
Production-Run Software Failure Diagnosis

via Hardware Performance Counters

Joy Arulraj, Po-Chun Chang, Guoliang Jin
and Shan Lu

Motivation

 Software inevitably fails on production machines

 These failures are widespread and expensive

• Internet Explorer zero-day bug [2013]

• Toyota Prius software glitch [2010]

2

 These failures need to be diagnosed before
they can be fixed !

Production-run failure diagnosis

 Diagnosing failures on client machines

• Limited info from each client machine

• One bug can affect many clients

• Need to figure out root cause & patch quickly

3

Executive Summary

4

Use existing hardware support to diagnose
widespread production-run failures with low

monitoring overhead

Diagnosing a real world bug

 Sequential bug in print_tokens

5

int is_token_end(char ch){
if(ch == ‘\n’)
 return (TRUE);
else if(ch == ‘ ’)
// Bug: should return FALSE
 return (TRUE);
else
 return (FALSE);
}

Input:
Abc Def

Expected
Output:

{Abc}, {Def}

Actual
Output:

{Abc Def}

Diagnosing concurrency bugs

 Concurrency bug in Apache server

6

decrement_refcnt(...)
{
 atomic_dec(
 &obj->refcnt);

 if(!obj->refcnt)
 cleanup(obj);
}

decrement_refcnt(...)
{

 atomic_dec(
 &obj->refcnt);

 if(!obj->refcnt)
 cleanup(obj);

}

2 --> 1

THREAD 1 THREAD 2

1 --> 0

0
0

Requirements for failure diagnosis

 Performance

• Low runtime overhead for monitoring apps

• Suitable for production-run deployment

 Diagnostic Capability

• Ability to accurately explain failures

• Diagnose wide variety of bugs

7

Existing work

8

Approach Performance Diagnostic
Capability

FAILURE
REPLAY

High runtime overhead

OR

Non-existent hardware
support

Manually locate root
cause

BUG
DETECTION

Many false positives

Cooperative Bug Isolation

 Cooperatively diagnose production-run failures

• Targets widely deployed software

• Each client machine sends back information

 Uses sampling

• Collects only a subset of information

• Reduces monitoring overhead

• Fits well with cooperative debugging approach

9

Cooperative Bug Isolation

Approach Performance Diagnostic Capability

CBI / CCI >100% overhead for
many apps (CCI)

Accurate & Automatic

10

Program
Source

Predicates
& J/L

Failure
Predictors

TRUE in most
FAILURE runs,
FALSE in most
SUCCESS runs.

Statistical
Debugging

Code size
increased

>10X

Compiler

Predicates

Sampling

Performance-counter based Bug Isolation

 Requires no non-existent hardware support

 Requires no software instrumentation

11

Program
Binary

Predicates
& J/L

Failure
Predictors

Statistical
Debugging

Hardware

Predicates

Sampling

Code size
unchanged.

Hardware
performance

counters

PBI Contributions

 Suitable for production-run deployment

 Can diagnose a wide variety of failures

 Design addresses privacy concerns

12

Approach Performance Diagnostic Capability

PBI <2% overhead for most
apps evaluated

Accurate & Automatic

Outline

 Motivation

 Overview

 PBI

• Hardware performance counters

• Predicate design

• Sampling design

 Evaluation

 Conclusion

13

Hardware Performance Counters

 Registers monitor hardware performance events

• 1—8 registers per core

• Each register can contain an event count

• Large collection of hardware events

• Instructions retired, L1 cache misses, etc.

14

Accessing performance counters
INTERRUPT-BASED POLLING-BASED

15

HW
(PMU)

Kernel

User

Config

Config

Interrupt

Instruction

HW
(PMU)

User

Special
Config

Count

How do we monitor which event occurs at which
instruction using performance counters ?

Predicate evaluation schemes

16

Natural fit for sampling Requires instrumentation

More precise Imprecise due to OO execution

INTERRUPT-BASED POLLING-BASED

Counter
overflow

Kernel

Config Interrupt

Interrupt at Instruction C
=> Event occurred at C

old = readCounter()
< Instruction C >
new = readCounter()
if(new > old)
 Event occurred at C

16

Concurrency bug failures

 L1 data cache cache-coherence events

17

How do we use performance counters to
diagnose concurrency bug failures ?

