
1 / 46

Timestamp Ordering

Lecture 14: Timestamp Ordering

JA

JA

JA



2 / 46

Timestamp Ordering Recap

Recap



3 / 46

Timestamp Ordering Recap

Strong Strict Two-Phase Locking

• The txn is not allowed to acquire/upgrade locks after the growing phase finishes.
• Allows only conflict serializable schedules, but it is often stronger than needed for

some apps.

JA

JA

JA

JA



4 / 46

Timestamp Ordering Recap

Deadlocks



5 / 46

Timestamp Ordering Recap

2PL Deadlocks

• A deadlock is a cycle of transactions waiting for locks to be released by each other.
• Two ways of dealing with deadlocks:

▶ Approach 1: Deadlock Detection
▶ Approach 2: Deadlock Prevention

JA



6 / 46

Timestamp Ordering Recap

2PL: Summary

• 2PL is used in almost all DBMSs.
• Automatically generates correct interleaving:

▶ Locks + protocol (2PL, SS2PL ...)
▶ Deadlock detection + handling
▶ Deadlock prevention

JA

JA

JA



7 / 46

Timestamp Ordering Recap

Concurrency Control Approaches

• Two-Phase Locking (2PL)
▶ Pessimistic approach
▶ Assumption that collisions are commonplace.
▶ Determine serializability order of conflicting operations at runtime while txns execute.

• Timestamp Ordering (T/O)
▶ Optimistic approach
▶ Assumption that collisions between transactions will rarely occur.
▶ Determine serializability order of txns before they execute.

JA

JA

JA

JA



8 / 46

Timestamp Ordering Recap

Today’s Agenda

• Basic Timestamp Ordering
• Partition-based Timestamp Ordering

JA



9 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic Timestamp Ordering



10 / 46

Timestamp Ordering Basic Timestamp Ordering

T/O Concurrency Control

• Use timestamps to determine the serializability order of txns.
• If TS(Ti) < TS(Tj), then the DBMS must ensure that the execution schedule is

equivalent to a serial schedule where Ti appears before Tj.

JA

JA

JA

JA



11 / 46

Timestamp Ordering Basic Timestamp Ordering

Timestamp Allocation

• Each txn Ti is assigned a unique fixed timestamp that is monotonically increasing.
▶ Let TS(Ti) be the timestamp allocated to txn Ti.
▶ Different schemes assign timestamps at different times during the txn.

• Multiple implementation strategies:
▶ Physical system clock (e.g., timezones)
▶ Logical counter (e.g., overflow)
▶ Hybrid

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



12 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O

• Txns read and write objects without locks.
• Every object X is tagged with timestamp of the last txn that successfully did read/write:

▶ W − TS(X) – Write timestamp on X
▶ R− TS(X) – Read timestamp on X

• Check timestamps for every operation:
▶ If txn tries to access an object from the future, it aborts and restarts.

JA

JA

JA

JA

JA

JA

JA

JA



13 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O – Reads

• If TS(Ti) <W − TS(X), this violates timestamp order of Ti with regard to the writer of
X.
▶ Abort Ti and restart it with a newer TS (so that is later than the writer of X).

• Else:
▶ Allow Ti to read X.
▶ Update R− TS(X) to max(R− TS(X), TS(Ti))
▶ Have to make a local copy of X to ensure repeatable reads for Ti.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



14 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O – Writes

• If TS(Ti) < R− TS(X) or TS(Ti) <W − TS(X)
▶ Abort and restart Ti.

• Else:
▶ Allow Ti to write X and update W − TS(X)
▶ Also have to make a local copy of X to ensure repeatable reads for Ti.

JA

JA

JA

JA



15 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O – Example 1

JA

JA

JA

JA

JA



16 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O – Example 1

JA

JA

JA

JA



17 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O – Example 1

JA



18 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O – Example 1

JA

JA



19 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O – Example 1

JA



20 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O – Example 1

JA



21 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O – Example 2

JA

JA

JA

JA

JA



22 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O – Example 2

JA

JA

JA

JA

JA



23 / 46

Timestamp Ordering Basic Timestamp Ordering

Thomas Write Rule

• If TS(Ti) < R− TS(X):
▶ Abort and restart Ti.

• If TS(Ti) <W − TS(X):
▶ Thomas Write Rule: Ignore the write, make a local copy, and allow the txn to continue.
▶ This violates timestamp order of Ti.

• Else:
▶ Allow Ti to write X and update W − TS(X)

JA

JA

JA

JA



24 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O – Example 2

JA

JA

JA

JA

JA



25 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O

• Generates a schedule that is conflict serializable if you do not use the Thomas Write
Rule.
▶ No deadlocks because no txn ever waits.
▶ Possibility of starvation for long txns if short txns keep causing conflicts.

