Production-Run Software Failure Diagnosis
via Hardware Performance Counters

Joy Arulraj, Po-Chun Chang, Guoliang Jin
and Shan Lu

THE UNIVERSITY

Motivation

= Software inevitably fails on production machines

= These failures are widespread and expensive

* Internet Explorer zero-day bug [2013] ,
* Toyota Prius software glitch [2010] @

These failures need to be diagnosed before

they can be fixed !

Production-run failure diagnosis

= Diagnosing failures on client machines
 Limited info from each client machine
* One bug can affect many clients
* Need to figure out root cause & patch quickly

Internet Explorer

Internet Explorer has encountered a problem and needs i3
to close. We are zony for the inconvemence.

It you were in the middle of zomething, the information you were warking on
might be lost.

Please tell Microzoft about thiz problem.

“We have created an eror report that vou can send to help ug improve
Internet Explorer. ‘e will treat thiz report as confidential and anonymotes.

To zee what data this emor report containg, click here.

Debug Send Emar Beport J Don't Send |

Executive Summary

Use existing hardware support to diagnose

production-run failures with
monitoring overhead

Diagnosing a real world bug

= Sequential bug in print_tokens Input:
Abc Det

int is_token_end(char ch){

if(ch == “\n”’) Expected
return (TRUE); \/ Output:
else if(ch == ¢ ?) {Abc}, {Def}

// Bug: should return FALSE
msm) return (TRUE);

else
return (FALSE); x

}

Actual
Output:

{Abc Def}

Diagnosing concurrency bugs

= Concurrency bug in Apache server

THREAD 1 THREAD 2
decrement_refcnt(...) decrement_refcnt(...)
{ {

atomic_dec(
“m s &obj->refcnt);_ atomic_dec(

e &obj->refcnt);l s a0

n /"F .
(lobj->refcnt)
xif if('obj->refcn

(lobj->refcnt) cleanup(obj);
cleanup(obj);

Requirements for failure diagnosis

= Performance
* Low runtime overhead for monitoring apps
* Suitable for production-run deployment

= Diagnostic Capability
* Ability to accurately explain failures
* Diagnose wide variety of bugs

Existing work

Approach Performance Diagnostic
Capability

FAILURE High runtime overhead Manually locate root
REPLAY cause

OR

BUG Non-existent hardware Many false positives
DETECTION support

Cooperative Bug Isolation

= Cooperatively diagnose production-run failures
* Targets widely deployed software
 Each client machine sends back information

= Uses sampling
* Collects only a subset of information
* Reduces monitoring overhead
* Fits well with cooperative debugging approach

Cooperative Bug Isolation

Compiler
Program
Source Predicates
FALSE in most

SUCCESS runs. Sampling

Failoure [ig?ls t1(§111 Predicates
Predictors &81ng & ©/®

Approach Diagnostic Capability

CBI/CCI >100% overhead for Accurate & Automatic
many apps (CCI)

10

Performance-counter based Bug Isolation

ISEVIATEINC
Code size Hardware performance

unchanged. Prggram : counters
Binary Predicates

Sampling

Failure Statistical

! Predicates
Predictors Debugging

= Requires no non-existent hardware support
= Requires no software instrumentation

11

PBI Contributions

Approach Diagnostic Capability

PBI <2% overhead for most Accurate & Automatic
apps evaluated

= Suitable for production-run deployment
= Can diagnose a wide variety of failures
= Design addresses privacy concerns

12

Outline

PBI

« Hardware performance counters
* Predicate design

* Sampling design

Evaluation

Conclusion

13

Hardware Performance Counters

= Registers monitor hardware performance events
* 1—8 registers per core
 Each register can contain an event count

* Large collection of hardware events
* Instructions retired, L1 cache misses, etc.

14

Accessing performance counters

INTERRUPT-BASED POLLING-BASED

? User
- Special
o e M
Interrupt Sl
HW

(PMU) (PMU)

How do we monitor occurs at

using performance counters ?

Predicate evaluation schemes

INTERRUPT-BASED POLLING-BASED

Kernel old = readCounter()

< Instruction C >
P new = readCounter()

- Counter if(new > old)
/ overflow Event occurred at C

Interrupt at Instruction C
=> Event occurred at C

Natural fitfor sampling. | Requires instsumentation

More precise

16

Concurrency bug failures

How do we use performance counters to

diagnose concurrency bug failures ?

= [.1 data cache cache-coherence events

Modified :

. Local write
Exclusive Remote read
Shared

. Remote write
Invalid

17

Atomicity Violation Example

CORE1-THD1

édecrement_refcnt(...)

