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Design Decisions + Search Strategies = Recap.

Query Optimization

e For a given query, find a correct execution plan that has the lowest "cost".

e This is the part of a DBMS that is the hardest to implement well (proven to be
NP-Complete).

e No optimizer truly produces the "optimal" plan

Use heuristics to limit the search space.
Use estimation techniques to guess real plan cost.
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Cost Estimation

* Generate an estimate of the cost of executing a plan for the current state of the
database.
Interactions with other work in DBMS
Size of intermediate results
Choices of algorithms, access methods
Resource utilization (CPU, I/O, network)
Data properties (skew, order, placement)

e We will discuss this more next week. . .
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Design Decisions

Optimization Granularity

Optimization Timing

Prepared Statements
Plan Stability

Search Termination

Search Strategy — Important
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Design Decisions + Search Strategies = Design Decisions

Optimization Granularity

e Choice 1: Single Query

Much smaller search space.
DBMS (usually) does not reuse results across queries.
To account for resource contention, the cost model must consider what is currently
running.
e Choice 2: Multiple Queries

More efficient if there are many similar queries.
Search space is much larger.
Useful for data / intermediate result sharing.
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Optimization Timing

e Choice 1: Static Optimization

Select the best plan prior to execution.
Plan quality is dependent on cost model accuracy.
Can amortize over executions with prepared statements.

e Choice 2: Dynamic Optimization

Select operator plans on-the-fly as queries execute.
Will have re-optimize for multiple executions.
Difficult to implement/debug (non-deterministic)

e Choice 3: Adaptive Optimization

Compile using a static algorithm.
If the estimate errors > threshold, change or re-optimize.
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Prepared Statements

SELECT A.id, B.val
FROM A, B, C
WHERE A.id = B.id
AND B.id = C.id
AND A.val > 100
AND B.val > 99
AND C.val > 5000
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Prepared Statements

Design Decisions
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PREPARE myQuery(int, int, int) AS
SELECT A.id, B.val
FROM A, B, C
WHERE A.id = B.id
AND B.id = C.id
AND A.val > ?
AND B.val > ?
AND C.val > ?

[EXECUTE myQuery (100, 99, 5000);

|

What should be the join
order for A, B, and C?

P 5. i6c.1d
/
M A.id=B.id
/" \
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Prepared Statements

Choice 1: Reuse Last Plan
Use the plan generated for the previous invocation.
Choice 2: Re-Optimize

Rerun optimizer each time the query is invoked.
Tricky to reuse existing plan as starting point.

Choice 3: Multiple Plans
Generate multiple plans for different values of the parameters (e.g., buckets).

Choice 4: Average Plan

Choose the average value for a parameter and use that for all invocations.
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Plan Stability

e Choice 1: Hints
Allow the DBA to provide hints to the optimizer.
e Choice 2: Fixed Optimizer Versions

Set the optimizer version number and migrate queries one-by-one to the new optimizer.
e Choice 3: Backwards-Compatible Plans

Save query plan from old version and provide it to the new DBMS.
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Search Termination

e Approach 1: Wall-clock Time

Stop after the optimizer runs for some length of time.
e Approach 2: Cost Threshold

Stop when the optimizer finds a plan that has a lower cost than some threshold (e.g.,
search depth in MySQL's optimizer).
e Approach 3: Exhaustion

Stop when there are no more enumerations of the target plan. Usually done per group.
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Optimization Search Strategies

Heuristics

Heuristics + Cost-based Join Order Search

Randomized Algorithms
Stratified Search
Unified Search
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Heuristic-Based Optimization

e Define static rules that transform logical operators to a physical plan.

Perform most restrictive selection early
Perform all selections before joins
Predicate/Limit/Projection pushdowns
Join ordering based on cardinality

e Examples: INGRES and Oracle (until mid 1990s).
e Reference
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https://dl.acm.org/doi/10.5555/1286711.1286755
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Example Database

CREATE TABLE APPEARS (
ARTIST_ID INT
REFERENCES ARTIST(ID),
ALBUM_ID INT
REFERENCES ALBUM(ID),
PRIMARY KEY
(ARTIST_ID, ALBUM_ID)

)H

CREATE TABLE ARTIST (
ID INT PRIMARY KEY,
NAME VARCHAR(32)

s

CREATE TABLE ALBUM (
ID INT PRIMARY KEY,
NAME VARCHAR(32) UNIQUE

)5
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Optimization Search Strat

