Leveraging the Short-Term Memory
of Hardware fo Diagnose
Production-Run Software Failures

Joy Arulraj, Guoliang Jin and Shan Lu

Production-Run Failure Diagnosis

Internet Explorer

Internet Explorer has encountered a problem and needs -
to close. We are sonry for the inconvenience.

If you were in the middle of something, the information you were working on
might be lost.

Please tell Microsoft about this problem.

We have created an error report that you can send to help us improve
Interet Explorer. We will treat this report as confidential and anonymous.

To see what data this error report contains, click here.

Debug | Send Error Report Il Don't Send |

e Goal

¥ Microsoft Office PowerPoint

Microsoft Office PowerPoint has encountered a problem and needs to dose
We are somry for the inconvenience. '_3

The information you were working on might be lost. Microsoft Office PowerPoint can try to
racover & for you

Recover my work and restan Mcrosoft Office PowerPaint

Please tell Microsoft about this problem.
We have created an emor report that you can send 1o heb us improve Microsoft Office
PowerPort. We wil treat this repot 39 confidental and anorymous

Why shoudd | report 1o Merossh?

| Send Emor Repon | [Dont Send |

— Figure out root cause of failure on client machines

— Fix them quickly

Importance

* Social and financial impact

— Toyota Prius software glitch
— NASDAQ Facebook IPO glitch

- I -~

Challenges

* Limited program execution information

— Performance and privacy reasons

* Complicated root cause
— Sequential bugs

— Concurrency bugs

* Need to diagnose and fix quickly

Existing Tools

(1) During entire execution — (?? At failure-site

(3) Sampling |

Limitations Of Existing Tools

A
High x (1) Entire-execution approach

Performance
Overhead

x (2) Failure-site approach
>

Low

Low High

Diagnosis Latency

Limitations Of Existing Tools

A
High x (1) Entire-execution approach

Performance
Overhead

x (3) Sampling

x (2) Failure-site approach
>

Low

Low High

Diagnosis Latency

1/100 sampling rate =» ~100 failures required for diagnosis

Challenge

* Low performance overhead

— Collect little execution information

* Low diagnosis latency

— Collect root-cause related information

Which part of the program execution is most likely
to contain root-cause information?

Qur Solution: Last Execution Record

* Execution right before failure
— Last Execution Record (LXR)

* How to collect this information efficiently?

— Leverage simple hardware support

program execution (

Last Execution Record (LXR)

=

Last Execution Record (LXR)

High

Performance
Overhead

Low

A

x (1) Entire-execution approach

&3

Last Execution Record

x (3) Sampling

x (2) Failure-site approach

Low

Diagnosis Latency

High

>

10

Qutline

* LXR Design
* Failure diagnosis using LXR

e Evaluation

11

LXR Design Questions & Principles

e What should we collect in LXR?

— Useful for failure diagnosis

* How to collect LXR?
— Lightweight to collect

LXR Design For Sequential Bugs

e What should we collect in LXR?

— Recently taken branches

* How to collect LXR?

— Use existing hardware support -- LBR

Last Branch Record (LBR)

* Existing hardware feature
— Set of recently taken branches
— Circular buffer with 16 entries (Intel Nehalem)

— Overhead: negligible

Branch Source Branch Target
Instruction Pointer Instruction Pointer

Lightweight

s LBR useful ¢

Semantic
Bugs
[qunches refledt Abnormal
] I Control Flow
Memory
Bugs 1

* Root-cause of many types of sequential bugs
[PLDI.2005]

* Error-propagation distances tend to be short

[DSN.2003] m

15

Sequential Bug Example

e Coreltils: sort -m -o filel filel

// SORT.C
void merge (...) {

open_input_files(...);

int open_input_files (...) {
if (files[i].pid I= 0) /* child process */
table=2»bucket = val;

else ... E i
}

CALL STACK

open_input_files()

merge()

main()

16

|s LBR useful ¢

e Coreltils: sort -m -o filel filel

int avoid_trashing_input (...) {

// SORT.C if(...) {
int num_merged = 0;
void merge (...) { while (i + num_merged < nfiles) {
avoid_trashing_input(...); num_merged += mergefiles(...);
memmove(&files[i], &files[i+num_merged],);
open_input_files(...); }

} }
}

int open_input_files (...) {
if (files[i].pid != 0)
table=»bucket = val; if (files[i].pid != 0)
else ...

}

while (i+num_merged < nfiles)

LXR Design For Concurrency Bugs

* What should we collect in LXR?
— Recently executed cache-access instructions
— Cache-coherence state observed (M/E/S/I)
* How to maintain and collect LXR?

