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ABSTRACT
Multi-version concurrency control (MVCC) is currently the most
popular transaction management scheme in modern database man-
agement systems (DBMSs). Although MVCC was discovered in
the late 1970s, it is used in almost every major relational DBMS
released in the last decade. Maintaining multiple versions of data
potentially increases parallelism without sacrificing serializability
when processing transactions. But scaling MVCC in a multi-core
and in-memory setting is non-trivial: when there are a large number
of threads running in parallel, the synchronization overhead can
outweigh the benefits of multi-versioning.

To understand how MVCC perform when processing transactions
in modern hardware settings, we conduct an extensive study of the
scheme’s four key design decisions: concurrency control protocol,
version storage, garbage collection, and index management. We
implemented state-of-the-art variants of all of these in an in-memory
DBMS and evaluated them using OLTP workloads. Our analysis
identifies the fundamental bottlenecks of each design choice.

1. INTRODUCTION
Computer architecture advancements has led to the rise of multi-

core, in-memory DBMSs that employ efficient transaction man-
agement mechanisms to maximize parallelism without sacrificing
serializability. The most popular scheme used in DBMSs developed
in the last decade is multi-version concurrency control (MVCC). The
basic idea of MVCC is that the DBMS maintains multiple physical
versions of each logical object in the database to allow operations on
the same object to proceed in parallel. These objects can be at any
granularity, but almost every MVCC DBMS uses tuples because it
provides a good balance between parallelism versus the overhead
of version tracking. Multi-versioning allows read-only transactions
to access older versions of tuples without preventing read-write
transactions from simultaneously generating newer versions. Con-
trast this with a single-version system where transactions always
overwrite a tuple with new information whenever they update it.

What is interesting about this trend of recent DBMSs using
MVCC is that the scheme is not new. The first mention of it appeared
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in a 1979 dissertation [38] and the first implementation started in
1981 [22] for the InterBase DBMS (now open-sourced as Firebird).
MVCC is also used in some of the most widely deployed disk-
oriented DBMSs today, including Oracle (since 1984 [4]), Postgres
(since 1985 [41]), and MySQL’s InnoDB engine (since 2001). But
while there are plenty of contemporaries to these older systems
that use a single-version scheme (e.g., IBM DB2, Sybase), almost
every new transactional DBMS eschews this approach in favor of
MVCC [37]. This includes both commercial (e.g., Microsoft Heka-
ton [16], SAP HANA [40], MemSQL [1], NuoDB [3]) and academic
(e.g., HYRISE [21], HyPer [36]) systems.

Despite all these newer systems using MVCC, there is no one
“standard” implementation. There are several design choices that
have different trade-offs and performance behaviors. Until now,
there has not been a comprehensive evaluation of MVCC in a mod-
ern DBMS operating environment. The last extensive study was
in the 1980s [13], but it used simulated workloads running in a
disk-oriented DBMS with a single CPU core. The design choices
of legacy disk-oriented DBMSs are inappropriate for in-memory
DBMSs running on a machine with a large number of CPU cores.
As such, this previous work does not reflect recent trends in latch-
free [27] and serializable [20] concurrency control, as well as in-
memory storage [36] and hybrid workloads [40].

In this paper, we perform such a study for key transaction man-
agement design decisions in of MVCC DBMSs: (1) concurrency
control protocol, (2) version storage, (3) garbage collection, and
(4) index management. For each of these topics, we describe the
state-of-the-art implementations for in-memory DBMSs and discuss
their trade-offs. We also highlight the issues that prevent them from
scaling to support larger thread counts and more complex workloads.
As part of this investigation, we implemented all of the approaches
in the Peloton [5] in-memory MVCC DBMS. This provides us
with a uniform platform to compare implementations that is not
encumbered by other architecture facets. We deployed Peloton on a
machine with 40 cores and evaluate it using two OLTP benchmarks.
Our analysis identifies the scenarios that stress the implementations
and discuss ways to mitigate them (if it all possible).

2. BACKGROUND
We first provide an overview of the high-level concepts of MVCC.

We then discuss the meta-data that the DBMS uses to track transac-
tions and maintain versioning information.

2.1 MVCC Overview
A transaction management scheme permits end-users to access a

database in a multi-programmed fashion while preserving the illu-
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Table 1: MVCC Implementations – A summary of the design decisions made for the commercial and research MVCC DBMSs. The year attribute for each
system (except for Oracle) is when it was first released or announced. For Oracle, it is the first year the system included MVCC. With the exception of Oracle,
MySQL, and Postgres, all of the systems assume that the primary storage location of the database is in memory.

Year Protocol Version Storage Garbage Collection Index Management
Oracle [4] 1984 MV2PL Delta Tuple-level (VAC) Logical Pointers (TupleId)

Postgres [6] 1985 MV2PL/SSI Append-only (O2N) Tuple-level (VAC) Physical Pointers
MySQL-InnoDB [2] 2001 MV2PL Delta Tuple-level (VAC) Logical Pointers (PKey)

HYRISE [21] 2010 MVOCC Append-only (N2O) – Physical Pointers
Hekaton [16] 2011 MVOCC Append-only (O2N) Tuple-level (COOP) Physical Pointers
MemSQL [1] 2012 MVOCC Append-only (N2O) Tuple-level (VAC) Physical Pointers

SAP HANA [28] 2012 MV2PL Time-travel Hybrid Logical Pointers (TupleId)
NuoDB [3] 2013 MV2PL Append-only (N2O) Tuple-level (VAC) Logical Pointers (PKey)
HyPer [36] 2015 MVOCC Delta Transaction-level Logical Pointers (TupleId)

sion that each of them is executing alone on a dedicated system [9].
It ensures the atomicity and isolation guarantees of the DBMS.

There are several advantages of a multi-version system that are
relevant to modern database applications. Foremost is that it can
potentially allow for greater concurrency than a single-version sys-
tem. For example, a MVCC DBMS allows a transaction to read an
older version of an object at the same time that another transaction
updates that same object. This is important in that execute read-only
queries on the database at the same time that read-write transactions
continue to update it. If the DBMS never removes old versions,
then the system can also support “time-travel” operations that allow
an application to query a consistent snapshot of the database as it
existed at some point of time in the past [8].

The above benefits have made MVCC the most popular choice
for new DBMS implemented in recent years. Table 1 provides a
summary of the MVCC implementations from the last three decades.
But there are different ways to implement multi-versioning in a
DBMS that each creates additional computation and storage over-
head. These design decisions are also highly dependent on each
other. Thus, it is non-trivial to discern which ones are better than
others and why. This is especially true for in-memory DBMSs
where disk is no longer the main bottleneck.

In the following sections, we discuss the implementation issues
and performance trade-offs of these design decisions. We then
perform a comprehensive evaluation of them in Sect. 7. We note
that we only consider serializable transaction execution in this paper.
Although logging and recovery is another important aspect of a
DBMS’s architecture, we exclude it from our study because there is
nothing about it that is different from a single-version system and
in-memory DBMS logging is already covered elsewhere [33, 49].

2.2 DBMS Meta-Data
Regardless of its implementation, there is common meta-data that

a MVCC DBMS maintains for transactions and database tuples.

Transactions: The DBMS assigns a transaction T a unique,
monotonically increasing timestamp as its identifier (T id) when
they first enter the system. The concurrency control protocols use
this identifier to mark the tuple versions that a transaction accesses.
Some protocols also use it for the serialization order of transactions.

Tuples: As shown in Fig. 1, each physical version contains four
meta-data fields in its header that the DBMS uses to coordinate
the execution of concurrent transactions (some of the concurrency
control protocols discussed in the next section include additional
fields). The txn-id field serves as the version’s write lock. Every
tuple has this field set to zero when the tuple is not write-locked.
Most DBMSs use a 64-bit txn-id so that it can use a single compare-
and-swap (CaS) instruction to atomically update the value. If a
transaction T with identifier T id wants to update a tuple A, then the
DBMS checks whether A’s txn-id field is zero. If it is, then DBMS
will set the value of txn-id to T id using a CaS instruction [27, 44].

begin-ts columns

ContentHeader

txn-id end-ts …pointer

Figure 1: Tuple Format – The basic layout of a physical version of a tuple.

Any transaction that attempts to update A is aborted if this txn-id
field is neither zero or not equal to its T id. The next two meta-data
fields are the begin-ts and end-ts timestamps that represent the
lifetime of the tuple version. Both fields are initially set to zero. The
DBMS sets a tuple’s begin-ts to INF when the transaction deletes
it. The last meta-data field is the pointer that stores the address of
the neighboring (previous or next) version (if any).

