Timestamp Ordering

Lecture 14: Timestamp Ordering

Timestamp Ordering

Recap

2/46

Timestamp Ordering [SRETo)

Strong Strict Two-Phase Locking

e The txn is not allowed to acquire/upgrade locks after the growing phase finishes.
e Allows only conflict serializable schedules, but it is often stronger than needed for

some apps.

of Locks

Release all locks at
end of txn.

Growing Phase Shrinking Phase

Deadlocks

Timestamp Ordering

Schedule @i Lock Manager
pmmmmmm———————— \ e
T, T, :
BEGIN BEGIN i)
X-LOCK(A) » |Granted (T,-A)

o

S-LOCK(B) t=

L R 4 4 —B
RGB) Granted (T,-B)
0=0 S-LOCK(A) o Denied!

IE|iE

R T d

*lllllll

» | Denied!

4/46

Recap
2PL Deadlocks

e A deadlock is a cycle of transactions waiting for locks to be released by each other.
e Two ways of dealing with deadlocks:

> Approach 1: Deadlock Detection
> Approach 2: Deadlock Prevention

Recap
2PL: Summary

e 2PL is used in almost all DBMSs.
e Automatically generates correct interleaving:

> Locks + protocol (2PL, SS2PL ...)
> Deadlock detection + handling
> Deadlock prevention

Timestamp Ordering BT

Concurrency Control Approaches

e Two-Phase Locking (2PL)
> Pessimistic approach
> Assumption that collisions are commonplace.
> Determine serializability order of conflicting operations at runtime while txns execute.

e Timestamp Ordering (T/O)
> Optimistic approach
> Assumption that collisions between transactions will rarely occur.
> Determine serializability order of txns before they execute.

Recap
Today’s Agenda

e Basic Timestamp Ordering
e Partition-based Timestamp Ordering

UV EHEL RO ST Basic Timestamp Ordering

Basic Timestamp Ordering

Basic Tmestamp Ordering
T/O Concurrency Control

e Use timestamps to determine the serializability order of txns.

o If TS(T;) < TS(T;), then the DBMS must ensure that the execution schedule is
equivalent to a serial schedule where T; appears before T;.

UV EHEL RO ST Basic Timestamp Ordering

Timestamp Allocation

e Each txn Tj is assigned a unique fixed timestamp that is monotonically increasing.
> Let TS(T;) be the timestamp allocated to txn T;.
> Different schemes assign timestamps at different times during the txn.

e Multiple implementation strategies:
> Physical system clock (e.g., timezones)

> Logical counter (e.g., overflow)
> Hybrid

UV EHEL RO ST Basic Timestamp Ordering
Basic T/O

e Txns read and write objects without locks.
e Every object X is tagged with timestamp of the last txn that successfully did read/write:

> W — TS(X) — Write timestamp on X
» R —TS(X) — Read timestamp on X
e Check timestamps for every operation:
> If txn tries to access an object from the future, it aborts and restarts.

BT e O
Basic T/O — Reads

e If TS(Ty) < W — TS(X), this violates timestamp order of T; with regard to the writer of
X.

» Abort T; and restart it with a newer TS (so that is later than the writer of X).
e Else:

> Allow T; to read X.
> Update R — TS(X) to max(R — TS(X), TS(T))
> Have to make a local copy of X to ensure repeatable reads for T;.

BT e O
Basic T/O — Writes

e If TS(T;) < R—TS(X) or TS(Ty) < W — TS(X)
»> Abort and restart T;.
e Else:

> Allow T; to write X and update W — TS(X)
> Also have to make a local copy of X to ensure repeatable reads for T;.

UV EHEL RO ST Basic Timestamp Ordering

Basic T/O — Example 1

COMMIT COMMIT

Schedule Database
l' T T ‘\I |’ ---------------- -
! ! 2 I [l object R-TS __¥-TS
i gES)IN ' 1A o 3
1 1
: BEGIN i i B 0 0
1 R(B) : 1
: W(B) i | TETRPRP R
1| RA) :
I R(A) !
H W(A) 1
I i
I 1
I 1
I 1
I 1
I 1
!)
\ b4

UV EHEL RO ST Basic Timestamp Ordering

Basic T/O — Example 1

(7sa)=1 Ju1s(r,)-2) ____Database
T T

! 2 Object R-TS W-TS

I ‘
1 1
BEGIN 1A))]
R(B) I 1
BEGIN 1 B ¢ d |
R(B) i i
W(B) R !
R(A)
R(A)
W(A)

COMMIT COMMIT

o
i

UV EHEL RO ST Basic Timestamp Ordering

Basic T/O — Example 1

(7sry-1 JM1s(r,)-2] _____ Database
T, T

1
: 2 : : Object R-TS W-TS
BEGIN 1
- ! D
H BEGIN I I
i R(B) ' '
H W(B) i Ve ———
1 |R(A) :
' R(A) i
i W(A) 1
: COMMIT COMMIT :
' i
! 1
!]
! 1
1
\ 1

