
1 / 53

Recovery

Lecture 7: Recovery (Part 1)



2 / 53

Recovery

Today's Agenda

Recovery
1.1 Log Sequence Numbers
1.2 Normal Commit & Abort Operations
1.3 Compensation Log Records
1.4 Checkpointing
1.5 Conclusion



3 / 53

Recovery

Crash Recovery

• Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures.

• Recovery algorithms have two parts:
▶ Actions during normal txn processing to ensure that the DBMS can recover from a failure.
▶ Actions after a failure to recover the database to a state that ensures atomicity, consistency,

and durability.



4 / 53

Recovery

Logging Protocol

• Write-Ahead Logging is (almost) always the best approach to handle loss of volatile
storage.
▶ Use incremental updates (STEAL + NO-FORCE) with checkpoints.
▶ On recovery: undo uncommitted txns + redo committed txns.



5 / 53

Recovery

ARIES

• Algorithms for Recovery and Isolation Exploiting Semantics
• Developed at IBM Research in early 1990s for the DB2 DBMS.
• Not all systems implement ARIES exactly as defined in this paper but they’re close

enough.



6 / 53

Recovery

ARIES – Main Ideas

• Write-Ahead Logging:
▶ Any change is recorded in log on stable storage before the change is written to database

on disk.
▶ Must use STEAL + NO-FORCE buffer pool policies.

• Repeating History During Redo:
▶ On restart, retrace actions and restore database to exact state before crash.

• Logging Changes During Undo:
▶ Record undo actions to log to ensure action is not repeated in the event of

repeated failures.



7 / 53

Recovery Log Sequence Numbers

Log Sequence Numbers



8 / 53

Recovery Log Sequence Numbers

Log Records

• We need to extend our log record format from last class to include additional info.
• The log is a single ever-growing sequential file (append-only).
• Every log record now includes a globally unique log sequence number (LSN).
• Various components in the system keep track of LSNs that pertain to them. . .



9 / 53

Recovery Log Sequence Numbers

Log Sequence Numbers

LSN Type Where Definition

flushedLSN Memory Last LSN in log on disk
pageLSN pagex Newest update to pagex
recLSN pagex Oldest update to pagex since it was last flushed
lastLSN Ti Latest record of txn Ti
MasterRecord Disk LSN of latest checkpoint



10 / 53

Recovery Log Sequence Numbers

Writing Log Records

• Each data page contains a pageLSN.
▶ The LSN of the most recent update to that page.

• System keeps track of flushedLSN.
▶ The max LSN flushed so far.

• Before page x can be written to disk, we must flush log at least to the point where:
▶ pageLSNx <= flushedLSN



11 / 53

Recovery Log Sequence Numbers

Writing Log Records



12 / 53

Recovery Log Sequence Numbers

Writing Log Records



13 / 53

Recovery Log Sequence Numbers

Writing Log Records



14 / 53

Recovery Log Sequence Numbers

Writing Log Records



15 / 53

Recovery Log Sequence Numbers

Writing Log Records



16 / 53

Recovery Log Sequence Numbers

Writing Log Records



17 / 53

Recovery Log Sequence Numbers

Writing Log Records

• All log records have an LSN.
• Update the pageLSN every time a txn modifies a record in the page.
• Update the flushedLSN in memory every time the DBMS writes out the WAL buffer to

disk.
• Must generate the log record first before modifying the page



18 / 53

Recovery Normal Commit & Abort Operations

Normal Commit & Abort Operations



19 / 53

Recovery Normal Commit & Abort Operations

Normal Execution

• Each txn invokes a sequence of reads and writes, followed by commit or abort.
• Assumptions in this lecture:

▶ All log records fit within a single page.
▶ Disk writes are atomic.
▶ Single-versioned tuples with Strict Two Phase Locking.
▶ STEAL + NO-FORCE buffer management with WAL.



20 / 53

Recovery Normal Commit & Abort Operations

Transaction Commit

• Write <COMMIT> record to log.
• All log records up to txn’s <COMMIT> record are flushed to disk.

▶ Note that log flushes are sequential, synchronous writes to disk.
▶ Many log records per log page.

• When the commit succeeds, write a special <TXN-END> record to log.
▶ Now remove transaction from the Active Transaction Table
▶ This does not need to be flushed immediately.



21 / 53

Recovery Normal Commit & Abort Operations

Transaction Commit



22 / 53

Recovery Normal Commit & Abort Operations

Transaction Commit



23 / 53

Recovery Normal Commit & Abort Operations

Transaction Commit



24 / 53

Recovery Normal Commit & Abort Operations

Transaction Commit



25 / 53

Recovery Normal Commit & Abort Operations

Transaction Abort

• Aborting a txn is actually a special case of the ARIES undo operation applied to only
one transaction.

• We need to add another field to our log records:
▶ prevLSN: The previous LSN for the txn.
▶ This maintains a linked-list for each txn that makes it easy to walk through its records.



