
1 / 72

Two Phase Locking

Lecture 13: Two Phase Locking

JA

JA

2 / 72

Two Phase Locking

Today's Agenda

Two Phase Locking
1.1 Recap
1.2 Lock Types
1.3 Two-Phase Locking
1.4 Deadlock Detection + Prevention
1.5 Hierarchical Locking
1.6 Locking in Practice
1.7 Conclusion

JA

3 / 72

Two Phase Locking Recap

Recap

4 / 72

Two Phase Locking Recap

Formal Properties of Schedules

• Conflict Serializable
▶ Verify using either the "swapping" method or dependency graphs.
▶ Any DBMS that says that they support "serializable" isolation does this.

• View Serializable
▶ No efficient way to verify.
▶ No DBMS supports this.

JA

JA

JA

JA

5 / 72

Two Phase Locking Recap

Example: Entire Schedule

6 / 72

Two Phase Locking Recap

Observation

• We need a way to guarantee that all execution schedules are correct (i.e., serializable)
without knowing the entire schedule ahead of time.

• Solution: Use locks to protect database objects.

JA

7 / 72

Two Phase Locking Recap

Executing with Locks

JA

JA

JA

8 / 72

Two Phase Locking Recap

Executing with Locks

JA

JA

JA

9 / 72

Two Phase Locking Recap

Today’s Agenda

• Lock Types
• Two-Phase Locking
• Deadlock Detection + Prevention
• Hierarchical Locking
• Locking in Practice

10 / 72

Two Phase Locking Lock Types

Lock Types

11 / 72

Two Phase Locking Lock Types

Locks vs. Latches

Locks Latches

Separate. . . User transactions Threads
Protect. . . Database Contents In-Memory Data Structures
During. . . Entire Transactions Critical Sections
Modes. . . Shared, Exclusive, Update, Intention Read, Write (a.k.a., Shared, Exclusive)
Deadlock Detection & Resolution Avoidance
. . . by. . . Waits-for, Timeout, Aborts Coding Discipline
Kept in. . . Lock Manager Protected Data Structure

Reference

https://dl.acm.org/doi/10.1145/1806907.1806908
JA

JA

JA

JA

JA

JA

JA

12 / 72

Two Phase Locking Lock Types

Basic Lock Types

• S-LOCK: Shared locks for reads.
• X-LOCK: Exclusive locks for writes.

JA

JA

JA

13 / 72

Two Phase Locking Lock Types

Executing with Locks

• Transactions request locks (or upgrades).
• Lock manager grants or blocks requests.
• Transactions release locks.
• Lock manager updates its internal lock-table.

▶ It keeps track of what transactions hold what locks and what transactions are waiting to
acquire any locks.

JA

JA

14 / 72

Two Phase Locking Lock Types

Executing with Locks: Not Sufficient

JA

JA

JA

15 / 72

Two Phase Locking Lock Types

Executing with Locks: Not Sufficient

JA

JA

JA

16 / 72

Two Phase Locking Two-Phase Locking

Two-Phase Locking

17 / 72

Two Phase Locking Two-Phase Locking

Concurrency Control Protocol

• Two-phase locking (2PL) is a concurrency control protocol that determines whether a
txn can access an object in the database on the fly.

• The protocol does not need to know all the queries that a txn will execute ahead of
time.

JA

JA

18 / 72

Two Phase Locking Two-Phase Locking

Two-Phase Locking

• Phase 1: Growing
▶ Each txn requests the locks that it needs from the DBMS’s lock manager.
▶ The lock manager grants/denies lock requests.

• Phase 2: Shrinking
▶ The txn is allowed to only release locks that it previously acquired. It cannot acquire new

locks.

JA

JA

JA

JA

JA

19 / 72

Two Phase Locking Two-Phase Locking

Two-Phase Locking

• The txn is not allowed to acquire/upgrade locks after the growing phase finishes.

JA

20 / 72

Two Phase Locking Two-Phase Locking

Two-Phase Locking

• The txn is not allowed to acquire/upgrade locks after the growing phase finishes.

JA

21 / 72

Two Phase Locking Two-Phase Locking

Executing with 2PL

JA

JA

JA

22 / 72

Two Phase Locking Two-Phase Locking

Two-Phase Locking

• 2PL on its own is sufficient to guarantee conflict serializability.
▶ It generates schedules whose precedence graph is acyclic.

• But it is subject to cascading aborts.

JA

JA

23 / 72

Two Phase Locking Two-Phase Locking

2PL – Cascading Aborts

JA

JA

JA

JA

JA

JA

JA

JA

24 / 72

Two Phase Locking Two-Phase Locking

2PL: Observations

• There are potential schedules that are serializable but would not be allowed by 2PL.
▶ Locking limits concurrency.

• May still have "dirty reads".
▶ Solution: Strong Strict 2PL (aka Rigorous 2PL)

• May lead to deadlocks.
▶ Solution: Detection or Prevention

JA

JA

JA

JA

25 / 72

Two Phase Locking Two-Phase Locking

Strong Strict Two-Phase Locking

• The txn is not allowed to acquire/upgrade locks after the growing phase finishes.
• Allows only conflict serializable schedules, but it is often stronger than needed for

some apps.

