Georgia &
Tech

Lecture 16: Multi-Version Concurrency Control

CREATING THE NEXT*

Multi-Version Concurrency Control

Today's Agenda

Multi-Version Concurrency Control
1.1 Recap
1.2 Multi-Version Concurrency Control
1.3 Concurrency Control Protocol
1.4 Version Storage
1.5 Garbage Collection
1.6 Index Management

Georgia
Tech

Recap

Multi-Version Concurrency Control ~ Recap

Optimistic Concurrency Control

e The DBMS creates a private workspace for each txn.

Any object read is copied into workspace.
Modifications are applied to workspace.

e When a txn commits, the DBMS compares workspace write set to see whether it
conflicts with other txns.

e If there are no conflicts, the write set is installed into the global database.

Georgia
Tech

Multi-Version Concurrency Control ~ Recap

OCC Phases

e Phase 1 — Read:

Track the read/write sets of txns and store their writes in a private workspace.
e Phase 2 — Validation:

When a txn commits, check whether it conflicts with other txns.
e Phase 3 — Write:

If validation succeeds, apply private changes to database. Otherwise abort and restart the
txn.

Georgia
Tech

Multi-Version Concurrency Control

Today’s Agenda

e Multi-Version Concurrency Control
e Design Decisions
Concurrency Control Protocol
Version Storage
Garbage Collection
Index Management

Georgia
Tech

Multi-Version Concurrency Control = Multi-Version Concurrency Control

Multi-Version Concurrency Control

Multi-Version Concurrency Control = Multi-Version Concurrency Control

Multi-Version Concurrency Control

e The DBMS maintains multiple physical versions of a single logical object in the
database:

When a txn writes to an object, the DBMS creates a new version of that object (instead of
private workspace in OCC)
When a txn reads an object, it reads the newest version that existed when the txn started.

Georgia
Tech

Multi-Version Concurrency Control = Multi-Version Concurrency Control

MVCC HISTORY

e Protocol was first proposed in 1978 MIT PhD dissertation.
e First implementations was Rdb/VMS and InterBase at DEC in early 1980s.

Both were by Jim Starkey, co-founder of NuoDB.
DEC Rdb/VMS is now "Oracle Rdb"
InterBase was open-sourced as Firebird.

Georgia
Tech

http://publications.csail.mit.edu/lcs/specpub.php?id=773

Multi-Version Concurrency Control = Multi-Version Concurrency Control

Multi-Version Concurrency Control

e Writers don’t block readers. Readers don’t block writers.
e Read-only txns can read a consistent snapshot without acquiring locks.

Use timestamps to determine visibility.

e Easily support time-travel queries.

Georgia
Tech

Multi-Version Concurrency Control = Multi-Version Concurrency Control

MVCC - Example 1

Schedule Database
"----__----__--‘\ f-------------——-"‘
1 T T2 : : ersio e Beg i
I - — 1
1 | BEGIN H | A 123 o - |
1|R(A) i] I
H BEGIN 1 ' H
1 W(A) H 1 I
1| R(A) I A e bt 4
1| commzt i
: commit ||
I i
! 1
! 1
! 1
! 1
1 1
! 1
!]

‘\ _____________ -

Georgia
Tech

i-Version Concurrency Control = Multi-Version Concurrency Control

MVCC - Example 1

Schedule Database
P ————— b Uy S S ————— -
\ ~
: T T, 1 : . . :
i 1 i Version Value(Begin End i
i :ES)IN ! :A0 123 |o = |1
! BEGIN i ' :
1 W(A) | i I
: R(A) I | P ——————
1 | COMMIT I
i coMMIT | |}
H 1
i 1
i I
i I
i 1
i I
I I
' i
‘s ______________ s’

Georgia
Tech

Multi-Version Concurrency Control = Multi-Version Concurrency Control

MVCC - Example 1

TS(T)=1 pedul{TS(T,)=2 Database

1 2 : : 5 }

I d peg d I

,| BEGIN : :A0 123 o - I

R(A) 1 1 1

: BEGIN 1 ' :

] W(A) : 1 1

I R(A) i Ve ————— =/
I | COMMIT I
: COMMIT H
- |
! 1
! 1
!]
! 1
!]
!]
! U
‘\ _____________ -

Georgia
Tech

MVCC - Example 1

sion Concurrency Control

on Concurrency C

1

TS(T,)=1 Medul{Tg(T,)=2

2

BEGIN
R(A)

R(A)

o —— —

COMMIT

BEGIN
W(A)

T, creates version A,

and sets A, End-TS.

