
1 / 65

Design Decisions + Search Strategies

Lecture 21: Design Decisions + Search
Strategies



2 / 65

Design Decisions + Search Strategies

Today's Agenda

Design Decisions + Search Strategies
1.1 Recap
1.2 Design Decisions
1.3 Optimization Search Strategies
1.4 Optimizer Generators
1.5 Conclusion



3 / 65

Design Decisions + Search Strategies Recap

Recap



4 / 65

Design Decisions + Search Strategies Recap

Query Optimization

• For a given query, find a correct execution plan that has the lowest "cost".
• This is the part of a DBMS that is the hardest to implement well (proven to be

NP-Complete).
• No optimizer truly produces the "optimal" plan

▶ Use heuristics to limit the search space.
▶ Use estimation techniques to guess real plan cost.



5 / 65

Design Decisions + Search Strategies Recap

Cost Estimation

• Generate an estimate of the cost of executing a plan for the current state of the
database.
▶ Interactions with other work in DBMS
▶ Size of intermediate results
▶ Choices of algorithms, access methods
▶ Resource utilization (CPU, I/O, network)
▶ Data properties (skew, order, placement)

• We will discuss this more next week. . .



6 / 65

Design Decisions + Search Strategies Design Decisions

Design Decisions



7 / 65

Design Decisions + Search Strategies Design Decisions

Design Decisions

• Optimization Granularity
• Optimization Timing
• Prepared Statements
• Plan Stability
• Search Termination
• Search Strategy – Important



8 / 65

Design Decisions + Search Strategies Design Decisions

Optimization Granularity

• Choice 1: Single Query
▶ Much smaller search space.
▶ DBMS (usually) does not reuse results across queries.
▶ To account for resource contention, the cost model must consider what is currently

running.
• Choice 2: Multiple Queries

▶ More efficient if there are many similar queries.
▶ Search space is much larger.
▶ Useful for data / intermediate result sharing.



9 / 65

Design Decisions + Search Strategies Design Decisions

Optimization Timing

• Choice 1: Static Optimization
▶ Select the best plan prior to execution.
▶ Plan quality is dependent on cost model accuracy.
▶ Can amortize over executions with prepared statements.

• Choice 2: Dynamic Optimization
▶ Select operator plans on-the-fly as queries execute.
▶ Will have re-optimize for multiple executions.
▶ Difficult to implement/debug (non-deterministic)

• Choice 3: Adaptive Optimization
▶ Compile using a static algorithm.
▶ If the estimate errors > threshold, change or re-optimize.



10 / 65

Design Decisions + Search Strategies Design Decisions

Prepared Statements



11 / 65

Design Decisions + Search Strategies Design Decisions

Prepared Statements



12 / 65

Design Decisions + Search Strategies Design Decisions

Prepared Statements

• Choice 1: Reuse Last Plan
▶ Use the plan generated for the previous invocation.

• Choice 2: Re-Optimize
▶ Rerun optimizer each time the query is invoked.
▶ Tricky to reuse existing plan as starting point.

• Choice 3: Multiple Plans
▶ Generate multiple plans for different values of the parameters (e.g., buckets).

• Choice 4: Average Plan
▶ Choose the average value for a parameter and use that for all invocations.



13 / 65

Design Decisions + Search Strategies Design Decisions

Plan Stability

• Choice 1: Hints
▶ Allow the DBA to provide hints to the optimizer.

• Choice 2: Fixed Optimizer Versions
▶ Set the optimizer version number and migrate queries one-by-one to the new optimizer.

• Choice 3: Backwards-Compatible Plans
▶ Save query plan from old version and provide it to the new DBMS.



14 / 65

Design Decisions + Search Strategies Design Decisions

Search Termination

• Approach 1: Wall-clock Time
▶ Stop after the optimizer runs for some length of time.

• Approach 2: Cost Threshold
▶ Stop when the optimizer finds a plan that has a lower cost than some threshold (e.g.,

search depth in MySQL’s optimizer).
• Approach 3: Exhaustion

▶ Stop when there are no more enumerations of the target plan. Usually done per group.



