
1 / 67

Multi-Version Concurrency Control

Lecture 16: Multi-Version Concurrency Control



2 / 67

Multi-Version Concurrency Control

Today's Agenda

Multi-Version Concurrency Control
1.1 Recap
1.2 Multi-Version Concurrency Control
1.3 Concurrency Control Protocol
1.4 Version Storage
1.5 Garbage Collection
1.6 Index Management



3 / 67

Multi-Version Concurrency Control Recap

Recap



4 / 67

Multi-Version Concurrency Control Recap

Optimistic Concurrency Control

• The DBMS creates a private workspace for each txn.
▶ Any object read is copied into workspace.
▶ Modifications are applied to workspace.

• When a txn commits, the DBMS compares workspace write set to see whether it
conflicts with other txns.

• If there are no conflicts, the write set is installed into the global database.



5 / 67

Multi-Version Concurrency Control Recap

OCC Phases

• Phase 1 – Read:
▶ Track the read/write sets of txns and store their writes in a private workspace.

• Phase 2 – Validation:
▶ When a txn commits, check whether it conflicts with other txns.

• Phase 3 – Write:
▶ If validation succeeds, apply private changes to database. Otherwise abort and restart the

txn.



6 / 67

Multi-Version Concurrency Control Recap

Today’s Agenda

• Multi-Version Concurrency Control
• Design Decisions

▶ Concurrency Control Protocol
▶ Version Storage
▶ Garbage Collection
▶ Index Management



7 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

Multi-Version Concurrency Control



8 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

Multi-Version Concurrency Control

• The DBMS maintains multiple physical versions of a single logical object in the
database:
▶ When a txn writes to an object, the DBMS creates a new version of that object (instead of

private workspace in OCC)
▶ When a txn reads an object, it reads the newest version that existed when the txn started.



9 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC HISTORY

• Protocol was first proposed in 1978 MIT PhD dissertation.
• First implementations was Rdb/VMS and InterBase at DEC in early 1980s.

▶ Both were by Jim Starkey, co-founder of NuoDB.
▶ DEC Rdb/VMS is now "Oracle Rdb"
▶ InterBase was open-sourced as Firebird.

http://publications.csail.mit.edu/lcs/specpub.php?id=773


10 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

Multi-Version Concurrency Control

• Writers don’t block readers. Readers don’t block writers.
• Read-only txns can read a consistent snapshot without acquiring locks.

▶ Use timestamps to determine visibility.

• Easily support time-travel queries.



11 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC – Example 1



12 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC – Example 1



13 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC – Example 1



14 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC – Example 1



15 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC – Example 1



16 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC – Example 2



17 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC – Example 2



18 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC – Example 2



19 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC – Example 2



20 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC – Example 2



21 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC – Example 2



22 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC – Example 2



23 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

Multi-Version Concurrency Control

• MVCC is more than just a Concurrency Control protocol.
• It completely affects how the DBMS manages transactions and the database.
• Examples: Oracle, SAP HANA, PostgreSQL, CockroachDB



24 / 67

Multi-Version Concurrency Control Multi-Version Concurrency Control

MVCC Design Decisions

• Concurrency Control Protocol
• Version Storage
• Garbage Collection
• Index Management



25 / 67

Multi-Version Concurrency Control Concurrency Control Protocol

Concurrency Control Protocol



26 / 67

Multi-Version Concurrency Control Concurrency Control Protocol

Concurrency Control Protocol

• Approach 1: Timestamp Ordering
▶ Assign txns timestamps that determine serial order.

• Approach 2: Optimistic Concurrency Control
▶ Three-phase protocol from last class.
▶ Use private workspace for new versions.

• Approach 3: Two-Phase Locking
▶ Txns acquire appropriate lock on physical version before they can read/write a logical

tuple.