3. CONCURRENCY CONTROL PROTOCOL
Every DBMS includes a concurrency control protocol that coor-

dinates the execution of concurrent transactions [11]. This protocol
determines (1) whether to allow a transaction to access or modify a
particular tuple version in the database at runtime, and (2) whether to
allow a transaction to commit its modifications. Although the funda-
mentals of these protocols remain unchanged since the 1980s, their
performance characteristics have changed drastically in a multi-core
and main-memory setting due to the absence of disk operations [42].
As such, there are newer high-performance variants that remove
locks/latches and centralized data structures, and are optimized for
byte-addressable storage.

In this section, we describe the four core concurrency control
protocols for MVCC DBMSs. We only consider protocols that use
tuple-level locking as this is sufficient to ensure serializable exe-
cution. We omit range queries because multi-versioning does not
bring any benefits to phantom prevention [17]. Existing approaches
to provide serializable transaction processing use either (1) addi-
tional latches in the index [35, 44] or (2) extra validation steps when
transactions commit [27].

3.1 Timestamp Ordering (MVTO)
The MVTO algorithm from 1979 is considered to be the original

multi-version concurrency control protocol [38, 39]. The crux of
this approach is to use the transactions’ identifiers (T id) to pre-
compute their serialization order. In addition to the fields described
in Sect. 2.2, the version headers also contain the identifier of the last
transaction that read it (read-ts). The DBMS aborts a transaction
that attempts to read or update a version whose write lock is held by
another transaction.

When transaction T invokes a read operation on logical tuple A,
the DBMS searches for a physical version where T id is in between
the range of the begin-ts and end-ts fields. As shown in Fig. 2a,
T is allowed to read version Ax if its write lock is not held by another
active transaction (i.e., value of txn-id is zero or equal to T id)
because MVTO never allows a transaction to read uncommitted
versions. Upon reading Ax, the DBMS sets Ax’s read-ts field to T id

if its current value is less than T id. Otherwise, the transaction reads
an older version without updating this field.
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Figure 2: Concurrency Control Protocols – Examples of how the protocols process a transaction that executes a READ followed by an UPDATE.

With MVTO, a transaction always updates the latest version of
a tuple. Transaction T creates a new version Bx+1 if (1) no active
transaction holds Bx’s write lock and (2) T id is larger than Bx’s
read-ts field. If these conditions are satisfied, then the DBMS
creates a new version Bx+1 and sets its txn-id to T id. When T
commits, the DBMS sets Bx+1’s begin-ts and end-ts fields to T id

and INF (respectively), and Bx’s end-ts field to T id.

3.2 Optimistic Concurrency Control (MVOCC)
The next protocol is based on the optimistic concurrency control

(OCC) scheme proposed in 1981 [26]. The motivation behind OCC
is that the DBMS assumes that transactions are unlikely to conflict,
and thus a transaction does not have to acquire locks on tuples when
it reads or updates them. This reduces the amount of time that a
transaction holds locks. There are changes to the original OCC
protocol to adapt it for multi-versioning [27]. Foremost is that the
DBMS does not maintain a private workspace for transactions, since
the tuples’ versioning information already prevents transactions
from reading or updating versions that should not be visible to them.

The MVOCC protocol splits a transaction into three phases.
When the transaction starts, it is in the read phase. This is where the
transaction invokes read and update operations on the database. Like
MVTO, to perform a read operation on a tuple A, the DBMS first
searches for a visible version Ax based on begin-ts and end-ts
fields. T is allowed to update version Ax if its write lock is not ac-
quired. In a multi-version setting, if the transaction updates version
Bx, then the DBMS creates version Bx+1 with its txn-id set to T id.

When a transaction instructs the DBMS that it wants to commit,
it then enters the validation phase. First, the DBMS assigns the
transaction another timestamp (Tcommit) to determine the serialization
order of transactions. The DBMS then determines whether the tuples
in the transaction’s read set was updated by a transaction that already
committed. If the transaction passes these checks, it then enters the
write phase where the DBMS installs all the new versions and sets
their begin-ts to Tcommit and end-ts to INF.

Transactions can only update the latest version of a tuple. But a
transaction cannot read a new version until the other transaction that
created it commits. A transaction that reads an outdated version will
only find out that it should abort in the validation phase.

3.3 Two-phase Locking (MV2PL)
This protocol uses the two-phase locking (2PL) method [11] to

guarantee the transaction serializability. Every transaction acquires
the proper lock on the current version of logical tuple before it is
allowed to read or modify it. In a disk-based DBMS, locks are
stored separately from tuples so that they are never swapped to disk.
This separation is unnecessary in an in-memory DBMS, thus with
MV2PL the locks are embedded in the tuple headers. The tuple’s
write lock is the txn-id field. For the read lock, the DBMS uses
a read-cnt field to count the number of active transactions that
have read the tuple. Although it is not necessary, the DBMS can
pack txn-id and read-cnt into contiguous 64-bit word so that the
DBMS can use a single CaS to update them at the same time.

To perform a read operation on a tuple A, the DBMS searches for
a visible version by comparing a transaction’s T id with the tuples’
begin-ts field. If it finds a valid version, then the DBMS incre-

ments that tuple’s read-cnt field if its txn-id field is equal to zero
(meaning that no other transaction holds the write lock). Similarly, a
transaction is allowed to update a version Bx only if both read-cnt
and txn-id are set to zero. When a transaction commits, the DBMS
assigns it a unique timestamp (Tcommit) that is used to update the
begin-ts field for the versions created by that transaction and then
releases all of the transaction’s locks.

The key difference among 2PL protocols is in how they handle
deadlocks. Previous research has shown that the no-wait policy [9]
is the most scalable deadlock prevention technique [48]. With this,
the DBMS immediately aborts a transaction if it is unable to acquire
a lock on a tuple (as opposed to waiting to see whether the lock is
released). Since transactions never wait, the DBMS does not have
to employ a background thread to detect and break deadlocks.

3.4 Serialization Certifier
In this last protocol, the DBMS maintains a serialization graph

for detecting and removing “dangerous structures” formed by con-
current transactions [12, 20, 45]. One can employ certifier-based
approaches on top of weaker isolation levels that offer better perfor-
mance but allow certain anomalies.

The first certifier proposed was serializable snapshot isolation
(SSI) [12]; this approach guarantees serializability by avoiding
write-skew anomalies for snapshot isolation. SSI uses a transac-
tion’s identifier to search for a visible version of a tuple. A transac-
tion can update a version only if the tuple’s txn-id field is set to
zero. To ensure serializability, the DBMS tracks anti-dependency
edges in its internal graph; these occur when a transaction creates
a new version of a tuple where its previous version was read by
another transaction. The DBMS maintains flags for each trans-
action that keeps track of the number of in-bound and out-bound
anti-dependency edges. When the DBMS detects two consecutive
anti-dependency edges between transactions, it aborts one of them.

The serial safety net (SSN) is a newer certifier-based proto-
col [45]. Unlike with SSI, which is only applicable to snapshot
isolation, SSN works with any isolation level that is at least as strong
as READ COMMITTED. It also uses a more more precise anomaly de-
tection mechanism that reduces the number of unnecessary aborts.
SSN encodes the transaction dependency information into meta-
data fields and validates a transaction T’s consistency by computing
a low watermark that summarizes “dangerous” transactions that
committed before the T but must be serialized after T [45]. Re-
ducing the number of false aborts makes SSN more amenable to
workloads with read-only or read-mostly transactions.

3.5 Discussion
These protocols handle conflicts differently, and thus are better

for some workloads more than others. MV2PL records reads with
its read lock for each version. Hence, a transaction performing
a read/write on a tuple version will cause another transaction to
abort if it attempts to do the same thing on that version. MVTO
instead uses the read-ts field to record reads on each version.
MVOCC does not update any fields on a tuple’s version header dur-
ing read/operations. This avoids unnecessary coordination between
threads, and a transaction reading one version will not lead to an
abort other transactions that update the same version. But MVOCC



requires the DBMS to examine a transaction’s read set to validate
the correctness of that transaction’s read operations. This can cause
starvation of long-running read-only transactions [24]. Certifier
protocols reduce aborts because they do not validate reads, but their
anti-dependency checking scheme may bring additional overheads.