UV EHEL RO ST Basic Timestamp Ordering

Basic T/O — Example 1

(rsry=1 paue(1s(r,)-2) ____ 1 Database
T T

1 2

i
I D
g'(fg)m n 0 3
I
BEGIN : B 2 0
mpR(B) i
W(B) N o o e e e
R(A)
RCA)
W(A)

COMMIT COMMIT

o - -

UV EHEL RO ST Basic Timestamp Ordering

Basic T/O — Example 1

(7s(r)-1 Jdvie(rs(r,)-2) ____Database
T T

! 2 Object R-TS W-TS

1
1
BEGIN Hn - .
R(B)
BEGIN | B 2 2
R(B) :
W(B) N —————
R(A)
W(A)

]

]

]

]

]

]

]

]
PR

]

i

I | COMIT | COMMIT

]

]

]

]

]

1

\

e s

UV EHEL RO ST Basic Timestamp Ordering

Basic T/O — Example 1

(7s(r)-1 Jdule(1s(r,)-2] _____Database
T T

! 2 Object R-TS W-Ts

BEGIN

i i
1 1
R(B) B : 2 i
BEGIN 1 B 212 I
R(B) : i
W(B) - - -/
R(A) No violations so both txns
R(A) are safe to commit.
W(A)

COMMIT COMMIT

- -

-

UV EHEL RO ST Basic Timestamp Ordering

Basic T/O — Example 2

Schedule Database
T e e ~ P -
i T1 T2 1]
H I Wl obsect R-1S _W-T
| | BEGIN I (N . 2
1|RCA) | [o o
H BEGIN 1 !
1 W(A) : 1
! COMMIT i |
§ W I
1| R(A) H
1| commIT I
1
' i
!]
! 1
!]
! 1
!]
\ 4

UV EHEL RO ST Basic Timestamp Ordering

Basic T/O — Example 2

BEGIN
W(A)
COMMIT

Schedule Database
pm T —————— ~ e e -
! T, T, ! . :
: : Object R-TS W-TS i
153 f o e
H 1B 0 o | i
1 1
1 1
1 \

Violation:
=TT TS(T,)<W-TS(A)

—— -

T, cannot overwrite update
by T,, so the DBMS has to
abort it!

o

Basic Timestamp Ordering
Thomas Write Rule

e If TS(Ti) < R — TS(X):
»> Abort and restart T;.
o If TS(T}) < W —TS(X):
> Thomas Write Rule: Ignore the write, make a local copy, and allow the txn to continue.
> This violates timestamp order of T;.
e Else:
> Allow T; to write X and update W — TS(X)

UV EHEL RO ST Basic Timestamp Ordering

Basic T/O — Example 2

T, to commit.

Schedule Database
pmmmEmm—m————————— ~\ o e e o
(\
I T T2 H i Object R-TS W-TS |
! | BEGIN I R 1 2 i
1[RA) i \ I
: BEGIN] | B 0 0| I
: g (()Q%IIT | L We do not update

b i W-TS(A)
COM ~— L
Ignore the write and allow I

1

1

I

I

4

o

UV EHEL RO ST Basic Timestamp Ordering
Basic T/O

e Generates a schedule that is conflict serializable if you do not use the Thomas Write
Rule.

> No deadlocks because no txn ever waits.
> Possibility of starvation for long txns if short txns keep causing conflicts.

e Permits schedules that are not recoverable.

UV EHEL RO ST Basic Timestamp Ordering

Recoverable Schedules

e A schedule is recoverable if txns commit only after all txns whose changes they read,
commit.

e Otherwise, the DBMS cannot guarantee that txns read data that will be restored after
recovering from a crash.

Timestamp Ordering

Recoverable Schedules

Schedule

T ——————— ~\

: T T, :

| | BEGIN 1

1| W(A) H

o BEGIN |1, ———

1 R(A) m—— T, is allowed to read the

H W(B) H writes of T,.

H COMMIT. I

! ~ This is not recoverable

|K ABORT \ﬂbecause we cannot restart T,
I

: \

H T, aborts after T, has

I committed.

S T

it
S
el
Q

27 / 46

UV EHEL RO ST Basic Timestamp Ordering

Basic T/O — Performance Issues

e High overhead from copying data to txn’s local workspace and from updating
timestamps.
e Long running txns can get starved.
» The likelihood that a txn will read something from a newer txn increases.

UV EHEL RO ST Basic Timestamp Ordering

Observation

e When a txn commits, the T/O protocol checks to see whether there is a conflict with
concurrent txns.

» This requires latches.

e If you have a lot of concurrent txns, then this is slow even if the conflict rate is low.

UV EEEL RO SSLEAN Partition-based Timestamp Ordering

Partition-based Timestamp Ordering

Baxtition-based Timestamp Ordlering
Partition-based T/O

e Split the database up in disjoint subsets called horizontal partitions (aka shards).

e Use timestamps to order txns for serial execution at each partition.
> Only check for conflicts between txns that are running in the same partition.

