
1

2

NON-VOLATILE MEMORY (NVM)
2

NVMDRAM SSD

Like DRAM, low latency loads and stores

Like SSD, persistent writes and high density

3

TUTORIAL OVERVIEW
• Blueprint of an NVM DBMS
– Overview of major design decisions impacted by NVM

3

DRAM NVM

DBMS

4

TUTORIAL OVERVIEW
• Target audience
– Developers, researchers, and practitioners

• Assume knowledge of DBMS internals
– No need for any in-depth experience with NVM

4

5

TUTORIAL OVERVIEW
• Highlight recent research findings
– Identify a set of open problems

5

6

OUTLINE
• Introduction
– Recent Developments
– NVM Overview
– Motivation

• Blueprint of an NVM DBMS
– Access Interfaces
– Storage Manager
– Execution Engine

• Conclusion
– Outlook

6

7

RECENT DEVELOPMENTS

7

8

#1: INDUSTRY STANDARDS
8

• Form factors (e.g., JEDEC classification)
– NVDIMM-F: Flash only. Has to be paired with DRAM DIMM.
– NVDIMM-N: Flash and DRAM together on the same DIMM.
– NVDIMM-P: True persistent memory. No DRAM or flash.

• Interface specifications (e.g., NVM Express over Fabrics)

JUNE 2016

9

#2: OPERATING-SYSTEM SUPPORT
9

• Growing OS support for NVM
– Linux 4.8 (e.g. NVM Express over Fabrics library)
– Windows 10 (e.g. Direct access to files on NVM)

OCTOBER 2016

10

#3: PROCESSOR SUPPORT
10

• ISA updates in Kaby Lake Processor for NVM management
– Instructions for flushing cache-lines to NVM
– Removed PCOMMIT instruction

MARCH 2017

11

NVM OVERVIEW

11

12

NVM PROPERTIES
12

• Byte addressable
– Loads and stores unlike SSD/HDD

• High random write throughput
– Orders of magnitude higher than SSD/HDD
– Smaller gap between sequential & random write throughput

• Read-write asymmetry & wear-leveling
– Writes might take longer to complete compared to reads
– Excessive writes to a single NVM cell can destroy it

1

2

3

13

EVALUATION SETUP
13

• Benchmark storage devices on NVM emulator
– Write throughput of a single thread with fio
– Synchronous writes to a large file

• Devices
– Hard-disk drive (HDD) [Seagate Barracuda]

– Solid-state disk (SSD) [Intel DC S3700]

– Emulated NVM

14

PERFORMANCE
14

1

100

10,000

1,000,000

Sequential Writes Random Writes

IOPS

SSDHDD NVM

100x 500x

15

MOTIVATION

15

16

EXISTING DBMSs ON NVM
• How do existing systems perform on NVM?
– Treat NVM like a faster SSD

• Evaluate two types of database systems
– Disk-oriented DBMS
– Memory-oriented DBMS

• TPC-C benchmark
– 1/8th of database fits in DRAM
– Rest on NVM

16

A PROLEGOMENON ON OLTP DATABASE SYSTEMS
FOR NON-VOLATILE MEMORY
ADMS 2014

17

EXISTING DBMSs
• Compare representative DBMSs of each architecture

17

DISK-ORIENTED DBMS MEMORY-ORIENTED DBMS

18

NVM

NVM HARDWARE EMULATOR
• Special CPU microcode to add stalls on cache misses
– Tune DRAM latency to emulate NVM

• New instructions for managing NVM
– Cache-line write-back (CLWB) instruction

18

STORE CLWB

CPU

L1 Cache

L2 Cache

CACHE

19

0

20,000

40,000

Database systems

PERFORMANCE
19

In-memory DBMSDisk-Oriented DBMS

Throughput
(txn/sec)

8x DRAM Latency

12x

20

0

20,000

40,000

Database systems

PERFORMANCE
20

Throughput
(txn/sec)

In-memory DBMSDisk-Oriented DBMS

2x DRAM Latency 4x

1x

1xLegacy database systems are not prepared for NVM

2121

#1: DISK-ORIENTED DBMSs

Table Heap

Log
Checkpoints

Buffer PoolDRAM

NVM

Designed to minimize
random writes to NVM

But, NVM supports
fast random writes

22

#2: MEMORY-ORIENTED DBMSs
22

Log
Checkpoints

Table HeapDRAM

NVM

Designed to overcome
the volatility of memory

But, writes to NVM
are persistent

23

BLUEPRINT OF AN NVM DBMS
23

ACCESS
INTERFACES

STORAGE
MANAGER

EXECUTION
ENGINE

PLAN
EXECUTOR

QUERY
OPTIMIZER

SQL
EXTENSIONS

LOGGING &
RECOVERY

DATA
PLACEMENT

ACCESS
METHODS

ALLOCATOR
INTERFACE

FILESYSTEM
INTERFACE

HOW TO BUILD A NON-VOLATILE MEMORY DBMS
SIGMOD 2017 (TUTORIAL)

