !EEI
Progran Logic oo
Log Files

epoch=200

Epoch
Thread

JA

JA

(@-LEEINEIE Case Study: SiloR

SiloR: Architecture

L Worker Logger E Storage
ree Flushing
Buffers Buffers
El
Log Files
epoch=200
Epoch

Thread

JA

JA

SiloR: Architecture

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

(@-LEEINEIE Case Study: SiloR

SiloR: Architecture

L Worker [—'_/J Logger E Storage
Free Flushing

Buffers Buffers i—]]
= L B

epoch=200

Epoch
Thread

SiloR: Persistent Epoch \%\}
~ %\y\g \M

e A special logger thread keeps track of the current persistent epoch (pepoch)

> Special log file that maintains the highest epgch that is durable across all loggers.

e Txns that executed in epoch e can only release their results when the pepoch is

(wg_on non-volatile storage.

JA

JA

JA

JA

JA

JA

Sl Case Study: SiloR

SiloR: Architecture

s dadad VM O[5

s Hoa=-f7= g

#,QM»Q, »Eﬁ%

pp h299

JA

JA

SiloR: Recovery Protocol
kit

e Phase 1: Load LasgCheckpoint

> Install the czfents of the last checkpoint that was saved into the database.
> All indexes must be rebuilt from checkpoint.

—
e Phase 2: Log Replay

> Process logs in reverse order to reconcile the latest version of each tuple.
> The txn ids generated/at runtime are enough to determine the serial order on recovery.
————————

/

Tya\D = Lo

JA

JA

JA

JA

Case Study: SiloR
SiloR: Log Replay

e First check the pepoch file to determine the most recent persistent epoch.
> Any log recdrd from after the pepoch is ignored.

 Log files are processed from newest to oldest.

> Value logging can be replayed in any order.

> For each log record, the thread checks to see whether the tuple already exists.

> If it does not, then it is created with the value.

> If it does, then the tuple’s value is overwritten only if the log TID is newer than tuple’s

pey- L

/

JA

JA

JA

JA

Checkpoint Protocols

Checkpoint Protocols

Observation

e Logging allows the DBMS to recover the database after a crash/restart. But this system
will have to replay the entire log each time.

e Checkpoints allows the systems to ignore large segments of the log to reduce recovery
time.

Checkpoint rotocols
In-Memory Checkpoints

e The different approaches for how the DBMS can create a new checkpoint for an
in-memory database are tightly coupled with its concurrency control scheme.

e The checkpoint thread(s) scans each table and writes out data asynchronously to disk.
—

=

JA

JA

Checkpoint Protocols
Ideal Checkpoint Properties

e Do not slow down regular txn processing.
e Do not introduce unacceptable latency spikes.

e Do not require excessive memory overhead.

Reference

https://dl.acm.org/doi/10.1145/2882903.2915966
JA

JA

(@-LEEIIEIEN Checkpoint Protocols

Consistent vs. Fuzzy Checkpoints
— —

e Approach 1: Consistent Checkpoints

> Represents a consistent snapshot of the database at some point in time. No uncommitted
cha : —~———

> No additional processing during recovery.

e Approach 2: Fuzzy Checkpoints

JA

JA

JA

JA

JA

JA

Checkpoint Protocols
Checkpoint Mechanism

e Approach 1(\ Do It Yourself)
> The DBMSTs responsible'for creating a snapshot of the database in memory.

> Can leverage multi-versioned storage to find snapshot.
o Approach 2: OS Fork Snapshots
> Fork the process and have the child process write out the contents of the database to disk.
> This copies everything in memory.
> Requires extra work to remove uncommitted changes.

AN
\[\\Y\W“'\M

JA

JA

JA

HYPER - OS Fork Snapshots
—

e Create a snapshot of the database by forking the DBMS process.
» Child process contains a consistent checkpoint if there are not active txns.
> Otherwise, use the in-memory undo log to roll back txns i child process.

Bty
L w'\ BN

e Continue processing txns in the parent process.

Reference

https://dl.acm.org/doi/10.1109/ICDE.2011.5767867
JA

JA

JA

JA

JA

Checkpoint rotocols
Checkpoint Contents

e Approach 1: Complete Checkpoint

> Write out évery tuple in every table regardless of whether were modified since the last
checkpoint.

e Approach 2: Delta Checkpoint

> Write outonly the tuples that were modified since the last checkpoint.
> Can merge checkpoints together in the background.

JA

Checkpoint Protocos
Checkpoint Frequency

e Approach 1: Time-based

> Wait for a fixed period of time after the last checkpoint has completed before starting a
new one.

e Approach 2: Log File Size Threshold
> Begin checkpoint after a certain amount of data has been written to the log file.