15 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Optimization Search Strategies



16 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Optimization Search Strategies

• Heuristics
• Heuristics + Cost-based Join Order Search
• Randomized Algorithms
• Stratified Search
• Unified Search



17 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Heuristic-Based Optimization

• Define static rules that transform logical operators to a physical plan.
▶ Perform most restrictive selection early
▶ Perform all selections before joins
▶ Predicate/Limit/Projection pushdowns
▶ Join ordering based on cardinality

• Examples: INGRES and Oracle (until mid 1990s).
• Reference

https://dl.acm.org/doi/10.5555/1286711.1286755


18 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Example Database

CREATE TABLE APPEARS (
ARTIST_ID INT
REFERENCES ARTIST(ID),
ALBUM_ID INT
REFERENCES ALBUM(ID),
PRIMARY KEY
(ARTIST_ID, ALBUM_ID)

);
CREATE TABLE ARTIST (
ID INT PRIMARY KEY,
NAME VARCHAR(32)

);
CREATE TABLE ALBUM (
ID INT PRIMARY KEY,
NAME VARCHAR(32) UNIQUE

);



19 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Ingres Optimizer



20 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Ingres Optimizer



21 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Ingres Optimizer



22 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Ingres Optimizer



23 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Ingres Optimizer



24 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Ingres Optimizer



25 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Heuristic-Based Optimization

• Advantages:
▶ Easy to implement and debug.
▶ Works reasonably well and is fast for simple queries.

• Disadvantages:
▶ Relies on magic constants that predict the efficacy of a planning decision.
▶ Nearly impossible to generate good plans when operators have complex

inter-dependencies.



26 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Heuristics + Cost-based Join Search

• Use static rules to perform initial optimization.
• Then use dynamic programming to determine

the best join order for tables.
▶ First cost-based query optimizer
▶ Bottom-up planning (forward chaining) using

a divide-and-conquer search method

• Examples: System R, early IBM DB2, most
open-source DBMSs.

• Reference

Pat Selinger

https://dl.acm.org/doi/10.1145/582095.582099


27 / 65

Design Decisions + Search Strategies Optimization Search Strategies

System R Optimizer

• Break query up into blocks and generate the logical operators for each block.
• For each logical operator, generate a set of physical operators that implement it.

▶ All combinations of join algorithms and access paths

• Then iteratively construct a “left-deep” join tree that minimizes the estimated amount
of work to execute the plan.



28 / 65

Design Decisions + Search Strategies Optimization Search Strategies

System R Optimizer

\item SELECT ARTIST.NAME
\item FROM ARTIST, APPEARS, ALBUM
\item WHERE ARTIST.ID=APPEARS.ARTIST_ID
\item AND APPEARS.ALBUM_ID=ALBUM.ID
\item AND ALBUM.NAME= “Andy's OG Remix”
\item ORDER BY ARTIST.ID --- Ordered based on the artist id.

• Step 1: Choose the best access paths to each table
• Step 2: Enumerate all possible join orderings for tables
• Step 3: Determine the join ordering with the lowest cost



29 / 65

Design Decisions + Search Strategies Optimization Search Strategies

System R Optimizer
ARTIST: Sequential Scan
APPEARS: Sequential Scan
ALBUM: Index Look-up on NAME

• ARTIST 1 APPEARS 1 ALBUM
• APPEARS 1 ALBUM 1 ARTIST
• ALBUM 1 APPEARS 1 ARTIST
• APPEARS 1 ARTIST 1 ALBUM
• ARTIST × ALBUM 1 APPEARS
• ALBUM × ARTIST 1 APPEARS
• . . .
• . . .