UV EEEL RO SSLEAN Partition-based Timestamp Ordering

Database Partitioning

CREATE TABLE customer (
c_id INT PRIMARY KEY,
c_email VARCHAR UNIQUE,

K

CREATE TABLE orders (

o_id INT PRIMARY KEY,

o_c_id INT REFERENCES customer (c_id) --- Foreign key
)

CREATE TABLE oitems (

oi_id INT PRIMARY KEY,

oi_o_id INT REFERENCES orders (o_id),

o_c_id INT REFERENCES orders (o_c_id) --- Foreign key
b

Timestamp Ordering

Horizontal Partitioning

Partitions
.Msl Customers
AR ‘ ORDERS ' 1-1000
Iz OITEMS
7
Iz
Server

CUSTOMERS Customers
ORDERS 1001-2000

. OITEMS ’

= Dalx 33 /46

Timestamp Ordering
Horizontal Partitioning

phtthiiuiss § Customers
q_"UERS 1-1000
Server
(5055 | Customers
N_oRomRs | 1001-2000
. OITEMS '

A

34 /46

Baxtition-based Timestamp Ordlering
Partition-based T/O

e Txns are assigned timestamps based on when they arrive at the DBMS.
e Partitions are protected by a single lock:

> Each txn is queued at the partitions it needs.
> The txn acquires a partition’s lock if it has the lowest timestamp in that partition’s queue.
> The txn starts when it has all of the locks for all the partitions that it will read/write.

e Examples: VoltDB, FaunaDB

Baxtition-based Timestamp Ordlering
Partition-based T/O — Reads

e Txns can read anything that they want at the partitions that they have locked.

e If a txn tries to access a partition that it does not have the lock, it is aborted + restarted.

G O
Partition-based T/O — Writes

e All updates occur in place (i.e., no private workspace).
> Maintain a separate in-memory buffer to undo changes if the txn aborts.

e If a txn tries to write to a partition that it does not have the lock, it is aborted +
restarted.

Timestamp Ordering

Partition-based T/O

Partitions

AR m Txn Queue

m”mun

Customers

CUSTOMERS
ORDERS

1-1000
Server #1 m mams
AR
o)
g CUSTOMERS Customers
Server #2 ORDERS 1001-2000

. OITEMS ’

= = = 9Dae 38 /46

Timestamp Ordering

Partition-based T/O

7
Server #1 m

Server #2

Txn Queue

|Server1: 100

Server2: 101

Partitions

f Txn #100

Customers

CUSTOMERS
ORDERS

.;__’ 1-1000

l OITEMS I

CUSTOMERS Customers
1001-2000

. ORDERS '
. OITEMS '

= 9Dae 39 /46

Timestamp Ordering
\%

A

40/ 46

Timestamp Ordering

Partition-based T/O

-

"o e

S%I m

Server #2

Tanueue_

|Server1: 100
|Server2: 101

Partitions

@ Txn #100

Customers

CUSTOMERS
' ORDERS '

1-1000
l OITEMS |
CUSTOMERS Customers
1001-2000

. ORDERS '
. OITEMS '

= 9Dale 40/ 46

Timestamp Ordering

Partition-based T/O

S%I m

Server #2

Tanueue_

|Server1: 100
IServerZ: 101

Partitions

f Txn #100

Customers

CUSTOMERS
. ORDERS '

1-1000
l OITEMS |
CUSTOMERS Customers

1001-2000

. ORDERS '
. OITEMS '

= DA 41/46

Timestamp Ordering

Partition-based T/O

Partitions

. Txn Queue
——————— - ﬂ Txn #101

Iz Server2: 101 EUSTOMERS

[z .— Customers

ZZa . ORDERS ' 1-1000
Server #1 m l OITEMS |

AR

e <D

CUSTOMERS Customers

ey 1001-2000

Server #2 . ORDERS ' -

. OITEMS '

= = = DA 42 /46

UV EEEL RO SSLEAN Partition-based Timestamp Ordering

Partition-based T/O — Performance Issues

e Partition-based T/O protocol is fast if:

> The DBMS knows what partitions the txn needs before it starts.
> Most (if not all) txns only need to access a single partition.

e Multi-partition txns causes partitions to be idle while txn executes.

> Stored procedures
> Reconnaissance mode

Timestamp Ordering @ LT

Conclusion

Conclusion
Parting Thoughts

e Every concurrency control can be broken down into the basic concepts that I have
described in the last two lectures.

> Two-Phase Locking (2PL): Assumption that collisions are commonplace
> Timestamp Ordering (T/O): Assumption that collisions are rare.

e] am not showing benchmark results because I don’t want you to get the wrong idea.

Timestamp Ordering @ LT

Next Class

e Optimistic Concurrency Control
e Isolation Levels

	Timestamp Ordering
	Recap
	Basic Timestamp Ordering
	Partition-based Timestamp Ordering
	Conclusion