Ay

Database

O —————— -

Version Value Begin End

123

A

456

—————— — — -
P

Georgia
Tech

o ————— -

Multi-Version Concurrency Control = Multi-Version Concurrency Control

MVCC - Example 1

TS(T)=1 pedul{TS(T,)=2
(BT(TST)2)

1 2

BEGIN
R(A)

BEGIN
W(A)

T, reads version A,. COMMIT

-

o

N o

Georgia
Tech

Database
o
Ay 123 |0 2
A, 456 |2 -

P

=

T

1 Active

T,

2 Active

N ——————

N

Multi-Version Concurrency Control

MVCC - Example 2

Multi-Version Concurrency Control

TS(T)=1 peduld T5(1,)-2
sz_1]'_ }L\/—Z‘—]

2

J BEGIN
R(A)

W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

o —— -

Georgia
Tech

o o

Database

Version Value Begin End

Ay 123 o

A ——
i ———— -

Txn Status Table

TxnId Timestamp Status

T, 1 Active

P LT

Multi-Version Concurrency Control = Multi-Version Concurrency Control

MVCC - Example 2

(BoDei(rsmy-z) Database____
T, T - —-—

: 2 1 : }
1 1 i 0 a g d 1
: EEE)IN H 1A 123 o 1 I
[A 456 |1 - |
W(A) BEGIN I ! !
1 R(A) : 1 1
' W(A) i L S J
R(A I
i cc(man ! Txn Status Table
: I r----------------..‘
I CoMMIT | | : |
: : 1Ty 1 Active :
1 1
1 H I 1
1 I 1 1
I I I
Ve _____ J N ——————— J

Georgia
Tech

Multi-Version Concurrency Control

MVCC - Example 2

Multi-Version Concurrency Control

Georgia
Tech

oA

1

2

TS(T)=1 pedul{ Ts(r,)-2
(CDee(T5m2)

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

=

Database

T,readsversion Ay, |==m===m-=== -~
because T, has not i

i I

committed yet. e i

i : T, 2 Active :

[i I

i ' '
— Ve e ——— /

Multi-Version Concurrency Control

MVCC - Example 2

Multi-Version Concurrency Control

o ——

Georgia
Tech

1

l{ T5(T,)=2

2

BEGIN
R(A)
W(A)

R(A)
COMMIT

COMMIT

Database

(CT)oe(TsT) __ Dasbase

I

= !

: 1 (A 123
1 : A, 456
H i

i 1

| \

T, has to stall until T,

commits.

T

Active

T,

Active

]
P ——

Multi-Version Concurrency Control

MVCC - Example 2

Multi-Version Concurrency Control

TS(T)=1 peduld T5(T,)=2

BEGIN
R(A)
W(A)

T, reads version A, that it
wrote earlier.

v

178

Georgia
Tech

Database

O

Version Value Begin End

Ag 123 o 1
A, 456 |1 -

=
[e ——

Txn Status Table

Active
Active

P T

sion Concurrency Control

MVCC - Example 2

Multi-Version Concurrency C

TS(T)=1 peduld T5(T,)-2

I i
! 1
1| BEGIN I
1|R(A) H
: W(A) BEGIN 1
I R(A) :
1 W(A) 1
‘:R(A) [] g :
COMMIT =
: v i
I COMMIT H
I i
! 1
! I
! I
!]
‘\ ______________ P4

Georgia
Tech

Database

Version Value Begin End

A 123 o 1
A, 456 |1 -

= ———
N ——————

Txn Status Table

-

T, 1 Committed
T, 2 Active

=

Multi-Version Concurrency Control = Multi-Version Concurrency Control

MVCC - Example 2

(Ts(T)-1 pedul{ Ts(T,)-2 Database
T, T,

Version Value Begin End

BEGIN
R(A)
W(A)

R(A)
COMMIT

o

Georgia
Tech

Ao 123 o 1
456 |1 2
A, 789 |2 -

o
>
N

I
: Txnld Timestamp Status
1 | 1 Committed

Active

S
Now T, can create the new
version.