27 / 67

Multi-Version Concurrency Control Version Storage

Version Storage



28 / 67

Multi-Version Concurrency Control Version Storage

Version Storage

• The DBMS uses the tuples’ pointer field to create a version chain per logical tuple.
▶ This allows the DBMS to find the version that is visible to a particular txn at runtime.
▶ Indexes always point to the head of the chain.

• Different storage schemes determine where/what to store for each version.



29 / 67

Multi-Version Concurrency Control Version Storage

Version Storage

• Approach 1: Append-Only Storage
▶ New versions are appended to the same table space.

• Approach 2: Time-Travel Storage
▶ Old versions are copied to separate table space.

• Approach 3: Delta Storage
▶ The original values of the modified attributes are copied into a separate delta record space.



30 / 67

Multi-Version Concurrency Control Version Storage

Append-Only Storage

• All of the physical versions of a logical tuple are stored in the same table space. The
versions are mixed together.

• On every update, append a new version of the tuple into an empty space in the table.



31 / 67

Multi-Version Concurrency Control Version Storage

Append-Only Storage

• All of the physical versions of a logical tuple are stored in the same table space. The
versions are mixed together.

• On every update, append a new version of the tuple into an empty space in the table.



32 / 67

Multi-Version Concurrency Control Version Storage

Append-Only Storage

• All of the physical versions of a logical tuple are stored in the same table space. The
versions are mixed together.

• On every update, append a new version of the tuple into an empty space in the table.



33 / 67

Multi-Version Concurrency Control Version Storage

Version Chain Ordering

• Approach 1: Oldest-to-Newest (O2N)
▶ Just append new version to end of the chain.
▶ Have to traverse chain on look-ups.

• Approach 2: Newest-to-Oldest (N2O)
▶ Have to update index pointers for every new version.
▶ Don’t have to traverse chain on look ups.



34 / 67

Multi-Version Concurrency Control Version Storage

Time-Travel Storage

• On every update, copy the current version to the time-travel table. Update pointers.
• Overwrite master version in the main table. Update pointers.



35 / 67

Multi-Version Concurrency Control Version Storage

Time-Travel Storage

• On every update, copy the current version to the time-travel table. Update pointers.
• Overwrite master version in the main table. Update pointers.



36 / 67

Multi-Version Concurrency Control Version Storage

Time-Travel Storage

• On every update, copy the current version to the time-travel table. Update pointers.
• Overwrite master version in the main table. Update pointers.



37 / 67

Multi-Version Concurrency Control Version Storage

Time-Travel Storage

• On every update, copy the current version to the time-travel table. Update pointers.
• Overwrite master version in the main table. Update pointers.



38 / 67

Multi-Version Concurrency Control Version Storage

Delta Storage

• On every update, copy only the values that were modified to the delta storage and
overwrite the master version.

• Txns can recreate old versions by applying the delta in reverse order.



39 / 67

Multi-Version Concurrency Control Version Storage

Delta Storage

• On every update, copy only the values that were modified to the delta storage and
overwrite the master version.

• Txns can recreate old versions by applying the delta in reverse order.



40 / 67

Multi-Version Concurrency Control Version Storage

Delta Storage

• On every update, copy only the values that were modified to the delta storage and
overwrite the master version.

• Txns can recreate old versions by applying the delta in reverse order.



41 / 67

Multi-Version Concurrency Control Version Storage

Delta Storage

• On every update, copy only the values that were modified to the delta storage and
overwrite the master version.

• Txns can recreate old versions by applying the delta in reverse order.



42 / 67

Multi-Version Concurrency Control Garbage Collection

Garbage Collection



43 / 67

Multi-Version Concurrency Control Garbage Collection

Garbage Collection

• The DBMS needs to remove reclaimable physical versions from the database over
time.
▶ No active txn in the DBMS can see that version (SI).
▶ The version was created by an aborted txn.

• Two additional design decisions:
▶ How to look for expired versions?
▶ How to decide when it is safe to reclaim memory?