26 / 53

Recovery Normal Commit & Abort Operations

Transaction Abort



27 / 53

Recovery Normal Commit & Abort Operations

Transaction Abort



28 / 53

Recovery Normal Commit & Abort Operations

Transaction Abort



29 / 53

Recovery Compensation Log Records

Compensation Log Records



30 / 53

Recovery Compensation Log Records

Compensation Log Records

• A Compensation Log Record (CLR) describes the actions taken to undo the actions of
a previous update record.

• It has all the fields of an update log record plus the undoNext pointer (the
next-to-be-undone LSN).

• CLRs are added to log like any other record.
• Goal: CLRs are necessary to recover the database if there is a crash during recovery.



31 / 53

Recovery Compensation Log Records

CLR Example



32 / 53

Recovery Compensation Log Records

CLR Example



33 / 53

Recovery Compensation Log Records

CLR Example



34 / 53

Recovery Compensation Log Records

CLR Example



35 / 53

Recovery Compensation Log Records

CLR Example



36 / 53

Recovery Compensation Log Records

Abort Algorithm

• First write an <ABORT> record to log for the txn.
• Then play back the txn’s updates in reverse order. For each update record:

▶ Write a CLR entry to the log.
▶ Restore old value.

• When a txn aborts, we immediately tell the application that it is aborted.
• We don’t need to wait to flush the CLRs
• At end, write a <TXN-END> log record.
• Notice: CLRs never need to be undone.



37 / 53

Recovery Checkpointing

Checkpointing



38 / 53

Recovery Checkpointing

Checkpointing

• Log grows forever.
• Use checkpoints to limit the size of the log that the DBMS must examine.
• Checkpoint algorithms

▶ Non-Fuzzy Checkpointing
▶ Slightly Better Checkpointing
▶ Fuzzy Checkpointing



39 / 53

Recovery Checkpointing

Non-Fuzzy Checkpointing

• The DBMS halts everything when it takes a checkpoint to ensure a consistent snapshot:

▶ Halt the start of any new txns.
▶ Wait until all active txns finish executing.
▶ Flushes dirty pages on disk.

• This is obviously bad. . .



40 / 53

Recovery Checkpointing

Slightly Better Checkpointing

• Pause modifying txns while the DBMS takes the checkpoint.
▶ Prevent queries from acquiring write latch on table/index pages.
▶ Don’t have to wait until all txns finish before taking the checkpoint.

• We must record internal state as of the beginning of the checkpoint.
▶ Active Transaction Table (ATT)
▶ Dirty Page Table (DPT)



41 / 53

Recovery Checkpointing

Slightly Better Checkpointing



42 / 53

Recovery Checkpointing

Slightly Better Checkpointing



43 / 53

Recovery Checkpointing

Active Transaction Table

• Managed by the Transaction Manager in memory
• One entry per currently active txn.

▶ txnId: Unique txn identifier.
▶ status: The current "mode" of the txn.
▶ lastLSN: Most recent LSN created by txn.

• Entry removed when txn commits or aborts.
• Txn Status Codes:

▶ R → Running
▶ C → Committing
▶ U → Candidate for Undo



44 / 53

Recovery Checkpointing

Dirty Page Table

• Keep track of which pages in the buffer pool contain changes from uncommitted
transactions.

• One entry per dirty page in the buffer pool:
▶ recLSN: The LSN of the log record that first caused the page to be dirty.



45 / 53

Recovery Checkpointing

Slightly Better Checkpointing

• At the first checkpoint, T2 is still running and there are two dirty pages (P11, P22).
• At the second checkpoint, T3 is active and there are two dirty pages (P11, P33).
• This still is not ideal because the DBMS must stall txns during checkpoint. . .



46 / 53

Recovery Checkpointing

Slightly Better Checkpointing



47 / 53

Recovery Checkpointing

Fuzzy Checkpointing

• A fuzzy checkpoint is where the DBMS allows active txns to continue running while
the system flushes dirty pages to disk.

• New types of log records to track checkpoint boundaries:
▶ CHECKPOINT − BEGIN: Indicates start of checkpoint
▶ CHECKPOINT − END: Contains ATT + DPT.



48 / 53

Recovery Checkpointing

Fuzzy Checkpointing

• The LSN of the <CHECKPOINT-BEGIN> record is written to the database’s
MasterRecord entry on disk when the checkpoint successfully completes.

• Any txn that starts after the checkpoint is excluded from the ATT in the
<CHECKPOINT-END> record.



49 / 53

Recovery Checkpointing

Fuzzy Checkpointing



50 / 53

Recovery Checkpointing

Fuzzy Checkpointing



51 / 53

Recovery Conclusion

Conclusion



52 / 53

Recovery Conclusion

Parting Thoughts

• Log Sequence Numbers:
▶ LSNs identify log records; linked into backwards chains per transaction via prevLSN.
▶ pageLSN allows comparison of data page and log records.

• Mains ideas of ARIES:
▶ WAL with STEAL/NO-FORCE
▶ Fuzzy Checkpoints (snapshot of dirty page ids)
▶ Write CLRs when undoing, to survive failures during restarts



53 / 53

Recovery Conclusion

Next Class

• Continue the ARIES protocol


	Recovery
	Log Sequence Numbers
	Normal Commit & Abort Operations
	Compensation Log Records
	Checkpointing
	Conclusion