N —————

Multi-Version Concurrency Control = Multi-Version Concurrency Control

Multi-Version Concurrency Control

e MVCC is more than just a Concurrency Control protocol.
e It completely affects how the DBMS manages transactions and the database.
e Examples: Oracle, SAP HANA, PostgreSQL, CockroachDB

Georgia
Tech

Multi-Version Concurrency Control = Multi-Version Concurrency Control

MVCC Design Decisions

Concurrency Control Protocol

Version Storage

Garbage Collection

Index Management

Georgia
Tech

Multi-Version Concurrency Control ~ Concurrency Control Protocol

Concurrency Control Protocol

Multi-Version Concurrency Control ~ Concurrency Control Protocol

Concurrency Control Protocol

e Approach 1: Timestamp Ordering
Assign txns timestamps that determine serial order.
e Approach 2: Optimistic Concurrency Control

Three-phase protocol from last class.
Use private workspace for new versions.

e Approach 3: Two-Phase Locking

Txns acquire appropriate lock on physical version before they can read/write a logical
tuple.

Georgia
Tech

Multi-Version Concurrency Control ~ Version Storage

Version Storage

Multi-Version Concurrency Control ~ Version Storage

Version Storage

e The DBMS uses the tuples’ pointer field to create a version chain per logical tuple.

This allows the DBMS to find the version that is visible to a particular txn at runtime.
Indexes always point to the head of the chain.

e Different storage schemes determine where/what to store for each version.

Georgia
Tech

Multi-Version Concurrency Control ~ Version Storage

Version Storage

e Approach 1: Append-Only Storage
New versions are appended to the same table space.
e Approach 2: Time-Travel Storage
Old versions are copied to separate table space.
e Approach 3: Delta Storage
The original values of the modified attributes are copied into a separate delta record space.

Georgia
Tech

Multi-Version Concurrency Control ~ Version Storage

Append-Only Storage

e All of the physical versions of a logical tuple are stored in the same table space. The
versions are mixed together.
e On every update, append a new version of the tuple into an empty space in the table.

Main Table

VERSION VALUE POINTER

A, $7117 o—:|

» A, $222

B, 270

Georgia
Tech

Multi-Version Concurrency Control

Append-Only Storage

o All of the physical versions of a logical tuple are stored in the same table space. The
versions are mixed together.

e On every update, append a new version of the tuple into an empty space in the table.

Main Table

VALUE

$111

$222

510

$333

Version Storage

'&'&&T

Multi-Version Concurrency Control

Append-Only Storage

o All of the physical versions of a logical tuple are stored in the same table space. The
versions are mixed together.

e On every update, append a new version of the tuple into an empty space in the table.

Main Table
VALUE
$1171 o—
$222 ®
$10 @
$333 @

Version Storage

V'S

Multi-Version Concurrency Control ~ Version Storage

Version Chain Ordering

e Approach 1: Oldest-to-Newest (O2N)
Just append new version to end of the chain.
Have to traverse chain on look-ups.

e Approach 2: Newest-to-Oldest (N20)

Have to update index pointers for every new version.
Don’t have to traverse chain on look ups.

Georgia
Tech

sion Concurrency rol ~ Version Storage

Time-Travel Storage

e On every update, copy the current version to the time-travel table. Update pointers.

e Overwrite master version in the main table. Update pointers.

Main Table Time-Travel Table
VERSION VALUE POINTER VERSION VALUE POINTER
» A, | 8222 @ A, $711 [
B, $70

Georgia
Tech

Multi-Version Concurrency Control ~ Version Storage

Time-Travel Storage

¢ On every update, copy the current version to the time-travel table. Update pointers.
y up Py P p

e Overwrite master version in the main table. Update pointers.

Main Table Time-Travel Table
VERSION VALUE POINTER VERSION VALUE POINTER
» A | $222| @ A, $117 [} :I
B, $70 A, | $222 | e—

Georgia
Tech

Multi-Version Concurrency Control ~ Version Storage

Time-Travel Storage

e On every update, copy the current version to the time-travel table. Update pointers.
e Overwrite master version in the main table. Update pointers.

Main Table Time-Travel Table

RSIO! PO R VERSION ~ VALUE POINTER

. A | 333 @ A, $717 2 :]

B, $70 A, | $222| e—]

Georgia
Tech

sion Concurrency Control ~ Version Storage

Time-Travel Storage

e On every update, copy the current version to the time-travel table. Update pointers.

e Overwrite master version in the main table. Update pointers.
Main Table Time-Travel Table

RSIO PO R VERSION ~ VALUE POINTER

» A, | $333 A $711 [/ 4:]

B, $170 A, $222 *—

Georgia
Tech

Multi-Version Concurrency Control ~ Version Storage

Delta Storage

e On every update, copy only the values that were modified to the delta storage and
overwrite the master version.

e Txns can recreate old versions by applying the delta in reverse order.