A

Local 2
Write §

apr_atomic_dec(
&obj->refcnt);

éC:if(!obj->refcnt)
: cleanup_cache(obj);

18

Atomicity Violation Example

CORE1-THD1 CORE 2 -THD 2

decrement _refcent(...) i
g{ g;decrement_refcnt(...)

apr_atomic_dec(gé{

&obj->refcnt); ¥ . é
""5 apr_atomic_dec(ERIUGHTIEE
i1 &obj->refcnt); Write

L/ i£(1obj->refcnt)

1 h bj);
.1f('obJ >refcnt) cleanup_cache(obj);
cleanup_cache(obj); §§}

Atomicity Violation Bugs

THREAD INTERLEAVING | FAILURE PREDICTOR

WWR Interleaving INVALID
RWR Interleaving INVALID
RWW Interleaving INVALID
WRW Interleaving SHARED

20

Order violation

CORE 1-MASTER THD CORE 2 - SLAVE THD

éprint(“End”,Gend) é.

EC:print(“Run”,Gend-init) i

Order violation

CORE 1-MASTER THD CORE 2 - SLAVE THD

pr1nt(“End” Gend)

'l

C print(“Run”,Gend-init) i

Gend = time()

PBI Predicate Sampling

= We use Pert (provided by Linux kernel 2.6.31+)

perf record -event=<code> -c <sampling rate>
<program monitored>

Log APP Core | Performance |Instruction |Function
Event

Apache 2 0x140 401c3b decrement
(Invalid) _refent

23

PBI vs. CBI/CCI (Qualitative)

= Performance

Sample in thls
Sample in thls region?
region’? Are other threads
samplmg
T Are other threads
sampling?

= Diagnostic capability

* Discontinuous monitoring (CCI/CBI)
* Continuous monitoring (P’BI)

24

Evaluation
Conclusion

Outline

25

Methodology

= 23 real-world failures
* In open-source server, client, utility programs
* All CCI benchmarks evaluated for comparison

= FEach app executed 1000 runs (400-600 failure runs)
* Success inputs from standard test suites
* Failure inputs from bug reports
* Emulate production-run scenarios

= Same sampling settings for all apps

26

Evaluation

Diagnostic Capabilit

PBI CCI-P CCI-H
Apachel v v v
Apache? v v v
Cherokee v X 4
FFT v v X
LU v v X
Mozilla-JS1 v X v
Mozilla-JS2 v v v
Mozilla-JS3 v v 4
MySQL1 v - -
MySQL2 v - -
PBZIP2 v v v

27

Diagnostic Capability

Apachel
Apache?
Cherokee
FFT

LU
Mozilla-JS1
Mozilla-JS2
Mozilla-]JS3
MySQL1
MySQL2
PBZIP2

PBI

v/ (Invalid)
v’ (Invalid)
v’ (Invalid)
v’ (Exclusive)
v’ (Exclusive)
v’ (Invalid)
v’ (Invalid)
v’ (Invalid)
v’ (Invalid)
v'(Shared)
v (Invalid)

CCI-P

N A XA AN XXX

AN

CC

o

N AU X XXX

AN

28

Diagnostic Capability

Apachel
Apache?
Cherokee
FFT

LU
Mozilla-JS1
Mozilla-JS2
Mozilla-]JS3
MySQL1
MySQL2
PBZIP2

R R TRy

|

CCI-P

N A XSS XS KX

AN

CC

a

N AU X X XX

AN

29

Diagnostic Capability

Apachel
Apache?
Cherokee
FFT

LU
Mozilla-JS1
Mozilla-JS2
Mozilla-]JS3
MySQL1
MySQL2
PBZIP2

R R ERERY-:

|

CCI-P

N A XA AN XXX

AN

C

Lo axxaa 2
e

30

Diagnostic Overhead

Apachel
Apache?
Cherokee
FFT

LU
Mozilla-JS1
Mozilla-JS2
Mozilla-]JS3
MySQL1
MySQL2
PBZIP2

PBI
0.40%
0.40%
0.50%
1.00%
0.80%
1.50%
1.20%
0.60%
3.80%
1.20%
8.40%

CCI-P
1.90%
0.40%
0.00%
121%
285%
800%
432%
969%

1.40%

CCI-H

1.20%
0.10%
0.00%
118%
119%
418%
229%
837%

3.00%

31

Diagnostic Overhead

Apachel
Apache?
Cherokee
FFT

LU
Mozilla-JS1
Mozilla-JS2
Mozilla-]JS3
MySQL1
MySQL2
PBZIP2

PBI
0.40%
0.40%
0.50%
1.00%
0.80%
1.50%
1.20%
0.60%
3.80%
1.20%
8.40%

CCI-P
1.90%
0.40%
0.00%
121%
285%
800%
432%
969%

1.40%

CCI-H

1.20%
0.10%
0.00%
118%
119%
418%
229%
837 %

3.00%

32

Conclusion

= Low monitoring overhead

= Good diagnostic capability

= No changes in apps

= Novel use of performance counters

PBI will help developers diagnose production-run
software failures with low overhead