There are some proposals for optimizing the above protocols to
improve their efficacy for MVCC DBMSs [10, 27]. One approach
is to allow a transaction to speculatively read uncommitted versions
created by other transactions. The trade-off is that the protocols
must track the transactions’ read dependencies to guarantee serializ-
able ordering. Each worker thread maintains a dependency counter
of the number of transactions that it read their uncommitted data. A
transaction is allowed to commit only when its dependency counter
is zero, whereupon the DBMS traverses its dependency list and
decrements the counters for all the transactions that are waiting
for it to finish. Similarly, another optimization mechanism is to
allow transactions to eagerly update versions that are read by un-
committed transactions. This optimization also requires the DBMS
to maintain a centralized data structure to track the dependencies
between transactions. A transaction can commit only when all of
the transactions that it depends on have committed.

Both optimizations described above can reduce the number of
unnecessary aborts for some workloads, but they also suffer from
cascading aborts. Moreover, we find that the maintenance of a cen-
tralized data structure can become a major performance bottleneck,
which prevents the DBMS from scaling towards dozens of cores.

4. VERSION STORAGE
Under MVCC, the DBMS always constructs a new physical ver-

sion of a tuple when a transaction updates it. The DBMS’s version
storage scheme specifies how the system stores these versions and
what information each version contains. The DBMS uses the tuples’
pointer field to create a latch-free linked list called a version chain.
This version chain allows the DBMS to locate the desired version
of a tuple that is visible to a transaction. As we discuss below, the
chain’s HEAD is either the newest or oldest version.

We now describe these schemes in more detail. Our discussion
focuses on the schemes’ trade-offs for UPDATE operations because
this is where the DBMS handles versioning. A DBMS inserts
new tuples into a table without having to update other versions.
Likewise, a DBMS deletes tuples by setting a flag in the current
version’s begin-ts field. In subsequent sections, we will discuss the
implications of these storage schemes on how the DBMS performs
garbage collection and how it maintains pointers in indexes.

4.1 Append-only Storage
In this first scheme, all of the tuple versions for a table are stored

in the same storage space. This approach is used in Postgres, as
well as in-memory DBMSs like Hekaton, NuoDB, and MemSQL.
To update an existing tuple, the DBMS first acquires an empty slot
from the table for the new tuple version. It then copies the content
of the current version to the new version. Finally, it applies the
modifications to the tuple in the newly allocated version slot.

The key decision with the append-only scheme is how the DBMS
orders the tuples’ version chains. Since it is not possible to maintain
a latch-free doubly linked list, the version chain only points in one
direction. This ordering has implications on how often the DBMS
updates indexes whenever transactions modify tuples.

Oldest-to-Newest (O2N): With this ordering, the chain’s HEAD
is the oldest extant version of a tuple (see Fig. 3a). This version
might not be visible to any active transaction but the DBMS has yet
to reclaim it. The advantage of O2N is that the DBMS need not

update the indexes to point to a newer version of the tuple whenever
it is modified. But the DBMS potentially traverses a long version
chain to find the latest version during query processing. This is slow
because of pointer chasing and it pollutes CPU caches by reading
unneeded versions. Thus, achieving good performance with O2N is
highly dependent on the system’s ability to prune old versions.

Newest-to-Oldest (N2O): The alternative is to store the newest
version of the tuple as the version chain’s HEAD (see Fig. 3b). Since
most transactions access the latest version of a tuple, the DBMS does
not have to traverse the chain. The downside, however, is that the
chain’s HEAD changes whenever a tuple is modified. The DBMS
then updates all of the table’s indexes (both primary and secondary)
to point to the new version. As we discuss in Sect. 6.1, one can
avoid this problem through an indirection layer that provides a single
location that maps the tuple’s latest version to physical address. With
this setup, the indexes point to tuples’ mapping entry instead of their
physical locations. This works well for tables with many secondary
indexes but increases the storage overhead.

Another issue with append-only storage is how to deal with non-
inline attributes (e.g., BLOBs). Consider a table that has two at-
tributes (one integer, one BLOB). When a transaction updates a
tuple in this table, under the append-only scheme the DBMS creates
a copy of the BLOB attributes (even if the transaction did not modify
it), and then the new version will point to this copy. This is wasteful
because it creates redundant copies. To avoid this problem, one
optimization is to allow the multiple physical versions of the same
tuple to point to the same non-inline data. The DBMS maintains
reference counters for this data to ensure that values are deleted only
when they are no longer referenced by any version.

4.2 Time-Travel Storage
The next storage scheme is similar to the append-only approach

except that the older versions are stored in a separate table. The
DBMS maintain a master version of each tuple in the main table and
multiple versions of the same tuple in a separate time-travel table.
In some DBMSs, like SQL Server, the master version is the current
version of the tuple. Other systems, like SAP HANA, store the
oldest version of a tuple as the master version to provide snapshot
isolation [29]. This incurs additional maintenance costs during GC
because the DBMS copies the data from the time-travel table back
to the main table when it prunes the current master version. For
simplicity, we only consider the first time-travel approach where the
master version is always in the main table.

To update a tuple, the DBMS first acquires a slot in the time-travel
table and then copies the master version to this location. It then
modifies the master version stored in the main table. Indexes are
not affected by version chain updates because they always point to
the master version. As such, it avoids the overhead of maintaining
the database’s indexes whenever a transaction updates a tuple and is
ideal for queries that access the current version of a tuple.

This scheme also suffers from the same non-inline attribute prob-
lem as the append-only approach. The data sharing optimization
that we describe above is applicable here as well.

4.3 Delta Storage
With this last scheme, the DBMS maintains the master versions

of tuples in the main table and a sequence of delta versions in a
separate delta storage. This storage is referred to as the rollback
segment in MySQL and Oracle, and is also used in HyPer. Most
existing DBMSs store the current version of a tuple in the main table.
To update an existing tuple, the DBMS acquires a continuous space
from the delta storage for creating a new delta version. This delta
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Figure 3: Version Storage – This diagram provides an overview of how the schemes organize versions in different data structures and how their pointers create
version chains in an in-memory MVCC DBMS. Note that there are two variants of the append-only scheme that differ on the ordering of the version chains.

version contains the original values of modified attributes rather
than the entire tuple. The DBMS then directly performs in-place
update to the master version in the main table.

This scheme is ideal for UPDATE operations that modify a subset
of a tuple’s attributes because it reduces memory allocations. This
approach, however, leads to higher overhead for read-intensive work-
loads. To perform a read operation that accesses multiple attributes
of a single tuple, the DBMS has to traverse the version chain to fetch
the data for each single attribute that is accessed by the operation.

4.4 Discussion
These schemes have different characteristics that affect their be-

havior for OLTP workloads. As such, none of them achieve optimal
performance for either workload type. The append-only scheme is
better for analytical queries that perform large scans because ver-
sions are stored contiguously in memory, which minimizes CPU
cache misses and is ideal for hardware prefetching. But queries that
access an older version of a tuple suffer from higher overhead be-
cause the DBMS follows the tuple’s chain to find the proper version.
The append-only scheme also exposes physical versions to the index
structures, which enables additional index management options.

All of the storage schemes require the DBMS to allocate memory
for each transaction from centralized data structures (i.e., tables,
delta storage). Multiple threads will access and update this central-
ized storage at the same time, thereby causing access contention.
To avoid this problem, the DBMS can maintain separate memory
spaces for each centralized structure (i.e., tables, delta storage) and
expand them in fixed-size increments. Each worker thread then
acquires memory from a single space. This essentially partitions the
database, thereby eliminating centralized contention points.

5. GARBAGE COLLECTION
Since MVCC creates new versions when transactions update

tuples, the system will run out of space unless it reclaims the versions
that are no longer needed. This also increases the execution time
of queries because the DBMS spends more time traversing long
version chains. As such, the performance of a MVCC DBMS
is highly dependent on the ability of its garbage collection (GC)
component to reclaim memory in a transactionally safe manner.

The GC process is divided into three steps: (1) detect expired
versions, (2) unlink those versions from their associated chains and
indexes, and (3) reclaim their storage space. The DBMS considers a
version as expired if it is either an invalid version (i.e., created by
an aborted transaction) or it is not visible to any active transaction.
For the latter, the DBMS checks whether a version’s end-ts is
less than the T id of all active transactions. The DBMS maintains
a centralized data structure to track this information, but this is a
scalability bottleneck in a multi-core system [27, 48].