Main Table Delta Storage Segment
» A 8111
B, $70

Georgia
Tech

sion Concurrency Control ~ Version Storage

Delta Storage

e On every update, copy only the values that were modified to the delta storage and
overwrite the master version.

e Txns can recreate old versions by applying the delta in reverse order.

Main Table Delta Storage Segment
RSIO PO R DELTA POINTER
» A, $111 A, | (VALUE-$111)| @
B, $10

Georgia
Tech

Multi-Version Concurrency Control ~ Version Storage

Delta Storage

e On every update, copy only the values that were modified to the delta storage and
overwrite the master version.

e Txns can recreate old versions by applying the delta in reverse order.

Main Table Delta Storage Segment

» A, $222 o A |ovaLue-s1ID)| @ :I

B, $10 A, | (vaLUE.$222)| e—]

Georgia
Tech

Multi-Version Concurrency Control ~ Version Storage

Delta Storage

e On every update, copy only the values that were modified to the delta storage and
overwrite the master version.

e Txns can recreate old versions by applying the delta in reverse order.
Main Table Delta Storage Segment

» A $333 pa— A | oacvessiin| g :I
B, $10 L A, | (vaLue-$222)] e—]

Georgia
Tech

Multi-Version Concurrency Control ~ Garbage Collection

Garbage Collection

Multi-Version Concurrency Control ~ Garbage Collection

Garbage Collection

e The DBMS needs to remove reclaimable physical versions from the database over
time.

No active txn in the DBMS can see that version (SI).
The version was created by an aborted txn.

e Two additional design decisions:

How to look for expired versions?
How to decide when it is safe to reclaim memory?

Georgia
Tech

Multi-Version Concurrency Control ~ Garbage Collection

Garbage Collection

e Approach 1: Tuple-level

Find old versions by examining tuples directly.
Background Vacuuming vs. Cooperative Cleaning

e Approach 2: Transaction-level

Txns keep track of their old versions so the DBMS does not have to scan tuples to
determine visibility.

Georgia
Tech

Multi-Version Concurrency Control ~ Garbage Collection

Tuple-level GC

e Background Vacuuming:

 Separate thread(s) periodically scan the table and look for reclaimable versions.

e Works with any storage.

Georgia
Tech

Multi-Version Concurrency Control

Tuple-level GC

Garbage Collection

Georgia
Tech

Thread #1

Vacuum

TS(T,)=12 \
Thread #2

TS(T,)=25=""

o‘—b

»

VERSION BEGIN END
Aioo 7 9
B'\ 00 7 ‘9
Bion 70 20

Multi-Version Concurrency Control

Tuple-level GC

Garbage Collection

Georgia
Tech

Thread #1

Vacuum

TS(T,)=12 \
Thread #2

TS(T,)=25=""

VERSION

AT e

BEGIN END
Ao 7 9
Bioo 7 9
Bio 70 20

Multi-Version Concurrency Control

Tuple-level GC

Garbage Collection

Georgia
Tech

Thread #1

Vacuum

TS(T1)=1 2\
Thread #2

TS(T)=25=""

VERSION

BEGIN

END

AL s

BWOW

20

sion Concurrency Control ~ Garbage Collection

Tuple-level GC

Thread #1 -5
Vacuum B é VERSION BEGIN END

TS(T=12~y =

)

Thread #2 \ -
TS(T2)=25/' o) »= 5 Bior 10 20

Georgia
Tech

sion Concurrency Control ~ Garbage Collection

Tuple-level GC

e Cooperative Cleaning:

o Worker threads identify reclaimable versions as they traverse version chain.
e Only works with O2N.