1

2

3

24

ACCESS INTERFACES

24

25

ACCESS INTERFACES
25

• Two interfaces used by the DBMS to access NVM
– Allocator interface (byte-level memory allocation)
– Filesystem interface (POSIX-compliant filesystem API)

• Support in latest versions of major operating systems
– Windows Server 2016
– Linux 4.7

26

#1: ALLOCATOR INTERFACE
26

• Similar to regular DRAM allocator
– Dynamic memory allocation
– Meta-data management

• Additional features with respect to DRAM allocator
– Durability mechanism
– Naming mechanism
– Recovery mechanism

NVM—ALLOC: MEMORY ALLOCATION FOR NVRAM
ADMS 2015

27

DURABILITY MECHANISM
27

• Ensure that data modifications are persisted
– Necessary because they may reside in volatile processor caches
– Lost if a power failure happens before changes reach NVM

• Two-step implementation
– Allocator first writes out dirty cache-lines (CLWB)
– Issues a memory fence (SFENCE) to ensure changes are visible

Persist(Address, Length)

28

NAMING MECHANISM
28

• Pointers should be valid even after the system restarts
– NVM region might be mapped to a different base address

• Allocator maps NVM to a well-defined base address
– Pointers, therefore, remain valid even after system restart
– Foundation for building crash-consistent data structures

Absolute pointer = Base address + Relative pointer

29

RECOVERY MECHANISM
29

• Unlike DRAM, persistent memory leaks with NVM
– Let’s say an application allocates a memory chunk
– But crashes before linking the chunk to its data structure
– Neither allocator nor application can reclaim the space

• Recovery ensures all chunks are either allocated or free
– Interesting problem, will be covered in next tutorial

Data Structures Engineering For NVM
Ismail Oukid and Wolfgang Lehner, TU Dresden

30

#2: FILESYSTEM INTERFACE
30

• Traditional block-based filesystem like EXT4
– File I/O: 2 copies (Device ⟶ Page Cache ⟶ App Buffer)
– Efficiency of I/O stack not critical when hidden by disk latency
– However, NVM is byte-addressable and supports very fast I/O

Device

Page CacheDRAM

NVM

App Buffer

1

2

31

NON-VOLATILE MEMORY FILESYSTEM
31

• Direct access storage (DAX) to avoid data duplication
– DBMS can directly manage database by skipping page cache
– File I/O: 1 copy (Device ⟶ App Buffer)

Device

Page CacheDRAM

NVM

App Buffer

SYSTEM SOFTWARE FOR PERSISTENT MEMORY
EUROSYS 2014

1

32

NON-VOLATILE MEMORY FILESYSTEM
32

• To ensure durability, uses a hybrid recovery protocol
– NVM only supports 64-byte (cacheline) atomic updates
– DATA CHANGES: Copy-on-write mechanism at page granularity
– METADATA CHANGES: In-place updates & write-ahead logging

• NVM filesystem
– Reduces data duplication
– Uses lightweight recovery protocol
– 10x more IOPS compared to EXT4

33

RECAP: ACCESS INTERFACES
33

• Allocator interface
– Non-volatile data structures
– Table heap, Indexes

• Filesystem interface
– Log files, Checkpoints

34

BLUEPRINT OF AN NVM DBMS
34

ACCESS
INTERFACES

STORAGE
MANAGER

EXECUTION
ENGINE

PLAN
EXECUTOR

QUERY
OPTIMIZER

SQL
EXTENSIONS

LOGGING &
RECOVERY

DATA
PLACEMENT

ACCESS
METHODS

ALLOCATOR
INTERFACE

FILESYSTEM
INTERFACE

HOW TO BUILD A NON-VOLATILE MEMORY DBMS
SIGMOD 2017 (TUTORIAL)

1

2

3

35

STORAGE MANAGER

35

36

MULTI-VERSIONED DBMS
36

BEGIN
TIMESTAMP

END
TIMESTAMP

PREVIOUS
VERSION

TUPLE
ID

TUPLE
DATA

10 ∞ —1 X

10 ∞ —2 Y

20 ∞ 23 Y’

10 20 —

37

THOUGHT EXPERIMENT
• To keep things simple, NVM-only storage hierarchy
– No volatile DRAM

37

NVM

DBMS

38

LOGGING AND RECOVERY
38

Table Heap

Log
Checkpoints

1

2 3

DataData

NVM

• Traditional write-ahead logging in off-the-shelf DBMS

Can we avoid duplicating data in
the log as well as the checkpoints?