JA

JA

JA

JA

26 / 72

Two Phase Locking Two-Phase Locking

Strong Strict Two-Phase Locking

• A schedule is strict if a value written by a txn is not read or overwritten by other txns
until that txn finishes.

• Advantages:
▶ Does not incur cascading aborts.
▶ Aborted txns can be undone by just restoring original values of modified tuples.

JA

JA

JA

JA

JA

27 / 72

Two Phase Locking Two-Phase Locking

Examples

• T1 – Move $100 from A’s account to B’s account.
• T2 – Compute the total amount in all accounts and return it to the application.

28 / 72

Two Phase Locking Two-Phase Locking

Non-2PL Example

JA

JA

JA

29 / 72

Two Phase Locking Two-Phase Locking

2PL Example

JA

30 / 72

Two Phase Locking Two-Phase Locking

Strong Strict 2PL Example

JA

JA

JA

31 / 72

Two Phase Locking Two-Phase Locking

Universe of Schedules

JA

JA

JA

32 / 72

Two Phase Locking Two-Phase Locking

2PL: Observations

• There are potential schedules that are serializable but would not be allowed by 2PL.
▶ Locking limits concurrency.

• May still have "dirty reads".
▶ Solution: Strong Strict 2PL (Rigorous)

• May lead to deadlocks.
▶ Solution: Detection or Prevention

JA

JA

33 / 72

Two Phase Locking Deadlock Detection + Prevention

Deadlock Detection + Prevention

34 / 72

Two Phase Locking Deadlock Detection + Prevention

Deadlocks

35 / 72

Two Phase Locking Deadlock Detection + Prevention

2PL Deadlocks

• A deadlock is a cycle of transactions waiting for locks to be released by each other.
• Two ways of dealing with deadlocks:

▶ Approach 1: Deadlock Detection
▶ Approach 2: Deadlock Prevention

36 / 72

Two Phase Locking Deadlock Detection + Prevention

Deadlock Detection

• The DBMS creates a waits-for graph to keep track of what locks each txn is waiting to
acquire:
▶ Nodes are transactions
▶ Edge from Ti to Tj if Ti is waiting for Tj to release a lock.

• The system periodically checks for cycles in waits-for graph and then decides how to
break it.

37 / 72

Two Phase Locking Deadlock Detection + Prevention

Deadlock Detection

38 / 72

Two Phase Locking Deadlock Detection + Prevention

Deadlock Handling

• When the DBMS detects a deadlock, it will select a "victim" txn to rollback to break the
cycle.

• The victim txn will either restart or abort(more common) depending on how it was
invoked.

• There is a trade-off between the frequency of checking for deadlocks and how long
txns have to wait before deadlocks are broken.

39 / 72

Two Phase Locking Deadlock Detection + Prevention

Deadlock Handling: Victim Selection

• Selecting the proper victim depends on a lot of different variables. . . .
▶ By age (lowest timestamp)
▶ By progress (least/most queries executed)
▶ By the of items already locked
▶ By the of txns that we have to rollback with it

• We also should consider the of times a txn has been restarted in the past to prevent
starvation.

40 / 72

Two Phase Locking Deadlock Detection + Prevention

Deadlock Handling: Rollback Length

• After selecting a victim txn to abort, the DBMS can also decide on how far to rollback
the txn’s changes.

• Approach 1: Completely
• Approach 2: Minimally (i.e., release a subset of locks)

41 / 72

Two Phase Locking Deadlock Detection + Prevention

Deadlock Prevention

• When a txn tries to acquire a lock that is held by another txn, the DBMS kills one of
them to prevent a deadlock.

• This approach does not require a waits-for graph or detection algorithm.

42 / 72

Two Phase Locking Deadlock Detection + Prevention

Deadlock Prevention

• Assign priorities based on timestamps:
▶ Older Timestamp = Higher Priority (e.g., T1 > T2)

• Wait-Die ("Old Waits for Young")
▶ If requesting txn has higher priority than holding txn, then requesting txn waits for

holding txn.
▶ Otherwise requesting txn aborts.

• Wound-Wait ("Young Waits for Old")
▶ If requesting txn has higher priority than holding txn, then holding txn aborts and

releases lock.
▶ Otherwise requesting txn waits.

43 / 72

Two Phase Locking Deadlock Detection + Prevention

Deadlock Prevention

44 / 72

Two Phase Locking Deadlock Detection + Prevention

Deadlock Prevention

• Why do these schemes guarantee no deadlocks?
• Only one "type" of direction allowed when waiting for a lock.
• When a txn restarts, what is its (new) priority?
• Its original timestamp. Why?

45 / 72

Two Phase Locking Deadlock Detection + Prevention

Observation

• All of these examples have a one-to-one mapping from database objects to locks.
• If a txn wants to update one billion tuples, then it has to acquire one billion locks.