Georgia
Tech

Multi-Version Concurrency Control

Tuple-level GC

Garbage Collection

Thread #1

Thread #2
TS(T2)=25

Georgia
Tech

TS(T)=128 GET(A) —» A P AP A PA

Le. 8 [l e s |

Multi-Version Concurrency Control

Tuple-level GC

Garbage Collection

Thread #1
TS(T]):T 2

Thread #2
TS(T2)=25

Georgia
Tech

GET(A)

Le. P8 [5 e |

Multi-Version Concurrency Control

Tuple-level GC

Garbage Collection

Thread #1
TS (T1)=12

Thread #2
TS (Tz) =25

Georgia
Tech

GET(A)
A INDEX

¥
). (x). G
o P oo Pl]

Multi-Version Concurrency Control

Tuple-level GC

Garbage Collection

Thread #1
TS(T1)=1 2
Thread #2
TS(T2)=25

Georgia
Tech

GET(A)

A, As

B A INDEX 2

Le. 5 [l e s |

Multi-Version Concurrency Control ~ Garbage Collection

Transaction-level GC

e Each txn keeps track of its read/write set.
e The DBMS determines when all versions created by a finished txn are no longer visible.

Georgia
Tech

Multi-Version Concurrency Control = Index Management

Index Management

Multi-Version Concurrency Control = Index Management

Index Management

e Primary key indexes point to version chain head.
How often the DBMS has to update the pkey index depends on whether the system
creates new versions when a tuple is updated.
If a txn updates a tuple’s pkey attribute(s), then this is treated as an DELETE followed by
an INSERT.

e Secondary indexes are more complicated. ..

Georgia
Tech

Multi-Version Concurrency Control = Index Management

Secondary Indexes

e Approach 1: Physical Pointers
Use the physical address to the version chain head.
e Approach 2: Logical Pointers

Use a fixed identifier per tuple that does not change.
Requires an extra indirection layer.
Primary Key vs. Tuple Id

Georgia
Tech

Multi-Version Concurrency Control = Index Management

Physical Pointers

A PRIMARYINDEX [l A SECONDARY INDEX

|A100 H Agg H Ac H Agy | }ﬁgﬁfe,;i-gf’g;dest

Georgia
Tg%h

Multi-Version Concurrency Control = Index Management

Physical Pointers

GET(A) @

A PRIMARYINDEX [l A SECONDARY INDEX

Physical
Address

Georgia
Tg%h

BN o ¥ o Wy ¥ ey }

Append-Only
Newest-to-Oldest

Multi-Version Concurrency Control = Index Management

Physical Pointers

$ GET(A)
A PRIMARY INDEX A SECONDARY INDEX

Physical

Address

Append-Only
Avoo H Agg H Agg H Ag7 I } Newest-to-Oldest

Georgia
Tg%h

Multi-Version Concurrency Control = Index Management

Physical Pointers

$ GET(A)
é SECONDARY INDEX

A SECONDARY INDEX
A SECONDARY INDEX

A SECONDARY IND

Append-Only
Agg H Agy | } Newest-to-Oldest

A PRIMARY INDEX

Georgia
Tech

Multi-Version Concurrency Control = Index Management

Logical Pointers

$ GET(A)
A PRIMARY INDEX QN A SECONDARY INDEX

Physical
Address

Georgia
Tg%h

Primary
Key
Append-Only
_’| Ao H Agg H Ags H Ag7 | Newest-to-Oldest

Multi-Version Concurrency Control = Index Management

Logical Pointers

$ GET(A)
A SECONDARY INDEX

A PRIMARY INDEX

BB Tupleld— Address

Tupleld

Physical
Address

Append-Only
Aveo]"l Agg H Agg H Ag7 | } Newest-to-Oldest

Georgia
Tech

Multi-Version Concurrency Control = Index Management

MVCC Implementations

DBMS Protocol Version Storage Garbage Collection Indexes
Oracle MV2PL Delta Vacuum Logical
Postgres MV-2PL/MV-TO Append-Only Vacuum Physical
MySQL-InnoDB MV-2PL Delta Vacuum Logical
HYRISE MV-OCC Append-Only - Physical
Hekaton MV-OCC Append-Only Cooperative Physical
MemSQL MV-OCC Append-Only ~ Vacuum Physical
SAP HANA MV-2PL Time-travel Hybrid Logical
NuoDB MV-2PL Append-Only ~ Vacuum Logical
HyPer MV-0OCC Delta Txn-level Logical
Georgia

Tech

Multi-Version Concurrency Control = Index Management

Conclusion

e MVCC is the widely used scheme in DBMSs.
e Even systems that do not support multi-statement txns (e.g., NoSQL) use it.

Georgia
Tech

sion Concurrency Control ~ Index Management

Next Class

e Advanced topics in Concurrency Control

Georgia
Tech

	Multi-Version Concurrency Control
	Recap
	Multi-Version Concurrency Control
	Concurrency Control Protocol
	Version Storage
	Garbage Collection
	Index Management

