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Non-Volatile Memory (NVM)
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Read Latency 1x 500x 10°x 2-4x
Write Latency 1x 5000x 10°x 2-8x
Persistence % v v v
Byte-level access X X v
Write endurance X v %



Executive Summary

Design a DBMS storage engine for NVM

** Re-examine traditional assumptions
s Storage and recovery optimizations




NVM Hardware Emulator

» Configure DRAM load and store latency
* Throttle memory bandwidth

* Two interfaces
— Filesystem Interface (fread/fwrite)
— Allocator Interface (malloc/free)



DBMS Platform

» Lightweight DBMS
— NVM-only design
— No volatile DRAM
— Runs on the hardware emulator

* Pluggable backend storage architecture
* Timestamp-based concurrency control



3 Storage Engines

TABLE
ENGINE TYPE STORAGE LOGGING |[EXAMPLE

In-Place Updates VoltDB

Copy-on-Write Updates v x LMDB
Log-Structured Updates x v LevelDB



#1: In-Place Updates
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Optimizing for NVM

* Non-volatile pointer
— Non-volatile data structures
— Valid even after system restarts

» Exclusively use allocator interface
— Byte-addressable NVM
— Not filesystem interface



#1: NVM In-Place Updates
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Benefits
= ¢ Reduce data duplication

“* Almost instantaneous recovery
¢ No redo log, only an undo log




#2:. Copy-on-Write Updates

Master Record
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Copy-on-Write B+Tree



#2: NVM Copy-on-Write Updates
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¢ Support smaller B+tree nodes

** Cheaper dirty directory creation
¢ Reduces data duplication
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#3. Log-Structured Updates
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#3: NVM Log-Structured Updates
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Summary

« Storage optimizations
— Avoid unnecessary data duplication
— Leverage byte-addressability

* Recovery optimizations
— NVM-optimized recovery protocols
— Non-volatile data structures




Experimental Evaluation

 NVM Hardware Emulator
— NVM latency = 2x DRAM latency

* Yahoo! Cloud Serving Benchmark
— 6 storage engines
— 2 million records + 1 million transactions
— Write-heavy workload
— High-skew setting



Throughput
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Write Endurance
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Recovery Latency
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Takeaways

* Designing for NVM is important
— Higher throughput
— Longer device lifetime
— Faster recovery
» System design principles
— Non-volatile data structures
— Need a system-level rethink




Peloton @ CMU

* Hybrid storage hierarchy
— NVM + DRAM oriented design

 HTAP workloads
— Real-time analytics and fast transactions
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Filesystem Interface

* Optimized for byte-addressable NVM
* Bypass page-cache & block device layer

 File I/0 requires only one copy
— /X better performance than EXT4



Allocator Interface

 NVM-aware memory allocator
— No system calls
— Bypass kernel’s VFS layer

* Flush CPU cache for durable writes
— 10x better performance than FS interface