• Permits schedules that are not recoverable.

JA

JA

JA

JA



26 / 46

Timestamp Ordering Basic Timestamp Ordering

Recoverable Schedules

• A schedule is recoverable if txns commit only after all txns whose changes they read,
commit.

• Otherwise, the DBMS cannot guarantee that txns read data that will be restored after
recovering from a crash.

JA

JA

JA

JA

JA



27 / 46

Timestamp Ordering Basic Timestamp Ordering

Recoverable Schedules

JA

JA

JA

JA

JA

JA



28 / 46

Timestamp Ordering Basic Timestamp Ordering

Basic T/O – Performance Issues

• High overhead from copying data to txn’s local workspace and from updating
timestamps.

• Long running txns can get starved.
▶ The likelihood that a txn will read something from a newer txn increases.

JA

JA

JA

JA

JA

JA



29 / 46

Timestamp Ordering Basic Timestamp Ordering

Observation

• When a txn commits, the T/O protocol checks to see whether there is a conflict with
concurrent txns.
▶ This requires latches.

• If you have a lot of concurrent txns, then this is slow even if the conflict rate is low.

JA

JA

JA



30 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Partition-based Timestamp Ordering

JA

JA

JA



31 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Partition-based T/O

• Split the database up in disjoint subsets called horizontal partitions (aka shards).
• Use timestamps to order txns for serial execution at each partition.

▶ Only check for conflicts between txns that are running in the same partition.

JA

JA

JA

JA



32 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Database Partitioning

CREATE TABLE customer (
c_id INT PRIMARY KEY,
c_email VARCHAR UNIQUE,

);

CREATE TABLE orders (
o_id INT PRIMARY KEY,
o_c_id INT REFERENCES customer (c_id) --- Foreign key

);

CREATE TABLE oitems (
oi_id INT PRIMARY KEY,
oi_o_id INT REFERENCES orders (o_id),
o_c_id INT REFERENCES orders (o_c_id) --- Foreign key

);

JA

JA

JA



33 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Horizontal Partitioning

JA

JA

JA

JA

JA



34 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Horizontal Partitioning

JA

JA



35 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Partition-based T/O

• Txns are assigned timestamps based on when they arrive at the DBMS.
• Partitions are protected by a single lock:

▶ Each txn is queued at the partitions it needs.
▶ The txn acquires a partition’s lock if it has the lowest timestamp in that partition’s queue.
▶ The txn starts when it has all of the locks for all the partitions that it will read/write.

• Examples: VoltDB, FaunaDB

JA

JA

JA

JA

JA

JA

JA



36 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Partition-based T/O – Reads

• Txns can read anything that they want at the partitions that they have locked.
• If a txn tries to access a partition that it does not have the lock, it is aborted + restarted.

JA

JA



37 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Partition-based T/O – Writes

• All updates occur in place (i.e., no private workspace).
▶ Maintain a separate in-memory buffer to undo changes if the txn aborts.

• If a txn tries to write to a partition that it does not have the lock, it is aborted +
restarted.

JA

JA

JA



38 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Partition-based T/O

JA



39 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Partition-based T/O

JA

JA



40 / 46

Timestamp Ordering Partition-based Timestamp Ordering

v



40 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Partition-based T/O

JA

JA



41 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Partition-based T/O

JA



42 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Partition-based T/O

JA



43 / 46

Timestamp Ordering Partition-based Timestamp Ordering

Partition-based T/O – Performance Issues

• Partition-based T/O protocol is fast if:
▶ The DBMS knows what partitions the txn needs before it starts.
▶ Most (if not all) txns only need to access a single partition.

• Multi-partition txns causes partitions to be idle while txn executes.
▶ Stored procedures
▶ Reconnaissance mode

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



44 / 46

Timestamp Ordering Conclusion

Conclusion



45 / 46

Timestamp Ordering Conclusion

Parting Thoughts

• Every concurrency control can be broken down into the basic concepts that I have
described in the last two lectures.
▶ Two-Phase Locking (2PL): Assumption that collisions are commonplace
▶ Timestamp Ordering (T/O): Assumption that collisions are rare.

• I am not showing benchmark results because I don’t want you to get the wrong idea.

JA

JA

JA



46 / 46

Timestamp Ordering Conclusion

Next Class

• Optimistic Concurrency Control
• Isolation Levels


	Timestamp Ordering
	Recap
	Basic Timestamp Ordering
	Partition-based Timestamp Ordering
	Conclusion