An in-memory DBMS can avoid this problem with coarse-grained
epoch-based memory management that tracks the versions created
by transactions [44]. There is always one active epoch and an FIFO
queue of prior epochs. After some amount of time, the DBMS
moves the current active epoch to the prior epoch queue and then

creates a new active one. This transition is performed either by
a background thread or in a cooperative manner by the DBMS’s
worker threads. Each epoch contains a count of the number of
transactions that are assigned to it. The DBMS registers each new
transaction into the active epoch and increments this counter. When
a transaction finishes, the DBMS removes it from its epoch (which
may no longer be the current active one) and decrements this counter.
If a non-active epoch’s counter reaches zero and all of the previous
epochs also do not contain active transactions, then it is safe for the
DBMS to reclaim expired versions that were updated in this epoch.

There are two GC implementations for a MVCC that differ on
how the DBMS looks for expired versions. The first approach
is tuple-level GC wherein the DBMS examines the visibility of
individual tuples. The second is transaction-level GC that checks
whether any version created by a finished transaction is visible. One
important thing to note is that not all of the GC schemes that we
discuss below are compatible with every version storage scheme.

5.1 Tuple-level Garbage Collection
With this approach, the DBMS checks the visibility of each indi-

vidual tuple version in one of two ways:

Background Vacuuming (VAC): The DBMS uses background
threads that periodically scan the database for expired versions. As
shown in Table 1, this is the most common approach in MVCC
DBMSs as it is easier to implement and works with all version stor-
age schemes. But this mechanism does not scale for large databases,
especially with a small number of GC threads. A more scalable
approach is where transactions register the invalidated versions in
a latch-free data structure [27]. The GC threads then reclaim these
expired versions using the epoch-based scheme described above.
Another optimization is where the DBMS maintains a bitmap of
dirty blocks so that the vacuum threads do not examine blocks that
were not modified since the last GC pass.

Cooperative Cleaning (COOP): When executing a transaction,
the DBMS traverses the version chain to locate the visible version.
During this traversal, it identifies the expired versions and records
them in a global data structure. This approach scales well as the
GC threads no longer needs to detect expired versions, but it only
works for the O2N append-only storage. One additional challenge
is that if transactions do not traverse a version chain for a particular
tuple, then the system will never remove its expired versions. This
problem is called “dusty corners” in Hekaton [16]. The DBMS
overcomes this by periodically performing a complete GC pass with
a separate thread like in VAC.

5.2 Transaction-level Garbage Collection
In this GC mechanism, the DBMS reclaims storage space at

transaction-level granularity. It is compatible with all of the version
storage schemes. The DBMS considers a transaction as expired
when the versions that it generated are not visible to any active
transaction. After an epoch ends, all of the versions that were
generated by the transactions belonging to that epoch can be safely
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Figure 4: Garbage Collection – Overview of how to examine the database
for expired versions. The tuple-level GC scans the tables’ version chains,
whereas the transaction-level GC uses transactions’ write-sets.

removed. This is simpler than the tuple-level GC scheme, and thus it
works well with the transaction-local storage optimization (Sect. 4.4)
because the DBMS reclaims a transaction’s storage space all at once.
The downside of this approach, however, is that the DBMS tracks
the read/write sets of transactions for each epoch instead of just
using the epoch’s membership counter.

5.3 Discussion
Tuple-level GC with background vacuuming is the most common

implementation in MVCC DBMSs. In either scheme, increasing
the number of dedicated GC threads speeds up the GC process.
The DBMS’s performance drops in the presence of long-running
transactions. This is because all the versions generated during the
lifetime of such a transaction cannot be removed until it completes.

6. INDEX MANAGEMENT
All MVCC DBMSs keep the database’s versioning information

separate from its indexes. That is, the existence of a key in an index
means that some version exists with that key but the index entry does
not contain information about which versions of the tuple match.
We define an index entry as a key/value pair, where the key is a
tuple’s indexed attribute(s) and the value is a pointer to that tuple.
The DBMS follows this pointer to a tuple’s version chain and then
scans the chain to locate the version that is visible for a transaction.
The DBMS will never incur a false negative from an index, but it
may get false positive matches because the index can point to a
version for a key that may not be visible to a particular transaction.

Primary key indexes always point to the current version of a tuple.
But how often the DBMS updates a primary key index depends on
whether or not its version storage scheme creates new versions when
a tuple is updated. For example, a primary key index in the delta
scheme always points to the master version for a tuple in the main
table, thus the index does not need to be updated. For append-only,
it depends on the version chain ordering: N2O requires the DBMS
to update the primary key index every time a new version is created.
If a tuple’s primary key is modified, then the DBMS applies this to
the index as a DELETE followed by an INSERT.

For secondary indexes, it is more complicated because an index
entry’s keys and pointers can both change. The two management
schemes for secondary indexes in a MVCC DBMS differ on the
contents of these pointers. The first approach uses logical pointers
that use indirection to map to the location of the physical version.
Contrast this with the physical pointers approach where the value is
the location of an exact version of the tuple.

6.1 Logical Pointers
The main idea of using logical pointers is that the DBMS uses

a fixed identifier that does not change for each tuple in its index
entry. Then, as shown in Fig. 5a, the DBMS uses an indirection
layer that maps a tuple’s identifier to the HEAD of its version chain.
This avoids the problem of having to update all of a table’s indexes
to point to a new physical location whenever a tuple is modified

HEAD

INDEX VERSION CHAINS

HEAD

INDIRECTION

(a) Logical Pointers

HEAD

INDEX VERSION CHAINS

HEAD

(b) Physical Pointers

Figure 5: Index Management – The two ways to map keys to tuples in a
MVCC are to use logical pointers with an indirection layer to the version
chain HEAD or to use physical pointers that point to an exact version.

(even if the indexed attributes were not changed). Only the mapping
entry needs to change each time. But since the index does not point
to the exact version, the DBMS traverses the version chain from
the HEAD to find the visible version. This approach is compatible
with any version storage scheme. As we now discuss, there are two
implementation choices for this mapping:

Primary Key (PKey): With this, the identifier is the same as the
corresponding tuple’s primary key. When the DBMS retrieves an
entry from a secondary index, it performs another look-up in the
table’s primary key index to locate the version chain HEAD. If a
secondary index’s attributes overlap with the primary key, then the
DBMS does not have to store the entire primary key in each entry.

Tuple Id (TupleId): One drawback of the PKey pointers is that
the database’s storage overhead increases as the size of a tuple’s
primary key increases, since each secondary index has an entire
copy of it. In addition to this, since most DBMSs use an order-
preserving data structure for its primary key indexes, the cost of
performing the additional look-up depends on the number of entries.
An alternative is to use a unique 64-bit tuple identifier instead of
the primary key and a separate latch-free hash table to maintain the
mapping information to the tuple’s version chain HEAD.

6.2 Physical Pointers
With this second scheme, the DBMS stores the physical address

of versions in the index entries. This approach is only applicable
for append-only storage, since the DBMS stores the versions in the
same table and therefore all of the indexes can point to them. When
updating any tuple in a table, the DBMS inserts the newly created
version into all the secondary indexes. In this manner, the DBMS
can search for a tuple from a secondary index without comparing
the secondary key with all of the indexed versions. Several MVCC
DBMSs, including MemSQL and Hekaton, employ this scheme.

6.3 Discussion
Like the other design decisions, these index management schemes

perform differently on varying workloads. The logical pointer ap-
proach is better for write-intensive workloads, as the DBMS updates
the secondary indexes only when a transaction modifies the in-
dexes attributes. Reads are potentially slower, however, because the
DBMS traverses version chains and perform additional key compar-
isons. Likewise, using physical pointers is better for read-intensive
workloads because an index entry points to the exact version. But
it is slower for update operations because this scheme requires the
DBMS to insert an entry into every secondary index for each new
version, which makes update operations slower.

One last interesting point is that index-only scans are not possible
in a MVCC DBMS unless the tuples’ versioning information is
embedded in each index. The system has to always retrieve this
information from the tuples themselves to determine whether each
tuple version is visible to a transaction. NuoDB reduces the amount
of data read to check versions by storing the header meta-data
separately from the tuple data.
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Figure 6: Scalability Bottlenecks – Throughput comparison of the concur-
rency control protocols using the read-only YCSB workload with different
number of operations per transaction.

7. EXPERIMENTAL ANALYSIS
We now present our analysis of the transaction management de-

sign choices discussed in this paper. We made a good faith effort
to implement state-of-the-art versions of each of them in the Pelo-
ton DBMS [5]. Peloton stores tuples in row-oriented, unordered
in-memory heaps. It uses libcuckoo [19] hash tables for its inter-
nal data structures and the Bw-Tree [32] for database indexes. We
also optimized Peloton’s performance by leveraging latch-free pro-
gramming techniques [15]. We execute all transactions as stored
procedures under the SERIALIZABLE isolation level. We configured
Peloton to use the epoch-based memory management (see Sect. 5)
with 40 ms epochs [44].