Ingres Optimizer

Retrieve the names of people that appear on Andy's mixtape o1
SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
SELECT ARTIST.NAME R AL
FROM ARTIST, APPEARS, ALBUM » WHERE ALBUM.NAME="Andy’s OG Remix"
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS. ALBUM_ID=ALBUM. ID 2

AND ALBUM.NAME="Andy’s OG Remix”
SELECT ARTIST.NAME

FROM ARTIST, APPEARS, TEMP1
WHERE ARTIST.ID=APPEARS.ARTIST_ID

Step #1: Decompose into single-value queries
4 4 8 AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
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Ingres Optimizer

Optimization Search Strat
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Retrieve the names of people that appear on Andy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Andy’s 0G Remix”

Step #1: Decompose into single-value queries

Q7
SELECT

Q3
SELECT
FROM
WHERE

04
SELECT
FROM
WHERE

ALBUM.ID AS ALBUM_ID INTO TEMP1
ALBUM
ALBUM.NAME="Andy ’s 0G Remix"

APPEARS.ARTIST_ID INTO TEMP2
APPEARS, TEMP1
APPEARS . ALBUM_ID=TEMP1.ALBUM_ID

ARTIST.NAME
ARTIST, TEMP2
ARTIST.ARTIST_ID=TEMP2.ARTIST_ID



Optimization Search Strat

Ingres Optimizer

Retrieve the names of people that appear on Andy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy’s OG Remix”

SELECT APPEARS.ARTIST_ID
FROM APPEARS

Step #1: Decompose into single-value queries G (ARG DR

Step #2: Substitute the values from o4

Q1—Q3—04 SELECT ARTIST.NAME
FROM ARTIST, TEMP2

WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID
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Ingres Optimizer

Retrieve the names of people that appear on Andy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Andy’s OG Remix ARTIST_ID
123
Step #1: Decompose into single-value queries 456
04

Step #2: Substitute the values from
SELECT ARTIST.NAME

1—Q3—Q4
Q Q Q FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID
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Ingres Optimizer

Retrieve the names of people that appear on Andy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM. ID
AND ALBUM.NAME="Andy’s 0G Remix”

ARTIST_ID
123
Step #1: Decompose into single-value queries
Step #2: Substitute the values from SELECT ARTIST.NAME
QU—Q3—Q4 FROM ARTIST

WHERE ARTIST.ARTIST_ID=123

SELECT ARTIST.NAME
FROM ARTIST
WHERE ARTIST.ARTIST_ID=456
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Ingres Optimizer

Retrieve the names of people that appear on Andy's mixtape
SELECT ARTIST.NAME ALBUM_ID
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS . ALBUM_ID=ALBUM. ID
AND ALBUM.NAME="Andy’s OG Remix”

ARTIST_ID

Step #1: Decompose into single-value queries

Step #2: Substitute the values from NAME

U—-Q—Q4

NAME
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Design Decisions + Search Strategies = Optimization Search Strategies

Heuristic-Based Optimization

e Advantages:

Easy to implement and debug.
Works reasonably well and is fast for simple queries.

e Disadvantages:

Relies on magic constants that predict the efficacy of a planning decision.
Nearly impossible to generate good plans when operators have complex
inter-dependencies.
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Design Decisions + Search Strategies = Optimization Search Strategies

Heuristics + Cost-based Join Search

Use static rules to perform initial optimization.

Then use dynamic programming to determine
the best join order for tables.
First cost-based query optimizer
Bottom-up planning (forward chaining) using
a divide-and-conquer search method

Examples: System R, early IBM DB2, most
open-source DBMSs.

Reference
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https://dl.acm.org/doi/10.1145/582095.582099

Design Decisions + Search Strategies = Optimization Search Strategies

System R Optimizer

* Break query up into blocks and generate the logical operators for each block.
e For each logical operator, generate a set of physical operators that implement it.
All combinations of join algorithms and access paths

e Then iteratively construct a “left-deep” join tree that minimizes the estimated amount
of work to execute the plan.
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System R Optimizer

\item SELECT ARTIST.NAME

\item FROM ARTIST, APPEARS, ALBUM

\item WHERE ARTIST.ID=APPEARS.ARTIST_ID

\item AND APPEARS.ALBUM_ID=ALBUM.ID

\item AND ALBUM.NAME= “Andy's OG Remix”

\item ORDER BY ARTIST.ID --- Ordered based on the artist id.