46 / 72

Two Phase Locking Hierarchical Locking

Hierarchical Locking

47 / 72

Two Phase Locking Hierarchical Locking

Lock Granularities

• When we say that a txn acquires a “lock”, what does that actually mean?
▶ On an Attribute? Tuple? Page? Table?

• Ideally, each txn should obtain fewest number of locks that is needed. . .

48 / 72

Two Phase Locking Hierarchical Locking

Database Lock Hierarchy

49 / 72

Two Phase Locking Hierarchical Locking

Example

• T1 – Get the balance of A’s account.
• T2 – Increase B’s bank account balance by 1%.
• What locks should these txns obtain?
• Multiple:

▶ Exclusive + Shared for leafs of lock tree.
▶ Special Intention locks for higher levels.

50 / 72

Two Phase Locking Hierarchical Locking

Intention Locks

• An intention lock allows a higher level node to be locked in shared or exclusive
mode without having to check all descendent nodes.

• If a node is in an intention mode, then explicit locking is being done at a lower level in
the tree.

51 / 72

Two Phase Locking Hierarchical Locking

Intention Locks

• Intention-Shared (IS)
▶ Indicates explicit locking at a lower level with shared locks.

• Intention-Exclusive (IX)
▶ Indicates locking at lower level with exclusive or shared locks.

52 / 72

Two Phase Locking Hierarchical Locking

Intention Locks

• Shared+Intention-Exclusive (SIX)
▶ The subtree rooted by that node is locked explicitly in shared mode and explicit locking is

being done at a lower level with exclusive-mode locks.

53 / 72

Two Phase Locking Hierarchical Locking

Compatibility Matrix

54 / 72

Two Phase Locking Hierarchical Locking

Hierarchical Locking Protocol

• Each txn obtains appropriate lock at highest level of the database hierarchy.
• To get S or IS lock on a node, the txn must hold at least IS on parent node.
• To get X, IX, or SIX on a node, must hold at least IX on parent node.

55 / 72

Two Phase Locking Hierarchical Locking

Example – Two-Level Hierarchy

56 / 72

Two Phase Locking Hierarchical Locking

Example – Two-Level Hierarchy

57 / 72

Two Phase Locking Hierarchical Locking

Example – Three Transactions

• Assume three txns execute at same time:
▶ T1 – Scan R and update a few tuples.
▶ T2 – Read a single tuple in R.
▶ T3 – Scan all tuples in R.

58 / 72

Two Phase Locking Hierarchical Locking

Example – Three Transactions

59 / 72

Two Phase Locking Hierarchical Locking

Example – Three Transactions

60 / 72

Two Phase Locking Hierarchical Locking

Example – Three Transactions

61 / 72

Two Phase Locking Hierarchical Locking

Example – Three Transactions

62 / 72

Two Phase Locking Hierarchical Locking

Example – Three Transactions

63 / 72

Two Phase Locking Hierarchical Locking

Example – Three Transactions

64 / 72

Two Phase Locking Hierarchical Locking

Multiple Lock Granularities

• Hierarchical locks are useful in practice as each txn only needs a few locks.
• Intention locks help improve concurrency:

▶ Intention-Shared (IS): Intent to get S lock(s) at finer granularity.
▶ Intention-Exclusive (IX): Intent to get X lock(s) at finer granularity.
▶ Shared+Intention-Exclusive (SIX): Like S and IX at the same time.

65 / 72

Two Phase Locking Hierarchical Locking

Lock Escalation

• Lock escalation dynamically asks for coarser-grained locks when too many low level
locks acquired.

• This reduces the number of requests that the lock manager has to process.

66 / 72

Two Phase Locking Locking in Practice

Locking in Practice

67 / 72

Two Phase Locking Locking in Practice

Locking in Practice

• You typically don’t set locks manually in txns.
• Sometimes you will need to provide the DBMS with hints to help it to improve

concurrency.
• Explicit locks are also useful when doing major changes to the database.

68 / 72

Two Phase Locking Locking in Practice

Lock Table

• Explicitly locks a table.
• Not part of the SQL standard.

▶ Postgres/DB2/Oracle Modes: SHARE, EXCLUSIVE
▶ MySQL Modes: READ, WRITE

69 / 72

Two Phase Locking Locking in Practice

Select... For Update

• Perform a select and then sets an exclusive lock on the matching tuples.
• Can also set shared locks:

▶ Postgres: FOR SHARE
▶ MySQL: LOCK IN SHARE MODE

SELECT * FROM <table>
WHERE <qualification> FOR UPDATE;

70 / 72

Two Phase Locking Conclusion

Conclusion

71 / 72

Two Phase Locking Conclusion

Parting Thoughts

• 2PL is used in almost all DBMSs.
• Automatically generates correct interleaving:

▶ Locks + protocol (2PL, SS2PL ...)
▶ Deadlock detection + handling
▶ Deadlock prevention

72 / 72

Two Phase Locking Conclusion

Next Class

• Timestamp Ordering Concurrency Control

	Two Phase Locking
	Recap
	Lock Types
	Two-Phase Locking
	Deadlock Detection + Prevention
	Hierarchical Locking
	Locking in Practice
	Conclusion

