
1 / 67

Multi-Version Concurrency Control

Lecture 16: Multi-Version Concurrency Control



2 / 67

Multi-Version Concurrency Control

Today's Agenda

Multi-Version Concurrency Control
1.1 Recap
1.2 Multi-Version Concurrency Control
1.3 Concurrency Control Protocol
1.4 Version Storage
1.5 Garbage Collection
1.6 Index Management
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Multi-Version Concurrency Control Recap

Optimistic Concurrency Control

• The DBMS creates a private workspace for each txn.
▶ Any object read is copied into workspace.
▶ Modifications are applied to workspace.

• When a txn commits, the DBMS compares workspace write set to see whether it
conflicts with other txns.

• If there are no conflicts, the write set is installed into the global database.
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OCC Phases

• Phase 1 – Read:
▶ Track the read/write sets of txns and store their writes in a private workspace.

• Phase 2 – Validation:
▶ When a txn commits, check whether it conflicts with other txns.

• Phase 3 – Write:
▶ If validation succeeds, apply private changes to database. Otherwise abort and restart the

txn.
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Today’s Agenda

• Multi-Version Concurrency Control
• Design Decisions

▶ Concurrency Control Protocol
▶ Version Storage
▶ Garbage Collection
▶ Index Management
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Multi-Version Concurrency Control

• The DBMS maintains multiple physical versions of a single logical object in the
database:
▶ When a txn writes to an object, the DBMS creates a new version of that object (instead of

private workspace in OCC)
▶ When a txn reads an object, it reads the newest version that existed when the txn started.
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MVCC HISTORY

• Protocol was first proposed in 1978 MIT PhD dissertation.
• First implementations was Rdb/VMS and InterBase at DEC in early 1980s.

▶ Both were by Jim Starkey, co-founder of NuoDB.
▶ DEC Rdb/VMS is now "Oracle Rdb"
▶ InterBase was open-sourced as Firebird.

http://publications.csail.mit.edu/lcs/specpub.php?id=773
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Multi-Version Concurrency Control

• Writers don’t block readers. Readers don’t block writers.
• Read-only txns can read a consistent snapshot without acquiring locks.

▶ Use timestamps to determine visibility.

• Easily support time-travel queries.
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MVCC – Example 1
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Multi-Version Concurrency Control

• MVCC is more than just a Concurrency Control protocol.
• It completely affects how the DBMS manages transactions and the database.
• Examples: Oracle, SAP HANA, PostgreSQL, CockroachDB
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MVCC Design Decisions

• Concurrency Control Protocol
• Version Storage
• Garbage Collection
• Index Management
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Concurrency Control Protocol
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Concurrency Control Protocol

• Approach 1: Timestamp Ordering
▶ Assign txns timestamps that determine serial order.

• Approach 2: Optimistic Concurrency Control
▶ Three-phase protocol from last class.
▶ Use private workspace for new versions.

• Approach 3: Two-Phase Locking
▶ Txns acquire appropriate lock on physical version before they can read/write a logical

tuple.
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Version Storage

• The DBMS uses the tuples’ pointer field to create a version chain per logical tuple.
▶ This allows the DBMS to find the version that is visible to a particular txn at runtime.
▶ Indexes always point to the head of the chain.

• Different storage schemes determine where/what to store for each version.
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Version Storage

• Approach 1: Append-Only Storage
▶ New versions are appended to the same table space.

• Approach 2: Time-Travel Storage
▶ Old versions are copied to separate table space.

• Approach 3: Delta Storage
▶ The original values of the modified attributes are copied into a separate delta record space.
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Append-Only Storage

• All of the physical versions of a logical tuple are stored in the same table space. The
versions are mixed together.

• On every update, append a new version of the tuple into an empty space in the table.
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Append-Only Storage

• All of the physical versions of a logical tuple are stored in the same table space. The
versions are mixed together.

• On every update, append a new version of the tuple into an empty space in the table.
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Version Chain Ordering

• Approach 1: Oldest-to-Newest (O2N)
▶ Just append new version to end of the chain.
▶ Have to traverse chain on look-ups.

• Approach 2: Newest-to-Oldest (N2O)
▶ Have to update index pointers for every new version.
▶ Don’t have to traverse chain on look ups.
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Time-Travel Storage

• On every update, copy the current version to the time-travel table. Update pointers.
• Overwrite master version in the main table. Update pointers.
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Delta Storage

• On every update, copy only the values that were modified to the delta storage and
overwrite the master version.

• Txns can recreate old versions by applying the delta in reverse order.
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Garbage Collection

• The DBMS needs to remove reclaimable physical versions from the database over
time.
▶ No active txn in the DBMS can see that version (SI).
▶ The version was created by an aborted txn.

• Two additional design decisions:
▶ How to look for expired versions?
▶ How to decide when it is safe to reclaim memory?
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Garbage Collection

• Approach 1: Tuple-level
▶ Find old versions by examining tuples directly.
▶ Background Vacuuming vs. Cooperative Cleaning

• Approach 2: Transaction-level
▶ Txns keep track of their old versions so the DBMS does not have to scan tuples to

determine visibility.
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Tuple-level GC

• Background Vacuuming:
• Separate thread(s) periodically scan the table and look for reclaimable versions.
• Works with any storage.
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Tuple-level GC

• Cooperative Cleaning:
• Worker threads identify reclaimable versions as they traverse version chain.
• Only works with O2N.
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Transaction-level GC

• Each txn keeps track of its read/write set.
• The DBMS determines when all versions created by a finished txn are no longer visible.
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Index Management

• Primary key indexes point to version chain head.
▶ How often the DBMS has to update the pkey index depends on whether the system

creates new versions when a tuple is updated.
▶ If a txn updates a tuple’s pkey attribute(s), then this is treated as an DELETE followed by

an INSERT.

• Secondary indexes are more complicated. . .
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Secondary Indexes

• Approach 1: Physical Pointers
▶ Use the physical address to the version chain head.

• Approach 2: Logical Pointers
▶ Use a fixed identifier per tuple that does not change.
▶ Requires an extra indirection layer.
▶ Primary Key vs. Tuple Id
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Physical Pointers
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Physical Pointers
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Logical Pointers
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Logical Pointers
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MVCC Implementations

DBMS Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical
Postgres MV-2PL/MV-TO Append-Only Vacuum Physical
MySQL-InnoDB MV-2PL Delta Vacuum Logical
HYRISE MV-OCC Append-Only – Physical
Hekaton MV-OCC Append-Only Cooperative Physical
MemSQL MV-OCC Append-Only Vacuum Physical
SAP HANA MV-2PL Time-travel Hybrid Logical
NuoDB MV-2PL Append-Only Vacuum Logical
HyPer MV-OCC Delta Txn-level Logical
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Conclusion

• MVCC is the widely used scheme in DBMSs.
• Even systems that do not support multi-statement txns (e.g., NoSQL) use it.
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Next Class

• Advanced topics in Concurrency Control
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