30 / 65

Design Decisions + Search Strategies Optimization Search Strategies

System R Optimizer



31 / 65

Design Decisions + Search Strategies Optimization Search Strategies

System R Optimizer



32 / 65

Design Decisions + Search Strategies Optimization Search Strategies

System R Optimizer



33 / 65

Design Decisions + Search Strategies Optimization Search Strategies

System R Optimizer



34 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Top-down vs. Bottom-up

• Top-down Optimization
▶ Start with the outcome that you want, and then work down the tree to find the optimal

plan that gets you to that goal.
▶ Examples: Volcano, Cascades

• Bottom-up Optimization
▶ Start with nothing and then build up the plan to get to the outcome that you want.
▶ Examples: System R, Starburst, Hyper



35 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Postgres Optimizer

• Imposes a rigid workflow for query optimization:
▶ First stage performs initial rewriting with heuristics
▶ It then executes a cost-based search to find optimal join ordering.
▶ Everything else is treated as an “add-on”.
▶ Then recursively descends into sub-queries.
▶ Asumptions about inputs are baked into the code (not elegant).

• Difficult to modify or extend because the ordering must be preserved.



36 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Heuristics + Cost-based Join Search

• Advantages:
▶ Usually finds a reasonable plan without having to perform an exhaustive search.

• Disadvantages:
▶ All the same problems as the heuristic-only approach.
▶ Left-deep join trees are not always optimal.
▶ Must take in consideration the physical properties of data in the cost model (e.g., sort

order).



37 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Randomized Algorithms

• Perform a random walk over a solution space of all possible (valid) plans for a query.
• Continue searching until a cost threshold is reached or the optimizer runs for a length

of time.
• Examples: Postgres’ genetic algorithm.



38 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Simulated Annealing

• Start with a query plan that is generated using the heuristic-only approach.
• Compute random permutations of operators (e.g., swap the join order of two tables)

▶ Always accept a change that reduces cost
▶ Only accept a change that increases cost with some probability.
▶ Reject any change that violates correctness (e.g., sort ordering)

• Reference

https://dl.acm.org/doi/abs/10.1145/38713.38722


39 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Postgres Genetic Optimizer

• More complicated queries use a genetic algorithm that selects join orderings (GEQO).
• At the beginning of each round, generate different variants of the query plan.
• Select the plans that have the lowest cost and permute them with other plans. Repeat.

▶ The mutator function only generates valid plans.

• Postgres Documentation

http://www.postgresql.org/docs/9.4/static/geqo-pg-intro.html


40 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Postgres Optimizer



41 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Postgres Optimizer



42 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Postgres Optimizer



43 / 65

Design Decisions + Search Strategies Optimization Search Strategies

Randomized Algorithms

• Advantages:
▶ Jumping around the search space randomly allows the optimizer to get out of local

minimums.
▶ Low memory overhead (if no history is kept).

• Disadvantages:
▶ Difficult to determine why the DBMS may have chosen a plan.
▶ Must do extra work to ensure that query plans are deterministic.
▶ Must still implement correctness rules.



44 / 65

Design Decisions + Search Strategies Optimizer Generators

Optimizer Generators



45 / 65

Design Decisions + Search Strategies Optimizer Generators

Observation

• Writing query transformation rules in a procedural language is hard and error-prone.
▶ No easy way to verify that the rules are correct without running a lot of fuzz tests.
▶ Generation of physical operators per logical operator is decoupled from deeper semantics

about query.

• A better approach is to use a declarative DSL to write the transformation rules and
then have the optimizer enforce them during planning.



46 / 65

Design Decisions + Search Strategies Optimizer Generators

Optimizer Generators

• Framework to allow a DBMS implementer to write the declarative rules for
optimizing queries.
▶ Separate the search strategy from the data model.
▶ Separate the transformation rules and logical operators from physical rules and physical

operators.

• Implementation can be independent of the optimizer’s search strategy.
• Examples: Starburst, Exodus, Volcano, Cascades, OPT++



47 / 65

Design Decisions + Search Strategies Optimizer Generators

Optimizer Generators

• Use a rule engine that allows transformations to modify the query plan operators.
• The physical properties of data is embedded with the operators themselves.
• Choice 1: Stratified Search

▶ Planning is done in multiple stages
• Choice 2: Unified Search

▶ Perform query planning all at once.