Local read
Local write
Remote read
Remote write

Modified
Exclusive
Shared
Invalid

Atomicity Violation Example

18

THD 1 on CORE 1

decrement_refcnt(...)
{
 apr_atomic_dec(
 &obj->refcnt);

C:if(!obj->refcnt)
 cleanup_cache(obj);
}

CORE 1 – THD 1

Local
Write

Modified

Atomicity Violation Example

19

decrement_refcnt(...)
{
 apr_atomic_dec(
 &obj->refcnt);

C:if(!obj->refcnt)
 cleanup_cache(obj);
}

decrement_refcnt(...)
{

 apr_atomic_dec(
 &obj->refcnt);

 if(!obj->refcnt)
 cleanup_cache(obj);

}

CORE 1 – THD 1 CORE 2 - THD 2

Remote
Write

Invalid

Atomicity Violation Bugs

20

THREAD INTERLEAVING FAILURE PREDICTOR

WWR Interleaving INVALID

RWR Interleaving INVALID

RWW Interleaving INVALID

WRW Interleaving SHARED

Order violation

21

print(‚End‛,Gend)

C:print(‚Run‛,Gend-init)

 Gend = time()

CORE 1 – MASTER THD CORE 2 – SLAVE THD

Shared

Remote
Write

Local
Read

Order violation

22

print(‚End‛,Gend)

C:print(‚Run‛,Gend-init)

 Gend = time()

Exclusive

CORE 1 – MASTER THD CORE 2 – SLAVE THD

Local
Read

PBI Predicate Sampling

 We use Perf (provided by Linux kernel 2.6.31+)

23

perf record –event=<code> -c <sampling_rate>
<program monitored>

Log
Id

APP Core Performance
Event

Instruction Function

1 Apache

2 0x140
(Invalid)

401c3b

decrement
_refcnt

PBI vs. CBI/CCI (Qualitative)
 Performance

 Diagnostic capability

• Discontinuous monitoring (CCI/CBI)

• Continuous monitoring (PBI)

 CCI

Are other threads
sampling?

Sample in this
region?

Are other threads
sampling?

24

Sample in this
region?

 PBI CBI

Outline

 Motivation

 Overview

 PBI

• Hardware performance counters

• Predicate design

• Sampling design

 Evaluation

 Conclusion

25

Methodology

 23 real-world failures
• In open-source server, client, utility programs

• All CCI benchmarks evaluated for comparison

 Each app executed 1000 runs (400-600 failure runs)

• Success inputs from standard test suites

• Failure inputs from bug reports

• Emulate production-run scenarios

 Same sampling settings for all apps

26

Evaluation

27

Program Diagnostic Capability
PBI CCI-P CCI-H

Apache1
Apache2
Cherokee X
FFT X
LU X
Mozilla-JS1 X
Mozilla-JS2
Mozilla-JS3
MySQL1 - -
MySQL2 - -
PBZIP2

Diagnostic Capability

28

Program Diagnostic Capability
PBI CCI-P CCI-H

Apache1 (Invalid)
Apache2 (Invalid)
Cherokee (Invalid) X
FFT (Exclusive) X
LU (Exclusive) X
Mozilla-JS1 (Invalid) X
Mozilla-JS2 (Invalid)
Mozilla-JS3 (Invalid)
MySQL1 (Invalid) - -
MySQL2 (Shared) - -
PBZIP2 (Invalid)

Diagnostic Capability

29

Program Diagnostic Capability
PBI CCI-P CCI-H

Apache1
Apache2
Cherokee X
FFT X
LU X
Mozilla-JS1 X
Mozilla-JS2
Mozilla-JS3
MySQL1 - -
MySQL2 - -
PBZIP2

Diagnostic Capability

30

Program Diagnostic Capability
PBI CCI-P CCI-H

Apache1
Apache2
Cherokee X
FFT X
LU X
Mozilla-JS1 X
Mozilla-JS2
Mozilla-JS3
MySQL1 - -
MySQL2 - -
PBZIP2

Diagnostic Overhead

Program Diagnostic Overhead
PBI CCI-P CCI-H

Apache1 0.40% 1.90% 1.20%
Apache2 0.40% 0.40% 0.10%
Cherokee 0.50% 0.00% 0.00%
FFT 1.00% 121% 118%
LU 0.80% 285% 119%
Mozilla-JS1 1.50% 800% 418%
Mozilla-JS2 1.20% 432% 229%
Mozilla-JS3 0.60% 969% 837%
MySQL1 3.80% - -
MySQL2 1.20% - -
PBZIP2 8.40% 1.40% 3.00%

31

Diagnostic Overhead

Program Diagnostic Overhead
PBI CCI-P CCI-H

Apache1 0.40% 1.90% 1.20%
Apache2 0.40% 0.40% 0.10%
Cherokee 0.50% 0.00% 0.00%
FFT 1.00% 121% 118%
LU 0.80% 285% 119%
Mozilla-JS1 1.50% 800% 418%
Mozilla-JS2 1.20% 432% 229%
Mozilla-JS3 0.60% 969% 837%
MySQL1 3.80% - -
MySQL2 1.20% - -
PBZIP2 8.40% 1.40% 3.00%

32

Conclusion

 Low monitoring overhead

 Good diagnostic capability

 No changes in apps

 Novel use of performance counters

33

PBI will help developers diagnose production-run
software failures with low overhead

Thanks !