e Step 1: Choose the best access paths to each table
e Step 2: Enumerate all possible join orderings for tables
e Step 3: Determine the join ordering with the lowest cost
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System R Optimizer

Optimization Search Strategies

ARTIST:  Sequential Scan
APPEARS: Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST X APPEARS X ALBUM
APPEARS X ALBUM X ARTIST
ALBUM X APPEARS X ARTIST
APPEARS X ARTIST X ALBUM
ARTIST x ALBUM X APPEARS
ALBUM x ARTIST X APPEARS

Georgia
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+ Search Strategie imization Search Strategies

System R Optimizer

ARTIST D4 APPEARS D ALBUM

ARTISTPAPPEARS ALBUMPDIAPPEARS APPEARSPIALBUM

eee
ALBUM ARTIST ARTIST

ARTIST. ID=APPEARS . ARTIST_ID

ARTIST ALBUM APPEARS
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+ Search Strategie imization Search Str

&

System R Optimizer

ARTIST P4 APPEARS P4 ALBUM

ARTISTDJAPPEARS ALBUMPIAPPEARS APPEARSPIALBUM
ALBUM ARTIST ARTIST

ALBUM, ID=APPEARS. ALBUY_ID

ID-APPEARS ARTIST_ID

ARTIST ALBUM APPEARS
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System R Optimizer

ARTIST B4 APPEARS D4 ALBUM

HASH_JOIN(A1D4A3, A2) HASH_JOIN(A2DdA3, A1) HASH_JOIN(A3DdA2,AT) .
ARTISTDPJAPPEARS ALBUMDIAPPEARS APPEARSDJALBUM PP
ALBUM ARTIST ARTIST
eee

ARTIST ALBUM APPEARS
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System R Optimizer

Search Strategies

Optimization Search Strategies
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ARTIST P4 APPEARS D4 ALBUM

The query has ORDER BY on
ARTIST. ID but the logical plans do not
contain sorting properties.

HASH_JOIN(A2D<1A3, A1)

AALBUMDJAPPEARS
ARTIST

ARTIST ALBUM APPEARS



Design Decisions + Search Strategies = Optimization Search Strategies

Top-down vs. Bottom-up

e Top-down Optimization

Start with the outcome that you want, and then work down the tree to find the optimal
plan that gets you to that goal.
Examples: Volcano, Cascades

e Bottom-up Optimization

Start with nothing and then build up the plan to get to the outcome that you want.
Examples: System R, Starburst, Hyper
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Design Decisions + Search Strategies = Optimization Search Strategies

Postgres Optimizer

e Imposes a rigid workflow for query optimization:
First stage performs initial rewriting with heuristics
It then executes a cost-based search to find optimal join ordering.
Everything else is treated as an “add-on”.
Then recursively descends into sub-queries.
Asumptions about inputs are baked into the code (not elegant).

e Difficult to modify or extend because the ordering must be preserved.
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Design Decisions + Search Strategies = Optimization Search Strategies

Heuristics + Cost-based Join Search

e Advantages:
Usually finds a reasonable plan without having to perform an exhaustive search.
* Disadvantages:

All the same problems as the heuristic-only approach.

Left-deep join trees are not always optimal.

Must take in consideration the physical properties of data in the cost model (e.g., sort
order).
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Design Decisions + Search Strategies = Optimization Search Strategies

Randomized Algorithms

e Perform a random walk over a solution space of all possible (valid) plans for a query.

e Continue searching until a cost threshold is reached or the optimizer runs for a length
of time.

» Examples: Postgres’ genetic algorithm.
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Tech



Design Decisions + Search Strategies = Optimization Search Strategies

Simulated Annealing

e Start with a query plan that is generated using the heuristic-only approach.
e Compute random permutations of operators (e.g., swap the join order of two tables)

Always accept a change that reduces cost
Only accept a change that increases cost with some probability.
Reject any change that violates correctness (e.g., sort ordering)

e Reference
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https://dl.acm.org/doi/abs/10.1145/38713.38722

Design Decisions + Search Strategies = Optimization Search Strategies

Postgres Genetic Optimizer

e More complicated queries use a genetic algorithm that selects join orderings (GEQO).

At the beginning of each round, generate different variants of the query plan.
Select the plans that have the lowest cost and permute them with other plans. Repeat.
The mutator function only generates valid plans.

