Let’s Talk About
Storage & Recovery Methods for
Non-Volatile Memory Database Systems

Joy Arulraj, Andrew Pavlo, Subramanya R. Dulloor

$=_2 CARNEGIE MELLON =3 |G TG

o™ DATABASE GROUP =~ E<V B @&

Non-Volatile Memory (NVM)

" oRAM_SSD | DISK NV

Read Latency 1x 500x 10°x 2-4x
Write Latency 1x 5000x 10°x 2-8x
Persistence % v v v
Byte-level access X X v
Write endurance X v %

Executive Summary

Design a DBMS storage engine for NVM

** Re-examine traditional assumptions
s Storage and recovery optimizations

NVM Hardware Emulator

» Configure DRAM load and store latency
* Throttle memory bandwidth

* Two interfaces
— Filesystem Interface (fread/fwrite)
— Allocator Interface (malloc/free)

DBMS Platform

» Lightweight DBMS
— NVM-only design
— No volatile DRAM
— Runs on the hardware emulator

* Pluggable backend storage architecture
* Timestamp-based concurrency control

3 Storage Engines

TABLE
ENGINE TYPE STORAGE LOGGING |[EXAMPLE

In-Place Updates VoltDB

Copy-on-Write Updates v x LMDB
Log-Structured Updates x v LevelDB

#1: In-Place Updates

WRITE AHEAD LOG
© TUPLE DELTA

© UPDATED TUPLE
INDEX SNAPSHOTS
© UPDATED TUPLE
A\

Optimizing for NVM

* Non-volatile pointer
— Non-volatile data structures
— Valid even after system restarts

» Exclusively use allocator interface
— Byte-addressable NVM
— Not filesystem interface

#1: NVM In-Place Updates

VTAINRITFFE ATIIFAMN I f\G

Benefits
= ¢ Reduce data duplication

“* Almost instantaneous recovery
¢ No redo log, only an undo log

#2:. Copy-on-Write Updates

Master Record

- - V4 J
- ~
- ~ V4 Y
- ~
- ~, V4
t '

@ UPDATED TUPLE

Copy-on-Write B+Tree

#2: NVM Copy-on-Write Updates

Master Record ALLOCATOR-BASED
(NOT Fll F-RASED)

SEEIS
¢ Support smaller B+tree nodes

** Cheaper dirty directory creation
¢ Reduces data duplication
@) UPDATED TUPLE

ONLY POINTERS ONLY POINTERS

#3. Log-Structured Updates

N
MEMTABLE

WRITE AHEAD LOG

@ TUPLE DELTA

SSTABLES \

#3: NVM Log-Structured Updates

7

MEMTABLE SS LES
INDEX INDEX
[s
o]o 00 at10
0 aata adup at10
1 B))

Summary

« Storage optimizations
— Avoid unnecessary data duplication
— Leverage byte-addressability

* Recovery optimizations
— NVM-optimized recovery protocols
— Non-volatile data structures

Experimental Evaluation

 NVM Hardware Emulator
— NVM latency = 2x DRAM latency

* Yahoo! Cloud Serving Benchmark
— 6 storage engines
— 2 million records + 1 million transactions
— Write-heavy workload
— High-skew setting

Throughput

1200000 2X
- INP
O
L Cow
= 800000 LOG
= 2X
Q.
< B NVM-INP
8 400000 - - 4xX 1
3 ¥ NVM-CoW
|'5 B NVM-LoG
0

Storage_Engines NVM-

Optimized

Write Endurance

300

N
=
o

100

NVM Stores (M)

75% INP
Cow

LOG

80%

H NVM-INP
¥ NVM-CoW
B NVM-LoG

60%

Storage Engines

Recovery Latency

% 10000
= INP
%) CoW
‘§ 100 = [1 LoG
= Instant Recovery
= 1 — = = O -
o < 3 NVM-INP
§ I I I ¥ NVM-CowW
&€ 0.01 - . . B NVM-LoG
1000 10000 100000

Number of transactions

Takeaways

* Designing for NVM is important
— Higher throughput
— Longer device lifetime
— Faster recovery
» System design principles
— Non-volatile data structures
— Need a system-level rethink

Peloton @ CMU

* Hybrid storage hierarchy
— NVM + DRAM oriented design

 HTAP workloads
— Real-time analytics and fast transactions

END

Thanks |
jarulraj@tinder

Filesystem Interface

* Optimized for byte-addressable NVM
* Bypass page-cache & block device layer

 File I/0 requires only one copy
— /X better performance than EXT4

Allocator Interface

 NVM-aware memory allocator
— No system calls
— Bypass kernel’s VFS layer

* Flush CPU cache for durable writes
— 10x better performance than FS interface