We deployed Peloton on a 4-socket Intel Xeon E7-4820 server
with 128 GB of DRAM running Ubuntu 14.04 (64-bit). Each socket
contains ten 1.9 GHz cores and 25 MB of L3 cache.

We begin with a comparison of the concurrency control protocols.
We then pick the best overall protocol and use it to evaluate the
version storage, garbage collection, and index management schemes.
For each trial, we execute the workload for 60 seconds to let the
DBMS to warm up and measure the throughput after another 120
seconds. We execute each trial five times and report the average
execution time. We summarize our findings in Sect. 8.

7.1 Benchmarks
We next describe the workloads that we use in our evaluation.

YCSB: We modified the YCSB [14] benchmark to model differ-
ent workload settings of OLTP applications. The database contains
a single table with 10 million tuples, each with one 64-bit primary
key and 10 64-bit integer attributes. Each operation is independent;
that is, the input of an operation does not depend on the output of
a previous operation. We use three workload mixtures to vary the
number of reads/update operations per transaction: (1) read-only
(100% reads), (2) read-intensive (80% reads, 20% updates), and
(3) update-intensive (20% reads, 80% updates). We also vary the
number of attributes that operations read or update in a tuple. The
operations access tuples following a Zipfian distribution that is con-
trolled by a parameter (θ) that affects the amount of contention (i.e.,
skew), where θ=1.0 is the highest skew setting.

TPC-C: This benchmark is the current standard for measuring the
performance of OLTP systems [43]. It models a warehouse-centric
order processing application with nine tables and five transaction
types. We modified the original TPC-C workload to include a new
table scan query, called StockScan, that scans the Stock table and
counts the number of items in each warehouse. The amount of con-
tention in the workload is controlled by the number of warehouses.

7.2 Concurrency Control Protocol
We first compare the DBMS’s performance with the concurrency

control protocols from Sect. 3. For serialization certifier, we imple-
ment SSN on top of snapshot isolation (denoted as SI+SSN) [45].
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Figure 7: Transaction Contention – Comparison of the concurrency con-
trol protocols (40 threads) for the YCSB workload with different work-
load/contention mixtures. Each transaction contains 10 operations.

We fix the DBMS to use (1) append-only storage with N2O ordering,
(2) transaction-level GC, and (3) logical mapping index pointers.

Our initial experiments use the YCSB workload to evaluate the
protocols. We first investigate the bottlenecks that prevent them from
scaling. We then compare their performance by varying workload
contention. After that, we show how each protocol behaves when
processing heterogeneous workloads that contain both read-write
and read-only transactions. Lastly, we use the TPC-C benchmark to
examine how each protocol behaves under real-world workloads.

Scalability Bottlenecks: This experiment shows how the proto-
cols perform on higher thread counts. We configured the read-only
YCSB workload to execute transactions that are either short (one
operation per transaction) or long (100 operations per transaction).
We use a low skew factor (θ=0.2) and scale the number of threads.

The short transaction workload results in Fig. 6a show that all but
one of the protocols scales almost linearly up to 24 threads. The
main bottleneck for all of these protocols is the cache coherence
traffic from updating the memory manager’s counters and checking
for conflicts when transactions commit (even though there are no
writes). The reason that SI+SSN achieves lower performance is that
it maintains a centralized hash table for tracking transactions. This
bottleneck can be removed by pre-allocating and reusing transaction
context structures [24]. When we increase the transaction length to
100 operations, Fig. 6b shows that the throughput of the protocols is
reduced by ∼30× but they scale linearly up to 40 threads. This is
expected since the contention on the DBMS’s internal data structures
is reduced when there are fewer transactions executed.

Transaction Contention: We next compare the protocols under
different levels of contention. We fix the number of DBMS threads
to 40. We use the read-intensive and update-intensive workloads
with 10 operations per transaction. For each workload, we vary the
contention level (θ) in the transactions’ access patterns.

Fig. 7a shows the DBMS’s throughput for the read-intensive work-
load. When θ is less than 0.7, we see that all of the protocols achieve
similar throughput. Beyond this contention level, the performance
of MVOCC is reduced by ∼50%. This is because MVOCC does
not discover that a transaction will abort due to a conflict until after
the transaction has already executed its operations. There is nothing
about multi-versioning that helps this situation. Although we see the
same drop for the update-intensive results when contention increases
in Fig. 7b, there is not a great difference among the protocols except
MV2PL; they handle write-write conflicts in a similar way and again
multi-versioning does not help reduce this type of conflicts.

Heterogeneous Workload: In this next experiment, we evaluate
a heterogeneous YCSB workload that is comprised of a mix of read-
write and read-only SERIALIZABLE transactions. Each transaction
contains 100 operations each access a single independent tuple.

The DBMS uses 20 threads to execute the read-write transactions
and we vary the number of threads that are dedicated to the read-
only queries. The distribution of access patterns for all operations
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Figure 8: Heterogeneous Workload (without READ ONLY) – Concurrency
control protocol comparison for YCSB (θ=0.8). The read-write portion
executes a update-intensive mixture on 20 threads while scaling the number
of read-only threads.
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Figure 9: Heterogeneous Workload (with READ ONLY) – Concurrency con-
trol protocol comparison for YCSB (θ=0.8). The read-write portion executes
a update-intensive mixture on 20 threads while scaling the number of read-
only threads.

use a high contention setting (θ=0.8). We execute this workload first
where the application does not pre-declare queries as READ ONLY and
then again with this hint.

There are several interesting trends when the application does not
pre-declare the read-only queries. The first is that the throughput of
read-write transactions drops in Fig. 8a for the MVTO and MV2PL
protocols as the number of read-only threads increases, while the
throughput of read-only transactions increases in Fig. 8b. This is
because these protocols treat readers and writers equally; as any
transaction that reads or writes a tuple blocks other transactions
from accessing the same tuple, increasing the number of read-only
queries causes a higher abort rate for read-write transactions. Due
to these conflicts, MV2PL only completes a few transactions when
the number of read-only threads is increased to 20. The second
observation is that while MVOCC achieves stable performance for
the read-write portion as the number of read-only threads increases,
their performance for read-only portion are lower than MVTO by
2× and 28×, respectively. The absence of read locks in MVOCC
results in the starvation of read-only queries. The third observation
is that SI+SSN achieves a much higher performance for read-write
transactions. This is because it reduces the DBMS’s abort rate due
to the precise consistency validation.

The results in Fig. 9 show that the protocols perform differently
when the workload pre-declares the read-only portion of the work-
load. The first observation is that their read-only throughput in
Fig. 9b is the same because the DBMS executes these queries
without checking for conflicts. And in Fig. 9a we see that their
throughput for read-write transactions remains stable as the read-
only queries are isolated from the read-write transactions, hence
executing these read-only transactions does not increase data con-
tention. SI+SSN again performs the best because its reduced abort
rate; it is 1.6× faster than MV2PL and MVTO. MVOCC achieves
the lowest performance because it can result in high abort rate due
to validation failure.

TPC-C: Lastly, we compare the protocols using the TPC-C
benchmark with the number of warehouses set to 10. This con-
figuration yields a high-contention workload.

The results in Fig. 10a show that MVTO achieves 45%–120%
higher performance compared to the other protocols. SI+SSN also
yields higher throughput than the rest of the protocols because it
detects anti-dependencies rather than blindly aborting transactions
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Figure 10: TPC-C – Throughput and abort rate comparison of the concur-
rency control protocols with the TPC-C benchmark.
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Figure 11: Non-Inline Attributes – Evaluation of how to store non-inline
attributes in the append-only storage scheme using the YCSB workload with
40 DBMS threads and varying the number of attributes in a tuple.

through OCC-style consistency validation. MVOCC incurs wasted
computation because it only detects conflicts in the validation phase.
A more interesting finding in Fig. 10b is that the protocols abort
transactions in different ways. MVOCC is more likely to abort
NewOrder transactions, whereas the Payment abort rate in MV2PL
is 6.8× higher than NewOrder transactions. These two transactions
access the same table, and again the optimistic protocols only de-
tect read conflicts in NewOrder transactions in the validation phase.
SI+SSN achieves a low abort rate due to its anti-dependency track-
ing, whereas MVTO avoids false aborts because the timestamp
assigned to each transaction directly determines their ordering.