— Key hardware feature already exists

— Propose a simple hardware extension to use that

Last Cache-coherence Record (LCR)

* Existing hardware feature

— Configurable cache-coherence event counting

e Extension:
— Buffer to collect this information

— Set of recent L1 data cache access instructions

* Overhead: not perceivable

Cache-access Cache-coherence
Instruction Pointer State (M/E/S/I)

Lightweight

s LCR Useful ¢

o

Bugs

A’romici’ry-VioIq’rion}

" Cache. |
ache- reflects Abnormal
coherence
. Interleavings
._Information)

* Related to concurrency bug root-causes

[ASPLOS.201 3]
* Error-propagation distances tend to be short

[ASPLOS.201 1]

Order-Violation
Bugs

s LCR useful ¢

* Mozilla JavaScript Engine

InitState(...){
table = New();

if (table == NULL) {

ReportOutOfMemory();

return JS_FALSE;

ReportOutOfMemory(){

error("out of memory");

}

CALL STACK

ReportOutofMemory()

InitState()

main()

2]

s LCR useful ¢

* Mozilla JavaScript Engine: Success Run ¢

Thread 1 Modified Thread 2 ‘ Modified \

InitState(...){ FreeState(...){
W table = New(); |:> Destroy(table);

table = NULL;

R if (table == NULL) {)
ReportOutOfMemory()

return JS_FALSE; [MOdiﬁed]

}

ReportOutOfMemory(){
error("out of memory");

}

22

s LCR useful ¢

* Mozilla JavaScript Engine: Failure Run 3§

Thread 1 Invalid \ Thread 2 Modified

InitState(...){ FreeState(...){

_ Destroy(table); @
W |:> table = New(); !
table = NULL;
)
}

R if (table == NULL) {

ReportOutOfMemory() | |d
return JS_FALSE; nvali

}

ReportOutOfMemory(){
error("out of memory");

table == NULL Invalid

table = New() Invalid

}

23

Qutline

* LXR Design
* Failure diagnosis using LXR

e Evaluation

24

Manual failure diagnosis

* Enhance logging by collecting LXR
— Existing failure logging functions

— Signal handler

// failure logging function // signal handler
error_wrapper(args){ void handler(int signo)
DISABLE_LXR(); {
PROFILE_LXR(); DISABLE_LXR();
error (args); PROFILE_LXR();
}
}

25

Automated failure diagnosis

e Collect LXR in both failure and success runs

* Statistical analysis

— Automatically identify failure predictors

table == NULL | Invalid

[table == NULL | Modified

[table == NULL

0.91

table = New() Invalid

X

table = New() | Invalid

v

table = New()

0.56

26

Implementation details

* LBR exposed via Linux kernel module
— Enable, configure and access using our interface
— Reducing LBR pollution from irrelevant branches
— Details in paper

* LCR simulated using PIN infrastructure
— L1 data cache with MESI coherence protocol
— Interface similar to LBR

— Details in paper

Qutline

* LXR Design
* Failure diagnosis using LXR

e Evaluation

28

Methodology

* 31 real-world failures
— In open-source server, client, utility programs

— 20 sequential and 11 concurrency bugs

* Compared against CBI/CCl

— State-of-the-art software-based tools
— Diagnose sequential and concurrency bugs

— Perform sampling to lower overhead

Does LBR help locate root cause ¢

APPLICATION LBR LBR CBI
MANUAL AUTOMATED (N entry)
(N'h entry) (N'h entry)

Apache 3 1 2

Squid 2 1 .

Coreutils 12 1 2

Tar 4 1 1

PBZIP .4 1 .

* Root-cause branch mostly in recent 8 LBR entries

* So, even short-term LBR memory sufficient !

30

Cross-checking LBR with patches

APPLICATION FAILURE SITE TO PATCH LBR TO PATCH

(LoC) (LoC)
Apache Another file 3
Squid 123 2
Coretutils 309 0]
Tar Another file 2
PBZIP 4] 1
* LBR entries are much closer to patch for most bugs
T

R N

[BR |{ Patch | [Failure]

31

Diagnosis Latency

TOOL DIAGNOSIS SAMPLING
LATENCY
Manual LBR 1 failure run No
Automated LBR 10 failure runs No
@] 1000 failure runs Yes

* LBR tools need fewer failure runs for diagnosis

* CBIl uses sampling which increases latency

32

Performance Overhead

Performance Overhead (%)

100

o

—

o

|]

Apache

Squid Coreutils

Tar

18

PBZIP

® Manual LBR
B Automated LBR
O CBI

33

Does LCR help locate root cause ¢

APPLICATION LCR LCR CCl
MANUAL AUTOMATED (N'h entry)
(N'h entry) (N'h entry)

Apache 5 1 1

Cherokee - - -

Mozilla 8]]

MySQL 9] -

PBZIP .7]]

* Locates root-cause in 7 out of 11 failures

* So, short-term LCR memory sufficient

34

Summary

High

Performance
Overhead

Low

A

x (1) Entire-execution approach

Last Execution Record

x x (3) Sampling

x (2) Failure-site approach

>

Low

Diagnosis Latency

High

35