* Approach 3: On Shutdown (Mandatory)

> Perform a checkpoint when the DBA instructs the system to shut itself down. Every
DBMS (hopefully) does this.

feomps

JA

JA

JA

Checkpoint Implementations

/
Type / ConZents

Frequency /

\

prdwg

MemSQL Consistent Complete Log Size

VoltDB Consisten Complete Time-Based

Altibase Fuzzy Complete Time-based

TimesTen Consistent (Blocking) Complete On Shutdown

“ Fuzzy (Non-Blocking) Complete Time-Based

Hekaton Consistent Delta Log Size

SAP HANA Fuzzy #Complete Time-Based _, L S
— ¥Y

¢S

JA

JA

JA

JA

Case Study: Facebook Scuba

Case Study: Facebook Scuba

Observation

e Not all DBMS restarts are due to crashes.
> Updating OS libraries
» Hardware upgrades/fixes
> Updating DBMS software
e Need a way to be abl to quickly restart the DBMS without having to re-read the entire
database from dis

JA

Case Study: Facebook Scuba
Facebook Scuba: Fast Restarts

e Decouple the in-memory database lifetime from the process lifetime.

e By storing the database in shared memory, the DBMS process can restart, and the
memory contents will survive without having to reload from disk.

JA

Case Study: Facebook Scuba
Facebook Scuba

e Distributed, in-memory DBMS for time-series event analysis and anomaly detection.

— - — N —
e Heterogeneous architecture

> Leaf Nodes: Execute scans/filters on in-memory data
> Aggregator Nodes: Combine results from leaf nodes

https://dl.acm.org/doi/10.1145/2588555.2595642
JA

JA

Case Studies

Facebook Scuba: Architecture

SELECT COUNT(*) FROM events Root
WHERE type = 'crash’

AND time = 'Monday’ #

(Aggregator \ Aggregator

)
Leaf &(}Nodg Leaf A‘Node Leaf £}Node
sfld|»8E (=8| »8E] - »BE||»8E

Query Plan
Fragments

Aggregator

it
S
el
Q

57/ 64

JA

JA

Case Studies
Facebook Scuba: Architecture

SELECT COUNT(*) FROM events
WHERE type = 'crash’

AND time = 'Monday’

Root

o

% Query Plan
Aggregator Aggregator

o of
SN N

Aggregator
Leaf Node

o
Leaf Node Leaf Node Leaf Node
sfig)|sliE|=BE)|=8E

Leaf Node

sfg

Do 58 / 64

JA

Facebook Scuba: Architecture

SELECT COUNT(x) FROM events
WHERE type = 'crash’
AND time = 'Monday

Aggregalor

Aggregator

10+20=30

Aggregator
25+15=40 of |2
/\/— /\ —
Leaf Node Leaf Node
#8g) #8E

e —
Leaf Nofle‘ Leaf Nof!e‘ . - }Nu@e‘
ofg|=8E(=8E) - afig
| ®_ B 15

20
—

59 / 64

JA

JA

SHARED MEMORY RESTARTS

e Approach 1: Shared Memory Heaps
> All data is allocated Tn SM duripgnormal operations.

> Have to use a custom allocator to subdivide memory segments for thread safety and

scalability.

> Can use lazy allocation of backing pages with SM.

e Approach 2: Copy on Shutdown

> All data is allocated in local me during normal operations.
> On shutdown, copy data from heap to SM.

o

JA

JA

JA

JA

Case Study: Facebook Scuba
Facebook Scuba: Fast Restarts

e When the admin initiates Wd, the node halts ingesting updates.
e DBMS starts copying data from heap memory to shared memory.
> Delete blocks in heap once they are in SM.
¢ Once snapshot finishes, the DBMS restarts.
> On start up, check to see whether the there is a valid database in SM to copy into its heap.

» Otherwise, the DBMS restarts from disk. —

JA

JA

JA

Conclusion

Conclusion

Conclusion
Parting Thoughts

e Physical logging is a general-purpose approach that supports all concurrency control
schemes.

> Logical logging is faster but not universal.

. C\owlmate checkpoints are the way to go especially if you are using MVCC

e Non-volatile memory is here!

la

JA

JA

JA

JA

JA

Conclusion
Next Class

e Non-Volatile Memory Database Systems

JA

	Case Studies
	Logging Schemes
	Case Study: Microsoft Azure SQL
	Case Study: SiloR
	Checkpoint Protocols
	Case Study: Facebook Scuba
	Conclusion