7.3 Version Storage
We next evaluate the DBMS’s version storage schemes. We

begin with an analysis of the storage mechanisms for non-inline
attributes in append-only storage. We then discuss how the version
chain ordering affects the DBMS’s performance for append-only
storage. We next compare append-only with the time-travel and
delta schemes using different YCSB workloads. Lastly, we compare
all of the schemes again using the TPC-C benchmark. For all of
these experiments, we configured the DBMS to use the MVTO
protocol since it achieved the most balanced performance in the
previous experiments.

Non-Inline Attributes: This first experiment evaluates the per-
formance of different mechanisms for storing non-inline attributes
in append-only storage. We use the YCSB workload mixtures in
this experiment, but the database is changed to contain a single
table with 10 million tuples, each with one 64-bit primary key and a
variable number of 100-byte non-inline VARCHAR type attributes. We
use the read-intensive and update-intensive workloads under low
contention (θ=0.2) on 40 threads with each transaction executing 10
operations. Each operation only accesses one attribute in a tuple.

Fig. 11 shows that maintaining reference counters for unmodi-
fied non-inline attributes always yields better performance. With
the read-intensive workload, the DBMS achieves ∼40% higher
throughput when the number of non-inlined attributes is increased
to 50 with these counters compared to conventional full-tuple-copy
scheme. This is because the DBMS avoids redundant data copying
for update operations. This difference is more prominent with the
update-intensive workload where the results in Fig. 11b show that
the performance gap reaches over 100%.
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Figure 12: Version Chain Ordering – Evaluation of the version chains for
the append-only storage scheme using the YCSB workload with 40 DBMS
threads and varying contention levels.
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Figure 13: Transaction Footprint – Evaluation of the version storage
schemes using the YCSB workload (θ=0.2) with 40 DBMS threads and
varying the percentage of update operations per transaction.
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Figure 14: Attributes Modified – Evaluation of the version storage
schemes using YCSB (θ=0.2) with 40 DBMS threads and varying the number
of the tuples’ attributes that are modified per update operation.
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Figure 15: Attributes Accessed – Evaluation of the version storage
schemes using YCSB (θ=0.2) with 40 DBMS threads and varying the number
of the tuples’ attributes that are accessed per read operation.
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Figure 16: Memory Allocation – Evaluation of the memory allocation
effects to the version storage schemes using the YCSB workload with 40
DBMS threads and varying the number of separate memory spaces.

Version Chain Ordering: The second experiment measures the
performance of the N2O and O2N version chain orderings from
Sect. 4.1. We use transaction-level background vacuuming GC and
compare the orderings using two YCSB workload mixtures. We set
the transaction length to 10. We fix the number of DBMS threads to
40 and vary the workload’s contention level.

As shown in Fig. 12, the N2O ordering always performs better
than O2N in both workloads. Although the DBMS updates the
indexes’ pointers for each new version under N2O, this is overshad-
owed by the cost of traversing the longer chains in O2N. Increasing
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Figure 17: TPC-C – Throughput and latency comparison of the version
storage schemes with the TPC-C benchmark.

the length of the chains means that transactions take longer to exe-
cute, thereby increasing the likelihood that a transaction will conflict
with another one. This phenomenon is especially evident with the
measurements under the highest contention level (θ=0.9), where the
N2O ordering achieves 2.4–3.4× better performance.

Transaction Footprint: We next compare the storage schemes
when we vary the number of attributes in the tuples. We use the
YCSB workload under low contention (θ=0.2) on 40 threads with
each transaction executing 10 operations. Each read/update op-
eration only accesses/modifies one attribute in the tuple. We use
append-only storage with N2O ordering. For all the version storage
schemes, we have allocated multiple separate memory spaces to
reduce memory allocation overhead.

As shown in Fig. 13a, the append-only and delta schemes achieve
similar performance when the table has 10 attributes. Likewise, the
append-only and time-travel throughput is almost the same. The
results in Fig. 13b indicate that when the table has 100 attributes, the
delta scheme achieves ∼2× better performance than append-only
and time-travel schemes because it uses less memory.

Attributes Modified: We now fix the number of attributes in the
table to 100 and vary the number of attributes that are modified
by transactions per update operation. We use the read-intensive
and update-intensive workloads under low contention (θ=0.2) on
40 threads with each transaction executing 10 operations. Like the
previous experiment, each read operation accesses one attribute.

Fig. 14 shows that the append-only and time-travel schemes’
performance is stable regardless of the number of modified attributes.
As expected, the delta scheme performs the best when the number
of modified attributes is small because it copies less data per version.
But as the scope of the update operations increases, it is equivalent
to the others because it copies the same amount of data per delta.

To measure how modified attributes affect reads, we vary the
number of attributes accessed per read operation. Fig. 15a shows
that when updates only modify one (random) attribute, increasing the
number of read attributes largely affects the delta schemes. This is
expected as the DBMS has to spend more time traversing the version
chains to retrieve targeted columns. The performance of append-
only storage and time-travel storage also degrades because the inter-
socket communication overhead increases proportionally to the
amount of data accessed by each read operation. This observation
is consistent with the results in Fig. 15b, where update operations
modify all of the tuples’ attributes, and increasing the number of
attributes accessed by each read operation degrades the performance
of all the storage schemes.

Memory Allocation: We next evaluate how memory allocation
affects the performance of the version storage schemes. We use
the YCSB workload under low contention (θ=0.2) on 40 threads.
Each transaction executes 10 operations that each access only one
attribute of a tuple. We change the number of separate memory
spaces and measure the DBMS’s throughput. The DBMS expands
each memory space in 512 KB increments.
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Figure 18: Tuple-level Comparison (Throughput) – The DBMS’s
throughput measured over time for YCSB workloads with 40 threads using
the tuple-level GC mechanisms.
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Figure 19: Tuple-level Comparison (Memory) – The amount of memory
that the DBMS allocates per transaction over time (lower is better) for YCSB
workloads with 40 threads using the tuple-level GC mechanisms.

Fig. 16 shows that the delta storage scheme’s performance is
stable regardless of the number of memory spaces that the DBMS
allocates. In contrast, the append-only and time-travel schemes’
throughput is improved by 1.6–4× when increasing the number
of separate memory spaces from 1 to 20. This is because delta
storage only copies the modified attributes of a tuple, which requires
a limited amount of memory. Contrast to this, the other two storage
schemes frequently acquire new slots to hold the full copy of every
newly created tuple version, thereby increasing the DBMS’s memory
allocation overhead.

TPC-C: Lastly, we compare the schemes using TPC-C. We set
the number of warehouses to 40, and scale up the number of threads
to measure the overall throughput and the StockScan query latency.

The results in Fig. 17a show that append-only storage achieves
comparatively better performance than the other two schemes. This
is because this scheme can lead to lower overhead when performing
multi-attribute read operations, which are prevalent in the TPC-C
benchmark. Although the delta storage scheme allocates less mem-
ory when creating new versions, this advantage does not result in a
notable performance gain as our implementation has optimized the
memory management by maintaining multiple spaces. Time-travel
scheme suffers lower throughput as it does not bring any benefits for
read or write operations. In Fig. 17b, we see that the append-only
and time-travel schemes are better for table scan queries. With delta
storage, the latency of the scan queries grows near-linearly with the
increase of number of threads (which is bad), while the append-only
and time-travel schemes maintain a latency that is 25–47% lower
when using 40 threads.

7.4 Garbage Collection
We now evaluate the GC mechanisms from Sect. 5. For these

experiments, we use the MVTO concurrency control protocol. We
first compare background versus cooperative cleaning in tuple-level
GC. We then compare tuple-level and transaction-level approaches.

Tuple-level Comparison: We use the update-intensive workload
(10 operations per transaction) with low and high contentions. The
DBMS uses append-only storage with O2N ordering, as COOP
only works with this ordering. We configure the DBMS to use 40
threads for transaction processing and one thread for GC. We report
both the throughput of the DBMS over time as well as the amount
of new memory that is allocated in the system. To better understand
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Figure 20: Tuple-level vs. Transaction-level (Throughput) – Sustained
throughput measured over time for two YCSB workloads (θ=0.8) using the
different GC mechanisms.