Postgres Documentation
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http://www.postgresql.org/docs/9.4/static/geqo-pg-intro.html
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Postgres Optimizer

Optimization Search Strategies
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Postgres Optimizer

Design Decisions + Search Strategi

imization Search Strategies
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Postgres Optimizer
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Design Decisions + Search Strategies = Optimization Search Strategies

Randomized Algorithms

e Advantages:

Jumping around the search space randomly allows the optimizer to get out of local
minimums.
Low memory overhead (if no history is kept).

e Disadvantages:

Difficult to determine why the DBMS may have chosen a plan.
Must do extra work to ensure that query plans are deterministic.
Must still implement correctness rules.
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Optimizer Generators



Design Decisions + Search Strategies = Optimizer Generators

Observation

e Writing query transformation rules in a procedural language is hard and error-prone.
No easy way to verify that the rules are correct without running a lot of fuzz tests.
Generation of physical operators per logical operator is decoupled from deeper semantics
about query.

e A better approach is to use a declarative DSL to write the transformation rules and

then have the optimizer enforce them during planning.
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Optimizer Generators

e Framework to allow a DBMS implementer to write the declarative rules for
optimizing queries.
Separate the search strategy from the data model.
Separate the transformation rules and logical operators from physical rules and physical
operators.

e Implementation can be independent of the optimizer’s search strategy.
e Examples: Starburst, Exodus, Volcano, Cascades, OPT++
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Design Decisions + Search Strategies = Optimizer Generators

Optimizer Generators

Use a rule engine that allows transformations to modify the query plan operators.

The physical properties of data is embedded with the operators themselves.
Choice 1: Stratified Search

Planning is done in multiple stages
Choice 2: Unified Search

Perform query planning all at once.
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Design Decisions + Search Strategies = Optimizer Generators

Stratified Search

e First rewrite the logical query plan using transformation rules.

The engine checks whether the transformation is allowed before it can be applied.
Cost is never considered in this step.

e Then perform a cost-based search to map the logical plan to a physical plan.
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Starburst Optimizer

Better implementation of the System R
optimizer that uses declarative rules.
Stage 1: Query Rewrite

Compute a SQL-block-level, relational
calculus-like representation of queries.

Stage 2: Plan Optimization

Execute a System R-style dynamic

programming phase once query rewrite has (|
completed. Guy Lohman
e Example: Latest version of IBM DB2
e Reference
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https://dl.acm.org/doi/abs/10.1145/971701.50204

Design Decisions + Search Strategies = Optimizer Generators

Starburst Optimizer

e Advantages:
Works well in practice with fast performance.
¢ Disadvantages:

Difficult to assign priorities to transformations
Some transformations are difficult to assess without computing multiple cost estimations.
Rules maintenance is a huge pain.
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Unified Search

¢ Unify the notion of both logical—logical and logical—physical transformations.
No need for separate stages because everything is transformations.

e This approach generates many transformations, so it makes heavy use of memoization
to reduce redundant work.
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Volcano Optimizer

* General purpose cost-based query optimizer,
based on equivalence rules on algebras.

Easily add new operations and equivalence
rules.
Treats physical properties of data as first-class
entities during planning.
Top-down approach (backward chaining)
using branch-and-bound search.

e Example: Academic prototypes Goetz Graefe

e Reference
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https://ieeexplore.ieee.org/document/344061

Design Decisions + Search Strategies ~ Optimizer Generators

Volcano Optimizer

ARTIST P4 APPEARS D4 ALBUM

Start with a logical plan of what ORDER-BY (ARTIST. ID)
we want the query to be.
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Volcano Optimizer

Start with hc; logical plzn of what R e S
we want the query to be.
Invoke rules to create new nodes and
traverse tree.
— Logical—Logical:
JOIN(A,B) to JOIN(B,A)
— Logical —>Physical:
JOIN(A,B) to HASH_JOIN(A,B) ARTISTPJAPPEARS ALBUMPIAPPEARS ARTISTPJALBUM

ARTIST ALBUM APPEARS
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Design Decisions + Search Strategies ~ Optimizer Generators

Volcano Optimizer

Start withalogica plan of what e
we want the query to be.
Invoke rules to create new nodes and
traverse tree.
— Logical—Logical: SM_JOIN(A1><A2,A3)
JOIN(A,B) to JOIN(B,A) /
— Logical —>Physical:
JOIN(A]B) to HASH_JOIN(A,B) ARTISTPJAPPEARS ALBUMD<IAPPEARS ARTISTDJALBUM

HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
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Volcano Optimizer

. . ARTIST APPEARS ALBUM
Start with h‘: logical plzn of what Ao A
we want the query to be.