44 / 67

Multi-Version Concurrency Control Garbage Collection

Garbage Collection

• Approach 1: Tuple-level
▶ Find old versions by examining tuples directly.
▶ Background Vacuuming vs. Cooperative Cleaning

• Approach 2: Transaction-level
▶ Txns keep track of their old versions so the DBMS does not have to scan tuples to

determine visibility.



45 / 67

Multi-Version Concurrency Control Garbage Collection

Tuple-level GC

• Background Vacuuming:
• Separate thread(s) periodically scan the table and look for reclaimable versions.
• Works with any storage.



46 / 67

Multi-Version Concurrency Control Garbage Collection

Tuple-level GC



47 / 67

Multi-Version Concurrency Control Garbage Collection

Tuple-level GC



48 / 67

Multi-Version Concurrency Control Garbage Collection

Tuple-level GC



49 / 67

Multi-Version Concurrency Control Garbage Collection

Tuple-level GC



50 / 67

Multi-Version Concurrency Control Garbage Collection

Tuple-level GC

• Cooperative Cleaning:
• Worker threads identify reclaimable versions as they traverse version chain.
• Only works with O2N.



51 / 67

Multi-Version Concurrency Control Garbage Collection

Tuple-level GC



52 / 67

Multi-Version Concurrency Control Garbage Collection

Tuple-level GC



53 / 67

Multi-Version Concurrency Control Garbage Collection

Tuple-level GC



54 / 67

Multi-Version Concurrency Control Garbage Collection

Tuple-level GC



55 / 67

Multi-Version Concurrency Control Garbage Collection

Transaction-level GC

• Each txn keeps track of its read/write set.
• The DBMS determines when all versions created by a finished txn are no longer visible.



56 / 67

Multi-Version Concurrency Control Index Management

Index Management



57 / 67

Multi-Version Concurrency Control Index Management

Index Management

• Primary key indexes point to version chain head.
▶ How often the DBMS has to update the pkey index depends on whether the system

creates new versions when a tuple is updated.
▶ If a txn updates a tuple’s pkey attribute(s), then this is treated as an DELETE followed by

an INSERT.

• Secondary indexes are more complicated. . .



58 / 67

Multi-Version Concurrency Control Index Management

Secondary Indexes

• Approach 1: Physical Pointers
▶ Use the physical address to the version chain head.

• Approach 2: Logical Pointers
▶ Use a fixed identifier per tuple that does not change.
▶ Requires an extra indirection layer.
▶ Primary Key vs. Tuple Id



59 / 67

Multi-Version Concurrency Control Index Management

Physical Pointers



60 / 67

Multi-Version Concurrency Control Index Management

Physical Pointers



61 / 67

Multi-Version Concurrency Control Index Management

Physical Pointers



62 / 67

Multi-Version Concurrency Control Index Management

Physical Pointers



63 / 67

Multi-Version Concurrency Control Index Management

Logical Pointers



64 / 67

Multi-Version Concurrency Control Index Management

Logical Pointers



65 / 67

Multi-Version Concurrency Control Index Management

MVCC Implementations

DBMS Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical
Postgres MV-2PL/MV-TO Append-Only Vacuum Physical
MySQL-InnoDB MV-2PL Delta Vacuum Logical
HYRISE MV-OCC Append-Only – Physical
Hekaton MV-OCC Append-Only Cooperative Physical
MemSQL MV-OCC Append-Only Vacuum Physical
SAP HANA MV-2PL Time-travel Hybrid Logical
NuoDB MV-2PL Append-Only Vacuum Logical
HyPer MV-OCC Delta Txn-level Logical



66 / 67

Multi-Version Concurrency Control Index Management

Conclusion

• MVCC is the widely used scheme in DBMSs.
• Even systems that do not support multi-statement txns (e.g., NoSQL) use it.



67 / 67

Multi-Version Concurrency Control Index Management

Next Class

• Advanced topics in Concurrency Control


	Multi-Version Concurrency Control
	Recap
	Multi-Version Concurrency Control
	Concurrency Control Protocol
	Version Storage
	Garbage Collection
	Index Management