0 20 40 60 80 100 120
Elapsed time (s)

0.00

0.52

1.04

1.56

2.08

2.60

M
e
m

o
ry

 (
v
e
rs

io
n
s
/t
x
n
)

(a) Read-Intensive (R/W=80/20%)

0 20 40 60 80 100 120
Elapsed time (s)

0.0

2.4

4.8

7.2

9.6

12.0

M
e
m

o
ry

 (
v
e
rs

io
n
s
/t
x
n
)

(b) Update-Intensive (R/W=20/80%)

Figure 21: Tuple-level vs. Transaction-level (Memory) – The amount of
memory that the DBMS allocates per transaction over time (lower is better)
for two YCSB workloads (θ=0.8) using the different GC mechanisms.

the impact of GC, we also execute the workload with it disabled.
The results in Fig. 18 show that COOP achieves 45% higher

throughput compared to VAC under read-intensive workloads. In
Fig. 19, we see that COOP has a 30–60% lower memory footprint
per transaction than VAC. Compared to VAC, COOP’s performance
is more stable, as it amortizes the GC overhead across multiple
threads and the memory is reclaimed more quickly. For both work-
loads, we see that performance declines over time when GC is
disabled because the DBMS traverses longer version chains to re-
trieve the versions. Furthermore, because the system never reclaims
memory, it allocates new memory for every new version.

Tuple-level vs. Transaction-level: We next evaluate the DBMS’s
performance when executing two YCSB workloads (high contention)
mixture using the tuple-level and transaction-level mechanisms. We
configure the DBMS to use append-only storage with N2O order-
ing. We set the number of worker threads to 40 and one thread for
background vacuuming (VAC). We also execute the same workload
using 40 threads but without any GC.

The results in Fig. 20a indicate that transaction-level GC achieves
slightly better performance than tuple-level GC for the read-intensive,
but the gap increases to 20% in Fig. 20b for the update-intensive
workload. Transaction-level GC removes expired versions in batches,
thereby reducing the synchronization overhead. Both mechanisms
improve throughput by 20–30% compared to when GC is disabled.
Fig. 21 shows that both mechanisms reduce the memory usage.

7.5 Index Management
Lastly, we compare the index pointer schemes described in Sect. 6.

The main aspect of a database that affects the DBMS’s performance
with these schemes is secondary indexes. The DBMS updates point-
ers any time a new version is created. Thus, we evaluate the schemes
while increasing the number of secondary indexes in the database
with the update-intensive YCSB workload. We configure DBMS
to use the MVTO concurrency control protocol with append-only
storage (N2O ordering) and transaction-level COOP GC for all of
the trials. We use append-only storage because it is the only scheme
that supports physical index pointers. For logical pointers, we map
each index key to the HEAD of a version chain.

The results in Fig. 22b show that under high contention, logical
pointer achieves 25% higher performance compared to physical
pointer scheme. Under low contention, Fig. 22a shows that the
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Figure 22: Index Management – Transaction throughput achieved by vary-
ing the number of secondary indexes.
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Figure 23: Index Management – Throughput for update-intensive YCSB
with eight secondary indexes when varying the number of threads.

performance gap is enlarged to 40% with the number of secondary
indexes increased to 20. Fig. 23 further shows the advantage of logi-
cal pointers. The results show that for the high contention workload,
the DBMS’s throughput when using logical pointers is 45% higher
than the throughput of physical pointers. This performance gap
decreases in both the low contention and high contention workloads
with the increase of number of threads.

8. DISCUSSION
Our analyses and experiments of these transaction management

design schemes in MVCC DBMSs produced four findings. Fore-
most is that the version storage scheme is one of the most important
components to scaling an in-memory MVCC DBMS in a multi-
core environment. This goes against the conventional wisdom in
database research that has mostly focused on optimizing the con-
currency control protocols [48]. We observed that the performance
of append-only and time-travel schemes are influenced by the effi-
ciency of the underlying memory allocation schemes; aggressively
partitioning memory spaces per core resolves this problem. Delta
storage scheme is able to sustain a comparatively high performance
regardless of the memory allocation, especially when only a subset
of the attributes stored in the table is modified. But this scheme
suffers from low table scan performance, and may not be a good fit
for read-heavy analytical workloads.

We next showed that using a workload-appropriate concurrency
control protocol improves the performance, particularly on high-
contention workloads. The results in Sect. 7.2 show that the protocol
optimizations can hurt the performance on these workloads. Overall,
we found that MVTO works well on a variety of workloads. None
of the systems that we list in Table 1 adopt this protocol.

We also observed that the performance of a MVCC DBMS is
tightly coupled with its GC implementation. In particular, we found
that a transaction-level GC provided the best performance with the
smallest memory footprint. This is because it reclaims expired
tuple versions with lower synchronization overhead than the other
approaches. We note that the GC process can cause oscillations in
the system’s throughput and memory footprint.

Lastly, we found that the index management scheme can also
affect the DBMS’s performance for databases with many secondary
indexes are constructed. The results in Sect. 7.5 show that logical
pointer scheme always achieve a higher throughput especially when
processing update-intensive workloads. This corroborates other
reports in industry on this problem [25].
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Figure 24: Configuration Comparison (Throughput) – Performance of
the MVCC configurations from Table 1 with the TPC-C benchmark.
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Figure 25: Configuration Comparison (Scan Latency) – Performance of
the MVCC configurations from Table 1 with the TPC-C benchmark.

To verify these findings, we performed one last experiment with
Peloton where we configured it to use the MVCC configurations
listed in Table 1. We execute the TPC-C workload and use one
thread to repeatedly execute the StockScan query. We measure the
DBMS’s throughput and the average latency of StockScan queries.
We acknowledge that there are other factors in the real DBMSs
that we are not capturing in this experiment (e.g., data structures,
storage architecture, query compilation), but this is still a good
approximation of their abilities.

As shown in Fig. 24, the DBMS performs the best on both the low-
contention and high-contention workloads with the Oracle/MySQL
and NuoDB configurations. This is because these systems’ stor-
age schemes scale well in multi-core and in-memory systems, and
their MV2PL protocol provides comparatively higher performance
regardless of the workload contention. HYRISE, MemSQL, and
HyPer’s configurations yield relatively lower performance, as the
use of MVOCC protocol can bring high overhead due to the read-set
traversal required by the validation phase. Postgres and Hekaton’s
configurations lead to the worst performance, and the major reason
is that the use of append-only storage with O2N ordering severely
restricts the scalability of the system. This experiment demonstrates
that both concurrency control protocol and version storage scheme
can have a strong impact on the throughput.

But the latency results in Fig. 25 show that the DBMS’s perfor-
mance is the worst with delta storage. This is because the delta
storage has to spend more time on traversing version chains so as to
find the targeted tuple version attribute.

9. RELATED WORK
The first mention of MVCC appeared in Reed’s 1979 disserta-

tion [38]. After that, researchers focused on understanding the theory
and performance of MVCC in single-core disk-based DBMSs [9,
11, 13]. We highlight the more recent research efforts.

Concurrency Control Protocol: There exist several works propos-
ing new techniques for optimizing in-memory transaction process-
ing [46, 47]. Larson et al. [27] compare pessimistic (MV2PL) and
optimistic (MVOCC) protocols in an early version of the Microsoft
Hekaton DBMS [16]. Lomet et al. [31] proposed a scheme that uses
ranges of timestamps for resolving conflicts among transactions, and



Faleiro et al. [18] decouple MVCC’s concurrency control protocol
and version management from the DBMS’s transaction execution.
Given the challenges in guaranteeing MVCC serializability, many
DBMSs instead support a weaker isolation level called snapshot
isolation [8] that does not preclude the write-skew anomaly. Serial-
izable snapshot isolation (SSI) ensures serializability by eliminating
anomalies that can happen in snapshot isolation [12, 20]. Kim et
al. [24] use SSN to scale MVCC on heterogeneous workloads. Our
study here is broader in its scope.

Version Storage: Another important design choice in MVCC
DBMSs is the version storage scheme. Herman et al. [23] propose
a differential structure for transaction management to achieve high
write throughput without compromising the read performance. Neu-
mann et al. [36] improved the performance of MVCC DBMSs with
the transaction-local storage optimization to reduce the synchroniza-
tion cost. These schemes differ from the conventional append-only
version storage scheme that suffers from higher memory allocation
overhead in main-memory DBMSs. Arulraj et al. [7] examine the
impact of physical design on the performance of a hybrid DBMS
while running heterogeneous workloads.

Garbage Collection: Most DBMSs adopt a tuple-level back-
ground vacuuming garbage collection scheme. Lee et al. [29] eval-
uate a set of different garbage collection schemes used in modern
DBMSs. They propose a new hybrid scheme for shrinking the mem-
ory footprint in SAP HANA. Silo’s epoch-based memory manage-
ment approach allows a DBMS to scale to larger thread counts [44].
This approach reclaims versions only after an epoch (and preceding
epochs) no longer contain an active transaction.