39

NON-VOLATILE POINTER
39

POINTER DATA

DRAM DRAM

POINTER DATA

NVM NVM

VOLATILE POINTER NON-VOLATILE POINTER

RESTART: DISAPPEARS RESTART: VALID

ü✗

40

AVOIDING DATA DUPLICATION
• Only store non-volatile tuple pointers in log records

40

TRADITIONAL MANAGER

INSERT TUPLE XYZ

UPDATE TUPLE XYZ → X’Y’Z’

NVM-AWARE MANAGER

INSERT TUPLE 100

UPDATE TUPLE 100 → 101

Table Heap Write-Ahead Log

TUPLE ID TUPLE DATA

100 XYZ

101 X’Y’Z’

LET’S TALK ABOUT STORAGE AND RECOVERY METHODS FOR
NON-VOLATILE MEMORY DATABASE SYSTEMS
SIGMOD 2015

41

NVM-AWARE STORAGE MANAGER
41

Table Heap

Log

1

2
NVM

Meta
Data

Checkpoints✗

• Write-ahead meta-data logging

42

EVALUATION
• Compare storage managers on NVM emulator
– Traditional storage manager
– Write-ahead logging + Filesystem interface
– NVM-aware storage manager
– Write-ahead meta-data logging + Allocator interface

• Yahoo! Cloud Serving Benchmark
– Database fits on NVM

42

43

RUNTIME PERFORMANCE
43

Throughput
(txn/sec)

0

500,000

1,000,000

1,500,000

Storage Managers

3x

NVM-Aware ManagerTraditional Manager

8x DRAM Latency

4444

0

500,000

1,000,000

1,500,000

Storage Managers

6x

RUNTIME PERFORMANCE
NVM-Aware ManagerTraditional Manager

2x DRAM Latency 4x

1.5x

NVM latency has a significant impact on the
performance of NVM-aware storage manager

Throughput
(txn/sec)

45

DEVICE LIFETIME
45

NVM Stores
(M)

0

50

100

Storage Managers

2x

NVM-Aware ManagerTraditional Manager

LOWER
IS

BETTER

Redesigning the storage manager for NVM
not only improves runtime performance

but also extends device lifetime

46

RECAP: WRITE-AHEAD METADATA LOGGING
46

• Targets an NVM-only storage hierarchy
– Leverages the durability of memory
– Skips duplicating data in the log and checkpoints
– Improves runtime performance
– Extends lifetime of the device

47

WRITE-BEHIND LOGGING

47

48

TWO-TIER STORAGE HIERARCHY
• Generalize the logging and recovery algorithms

48

DRAM NVM

DBMS

WRITE-BEHIND LOGGING
VLDB 2016

49

WRITE-AHEAD LOGGING
• Write-ahead log serves two purposes
– Transform random database writes into sequential log writes
– Support transaction rollback
– Design makes sense for disks with slow random writes

• But, NVM supports fast random writes
– Directly write data to the multi-versioned database
– LATER, only record meta-data about committed txns in log
– Core idea behind write-behind logging

49

50

WRITE-BEHIND LOGGING
50

Table Heap
2

Table Heap

Log

1

3

DRAM

NVM

Meta
Data Data

51

WRITE-BEHIND LOGGING
51

• Recovery algorithm is simple
– No need to REDO the log, unlike write-ahead logging
– Since all changes are already persisted in database at commit
– Can recover the database almost instantaneously from failure

• Supporting transaction rollback
– Need to record meta-data about in-flight transactions
– In case of failure, ignore their effects

52

WRITE-BEHIND LOGGING
52

• DBMS assigns timestamps to transactions
– All transactions in a particular group commit
– Get timestamps within same group commit timestamp range
– To ignore the effects of all in-flight transactions

• Idea: Use failed group commit timestamp range
– DBMS uses this timestamp range during tuple visibility checks
– Ignores tuples created or updated within this timestamp range
– UNDO is, therefore, implicitly done via visibility checks