48 / 65

Design Decisions + Search Strategies Optimizer Generators

Stratified Search

• First rewrite the logical query plan using transformation rules.
▶ The engine checks whether the transformation is allowed before it can be applied.
▶ Cost is never considered in this step.

• Then perform a cost-based search to map the logical plan to a physical plan.



49 / 65

Design Decisions + Search Strategies Optimizer Generators

Starburst Optimizer

• Better implementation of the System R
optimizer that uses declarative rules.

• Stage 1: Query Rewrite
▶ Compute a SQL-block-level, relational

calculus-like representation of queries.
• Stage 2: Plan Optimization

▶ Execute a System R-style dynamic
programming phase once query rewrite has
completed.

• Example: Latest version of IBM DB2
• Reference

Guy Lohman

https://dl.acm.org/doi/abs/10.1145/971701.50204


50 / 65

Design Decisions + Search Strategies Optimizer Generators

Starburst Optimizer

• Advantages:
▶ Works well in practice with fast performance.

• Disadvantages:
▶ Difficult to assign priorities to transformations
▶ Some transformations are difficult to assess without computing multiple cost estimations.
▶ Rules maintenance is a huge pain.



51 / 65

Design Decisions + Search Strategies Optimizer Generators

Unified Search

• Unify the notion of both logical→logical and logical→physical transformations.
▶ No need for separate stages because everything is transformations.

• This approach generates many transformations, so it makes heavy use of memoization
to reduce redundant work.



52 / 65

Design Decisions + Search Strategies Optimizer Generators

Volcano Optimizer

• General purpose cost-based query optimizer,
based on equivalence rules on algebras.
▶ Easily add new operations and equivalence

rules.
▶ Treats physical properties of data as first-class

entities during planning.
▶ Top-down approach (backward chaining)

using branch-and-bound search.

• Example: Academic prototypes
• Reference

Goetz Graefe

https://ieeexplore.ieee.org/document/344061


53 / 65

Design Decisions + Search Strategies Optimizer Generators

Volcano Optimizer



54 / 65

Design Decisions + Search Strategies Optimizer Generators

Volcano Optimizer



55 / 65

Design Decisions + Search Strategies Optimizer Generators

Volcano Optimizer



56 / 65

Design Decisions + Search Strategies Optimizer Generators

Volcano Optimizer



57 / 65

Design Decisions + Search Strategies Optimizer Generators

Volcano Optimizer



58 / 65

Design Decisions + Search Strategies Optimizer Generators

Volcano Optimizer



59 / 65

Design Decisions + Search Strategies Optimizer Generators

Volcano Optimizer



60 / 65

Design Decisions + Search Strategies Optimizer Generators

Volcano Optimizer



61 / 65

Design Decisions + Search Strategies Optimizer Generators

Volcano Optimizer



62 / 65

Design Decisions + Search Strategies Optimizer Generators

Volcano Optimizer

• Advantages:
▶ Use declarative rules to generate transformations.
▶ Better extensibility with an efficient search engine. Reduce redundant estimations using

memoization.
• Disadvantages:

▶ All equivalence classes are completely expanded to generate all possible logical operators
before the optimization search.

▶ Not easy to modify predicates.



63 / 65

Design Decisions + Search Strategies Conclusion

Conclusion



64 / 65

Design Decisions + Search Strategies Conclusion

Parting Thoughts

• Design decisions
▶ Optimization Granularity
▶ Optimization Timing
▶ Prepared Statements
▶ Plan Stability
▶ Search Termination
▶ Search Strategy – Important

• Query optimization is non-trivial
• This difficulty is why NoSQL systems didn’t implement optimizers (at first).



65 / 65

Design Decisions + Search Strategies Conclusion

Next Class

• Cascades


	Design Decisions + Search Strategies
	Recap
	Design Decisions
	Optimization Search Strategies
	Optimizer Generators
	Conclusion