Index Management: Recently, new index data structures have
been proposed to support scalable main-memory DBMSs. Lomet
et al. [32] introduced a latch-free, order preserving index, called
the Bw-Tree, which is currently used in several Microsoft products.
Leis et al. [30] and Mao et al. [34] respectively proposed ART
and Masstree, which are scalable index structures based on tries.
Instead of examining the performance of different index structures,
this work focuses on how different secondary index management
schemes impact the performance of MVCC DBMSs.

10. CONCLUSION
We presented an evaluation of the design decisions of transaction

management with in-memory MVCC. We described the state-of-
the-art implementations for each of them and showed how they are
used in existing systems. We then implemented them in the Peloton
DBMS and evaluated them using OLTP workloads to highlight their
trade-offs. We demonstrated the issues that prevent a DBMS from
supporting larger CPU core counts and more complex workloads.

Acknowledgements: This work was supported (in part) by the
National Science Foundation (CCF-1438955) and the Samsung Fel-
lowship Program. We also thank Tianzheng Wang for his feedback.

11. REFERENCES[1] MemSQL. http://www.memsql.com.
[2] MySQL. http://www.mysql.com.
[3] NuoDB. http://www.nuodb.com.
[4] Oracle Timeline. http://oracle.com.edgesuite.net/timeline/oracle/.
[5] Peloton. http://pelotondb.org.
[6] PostgreSQL. http://www.postgresql.org.
[7] J. Arulraj and et al. Bridging the Archipelago between Row-Stores and

Column-Stores for Hybrid Workloads. SIGMOD, 2016.
[8] H. Berenson and et al. A Critique of ANSI SQL Isolation Levels. SIGMOD’95.
[9] P. A. Bernstein and N. Goodman. Concurrency Control in Distributed Database

Systems. CSUR, 13(2), 1981.
[10] P. A. Bernstein, C. W. Reid, and S. Das. Hyder-A Transactional Record

Manager for Shared Flash. In CIDR, 2011.

[11] P. A. Bernstein and et al. Concurrency Control and Recovery in Database
Systems. 1987.

[12] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable Isolation for Snapshot
Databases. SIGMOD, 2008.

[13] M. J. Carey and W. A. Muhanna. The Performance of Multiversion
Concurrency Control Algorithms. TOCS, 4(4), 1986.

[14] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In SoCC, 2010.

[15] T. David, R. Guerraoui, and V. Trigonakis. Everything You Always Wanted To
Know About Synchronization But Were Afraid To Ask. In SOSP, 2013.

[16] C. Diaconu and et al. Hekaton: SQL Server’s Memory-Optimized OLTP
Engine. SIGMOD, 2013.

[17] K. P. Eswaran and et al. The Notions of Consistency and Predicate Locks in a
Database System. Communications of the ACM, 19(11), 1976.

[18] J. M. Faleiro and D. J. Abadi. Rethinking Serializable Multiversion
Concurrency Control. VLDB, 2014.

[19] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Compact and Concurrent
MemCache with Dumber Caching and Smarter Hashing. In NSDI, 2013.

[20] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making
Snapshot Isolation Serializable. TODS, 30(2), 2005.

[21] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and S. Madden.
HYRISE: A Main Memory Hybrid Storage Engine. VLDB, 2010.

[22] A. Harrison. InterBase’s Beginnings. http://www.firebirdsql.org/en/ann-
harrison-s-reminiscences-on-interbase-s-beginnings/.

[23] S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos, and P. Boncz. Positional
Update Handling in Column Stores. SIGMOD, 2010.

[24] K. Kim, T. Wang, J. Ryan, and I. Pandis. ERMIA: Fast Memory-Optimized
Database System for Heterogeneous Workloads. SIGMOD, 2016.

[25] E. Klitzke. Why uber engineering switched from postgres to mysql.
https://eng.uber.com/mysql-migration/, July 2016.

[26] H.-T. Kung and J. T. Robinson. On Optimistic Methods for Concurrency
Control. TODS, 6(2), 1981.

[27] P.-Å. Larson and et al. High-Performance Concurrency Control Mechanisms
for Main-Memory Databases. VLDB, 2011.

[28] J. Lee, M. Muehle, N. May, F. Faerber, V. Sikka, H. Plattner, J. Krueger, and
M. Grund. High-Performance Transaction Processing in SAP HANA. IEEE
Data Eng. Bull., 36(2), 2013.

[29] J. Lee and et al. Hybrid Garbage Collection for Multi-Version Concurrency
Control in SAP HANA. SIGMOD, 2016.

[30] V. Leis, A. Kemper, and T. Neumann. The Adaptive Radix Tree: ARTful
Indexing for Main-Memory Databases. ICDE, 2013.

[31] D. Lomet, A. Fekete, R. Wang, and P. Ward. Multi-Version Concurrency via
Timestamp Range Conflict Management. ICDE, 2012.

[32] D. B. Lomet, S. Sengupta, and J. J. Levandoski. The Bw-Tree: A B-tree for
New Hardware Platforms. ICDE, 2013.

[33] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking Main
memory OLTP Recovery. ICDE, 2014.

[34] Y. Mao, E. Kohler, and R. T. Morris. Cache Craftiness for Fast Multicore
Key-Value Storage. In EuroSys, 2012.

[35] C. Mohan. ARIES/KVL: A Key-Value Locking Method for Concurrency
Control of Multiaction Transactions Operating on B-Tree Indexes. VLDB’90.

[36] T. Neumann, T. Mühlbauer, and A. Kemper. Fast Serializable Multi-Version
Concurrency Control for Main-Memory Database Systems. SIGMOD, 2015.

[37] A. Pavlo and M. Aslett. What’s Really New with NewSQL? SIGMOD Rec.,
45(2):45–55, June 2016.

[38] D. P. Reed. Naming and Synchronization in a Decentralized Computer System.
Ph.D. dissertation, 1978.

[39] D. P. Reed. Implementing Atomic Actions on Decentralized Data. TOCS, 1983.
[40] V. Sikka and et al. Efficient Transaction Processing in SAP HANA Database:

The End of a Column Store Myth. SIGMOD, 2012.
[41] M. Stonebraker and L. A. Rowe. The Design of POSTGRES. SIGMOD, 1986.
[42] M. Stonebraker and et al. The End of an Architectural Era: (It’s Time for a

Complete Rewrite). VLDB, 2007.
[43] The Transaction Processing Council. TPC-C Benchmark (Revision 5.9.0).

http://www.tpc.org/tpcc/spec/tpcc_current.pdf, June 2007.
[44] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy Transactions in

Multicore In-Memory Databases. In SOSP, 2013.
[45] T. Wang, R. Johnson, A. Fekete, and I. Pandis. Efficiently Making (Almost)

Any Concurrency Control Mechanism Serializable. arXiv:1605.04292, 2016.
[46] Y. Wu, C.-Y. Chan, and K.-L. Tan. Transaction Healing: Scaling Optimistic

Concurrency Control on Multicores. In SIGMOD, 2016.
[47] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas. Tictoc: Time Traveling

Optimistic Concurrency Control. In SIGMOD, 2016.
[48] X. Yu and et al. Staring Into the Abyss: An Evaluation of Concurrency Control

with One Thousand Cores. VLDB, 2014.
[49] W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast Databases with Fast Durability

and Recovery Through Multicore Parallelism. In OSDI, 2014.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1438955
http://www.memsql.com
http://www.mysql.com
http://www.nuodb.com
http://oracle.com.edgesuite.net/timeline/oracle/
http://pelotondb.org
http://www.postgresql.org
http://www.firebirdsql.org/en/ann-harrison-s-reminiscences-on-interbase-s-beginnings/
http://www.firebirdsql.org/en/ann-harrison-s-reminiscences-on-interbase-s-beginnings/
https://eng.uber.com/mysql-migration/
http://www.tpc.org/tpcc/spec/tpcc_current.pdf

	Introduction
	Background
	MVCC Overview
	DBMS Meta-Data

	Concurrency Control Protocol
	Timestamp Ordering (MVTO)
	Optimistic Concurrency Control (MVOCC)
	Two-phase Locking (MV2PL)
	Serialization Certifier
	Discussion

	Version Storage
	Append-only Storage
	Time-Travel Storage
	Delta Storage
	Discussion

	Garbage Collection
	Tuple-level Garbage Collection
	Transaction-level Garbage Collection
	Discussion

	Index Management
	Logical Pointers
	Physical Pointers
	Discussion

	Experimental Analysis
	Benchmarks
	Concurrency Control Protocol
	Version Storage
	Garbage Collection
	Index Management

	Discussion
	Related Work
	Conclusion
	References