Invoke rules to create new nodes and
traverse tree.

— Logical—Logical: SM_JOIN(A1b1A2,A3)
JOIN(A,B) to JOIN(B,A) /
— Logical >Physical:
JOIN(A B) to HASH. JOIN(A B) ARTISTPIAPPEARS ALBUMPAPPEARS ARTISTPJALBUM

ARTIST ALBUM APPEARS
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Volcano Optimizer

Start with hz: logical plz;n of what S e
we want the query to be.

Invoke rules to create new nodes and
traverse tree.

— LogicalHLogical; SM_JOIN(A1>dA2,A3)
JOIN(A,B) to JOIN(B,A) /
— Logical >Physical:
JOIN(A,B) to HASH_JOIN(A,B) ARTISTEN. AL ARTISTD<IALBUM

HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
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Volcano Optimizer

Georgia
Tech

Start with ht; logical pl;:n of what S S
we want the query to be.
Invoke rules to create new nodes and
traverse tree.
— Logical—Logical: SM_JOIN(A1p<A2,A3)
JOIN(A,B) to JOIN(B,A) / T
— Logical »>Physical:
JO[N(A’B) to HASH,_]OIN(A,B) ARTISTDJAPPEARS ALBUMPIAPPEARS ARTISTPALBUM

SM_JOIN(A1,A2)

ARTIST ALBUM APPEARS

Can create “enforcer”rules that
require input to have certain
properties.

HASH_JOIN(A1,A2)
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Volcano Optimizer
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Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes and
traverse tree.
— Logical—Logical:
JOIN(A,B) to JOIN(B,A)
— Logical »Physical:
JOIN(A,B) to HASH_JOIN(A,B) ARTISTDIAPPEARS

Can create ‘enforcer”rules that
require input to have certain
properties.

HASH_JOIN(A1,A2)

ARTIST

ARTIST D APPEARS P ALBUM
ORDER-BY (ARTIST.ID)

HASH_JOIN(A1D<IA2,A3)

SM_JOIN(A1p<iA2,A3)

ALBUMP<APPEARS

SM_JOIN(A1,A2)

ARTISTPIALBUM

APPEARS
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Volcano Optimizer

Georgia
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. . ARTIST p<d APPEARS P4 ALBUM

Start wtth}:: logwal Plzn Of what ORDER-BY (ARTIST.ID)
we want the query to be.
Invoke rules to create new nodes and
traverse tree iy | el
— Logical—Logical: SM_JOIN(A1D<A2,A3)

JOIN(A,B) to JOIN(B,A) /
— Logical »>Physical:

_]OIN(A B) to HASH. JOIN(A B) ARTISTPJAPPEARS ALBUMDJAPPEARS ARTISTPJALBUM

, . ,

Can create ‘enforcer”rules that
require input to have certain
properties.

SM_JOIN(A1,A2)

HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
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Volcano Optimizer

ARTIST P APPEARS P ALBUM

Start with a logical plan of what ORDER-BY (ARTIST. ID)

we want the query to be.
Invoke rules to create new nodes and
4

HASH_JOIN!  <IA2,A3)

traverse tree.
— Logical—Logical: uash, 30800 cx2, 13) SM_JOIN(A1D<A2,A3)
JOIN(A,B) to JOIN(B,A) -
— Logical —»Physical: I
JOIN(A,B) to HASH_JOIN(A,B) ARTISTPJIAPPEARS ALBUMPJIAPPEARS ARTISTPJALBUM

Can create ‘enforcer”rules that
require input to have certain
properties.

HASH_JOIN(A1,A2)

ARTIST
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Design Decisions + Search Strategies = Optimizer Generators

Volcano Optimizer

e Advantages:

Use declarative rules to generate transformations.
Better extensibility with an efficient search engine. Reduce redundant estimations using
memoization.

e Disadvantages:

All equivalence classes are completely expanded to generate all possible logical operators
before the optimization search.
Not easy to modify predicates.
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Conclusion
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Parting Thoughts

* Design decisions
Optimization Granularity
Optimization Timing
Prepared Statements
Plan Stability
Search Termination
Search Strategy — Important

e Query optimization is non-trivial

e This difficulty is why NoSQL systems didn’t implement optimizers (at first).
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Next Class

e Cascades
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