53

WRITE-BEHIND LOGGING
53

• Recovery consists of only analysis phase
– Can immediately start processing transactions after restart

• Garbage collection eventually kicks in
– Undoes effects of all uncommitted transactions
– Using timestamp range information in write-behind log
– After this finishes, no need to do extra visibility checks

54

METADATA FOR INSTANT RECOVERY
• Group commit timestamp range
– Use it to ignore effects of transactions in failed group commit
– Maintain list of failed timestamp ranges

54

(T1, T2)

Group Commit

Time

(T2, T3) (T3, T4) (T4, T5)

Garbage Collection

Current range

T1 T4T3T2
Write-behind logging not only avoids data

duplication but also enables instant recovery

(T1, T2) (T1, T2) Failed ranges

55

EVALUATION SETUP
• Compare logging protocols in Peloton DBMS
– Write-Ahead logging
– Write-Behind logging

• TPC-C benchmark
• Storage devices
– Solid-state drive
– Non-volatile memory

55

56

RECOVERY TIME
56

1

10

100

1,000

Solid State Drive Non-Volatile Memory

Write-Behind LoggingWrite-Ahead Logging

Recovery
Time
(sec) 30x250x

LOWER
IS

BETTER

57

THROUGHPUT
57

Write-Behind LoggingWrite-Ahead Logging

Throughput
(txn/sec)

0

10,000

20,000

30,000

Solid State Drive Non-Volatile Memory

8x

1.3x

58

RECAP: WRITE-BEHIND LOGGING

• Rethinking key algorithms
– Write-behind logging enables instant recovery
– Improves device utilization by reducing data duplication
– Extends the device lifetime

58

59

DATA PLACEMENT

59

60

THREE-TIER STORAGE HIERARCHY
• Cost of first-generation NVM devices
– SSD is still going to be in the picture

• Data placement
– Three-tier DRAM + NVM + SSD hierarchy

60

61

THREE-TIER STORAGE HIERARCHY
61

Database
2

Database

Log

1

3

DRAM

NVM

Database
4

SSD

Data

Data

Meta
Data

62

DATA PLACEMENT
• Unlike SSD, can directly read data from NVM
– No need to always copy data over to DRAM for reading

• Cache hot data in DRAM
– Dynamically migrate cold data to SSD
– And keep warm data on NVM

62

OPEN PROBLEM:
How do NVM capacity and access latencies

affect the performance of DBMS?

63

ACCESS METHODS

63

64

NVM-AWARE ACCESS METHODS
64

• Read-write asymmetry & wear-leveling
– Writes might take longer to complete compared to reads
– Excessive writes to a single NVM cell can destroy it

• Write-limited access methods
– NVM-aware B+tree, hash table

Perform fewer writes, and instead do more reads

FPTREE: A HYBRID SCM-DRAM PERSISTENT AND CONCURRENT B-TREE FOR STORAGE CLASS MEMORY
SIGMOD 2016

65

1 5 3 2 4

NVM-AWARE B+TREE
65

• Leave the entries in the leaf node unsorted
– Require a linear scan instead of a binary search
– But, fewer writes associated with shuffling entries

1 2 3 4 5

Unsorted Data Sorted Data

Fewer Writes More Writes

66

NVM-AWARE B+TREE
66

• Temporarily relax the balance of the tree
– Extra node reads, fewer writes associated with balancing nodes

Unbalanced Tree Balanced Tree

Fewer Writes More Writes

67

NVM-AWARE ACCESS METHODS
67

• More design principles will be covered in next tutorial

Data Structures Engineering For NVM
Ismail Oukid and Wolfgang Lehner, TU Dresden

OPEN PROBLEM:
Synthesizing other NVM-aware access methods.

68

BLUEPRINT OF AN NVM DBMS
68

ACCESS
INTERFACES

STORAGE
MANAGER

EXECUTION
ENGINE

PLAN
EXECUTOR

QUERY
OPTIMIZER

SQL
EXTENSIONS

LOGGING &
RECOVERY

DATA
PLACEMENT

ACCESS
METHODS

ALLOCATOR
INTERFACE

FILESYSTEM
INTERFACE

HOW TO BUILD A NON-VOLATILE MEMORY DBMS
SIGMOD 2017 (TUTORIAL)

1

2

3

69

EXECUTION ENGINE

69

70

PLAN EXECUTOR
70

• Query processing algorithms
– Sorting algorithm
– Join algorithm

• Reduce the number of writes
– Adjusting the write-intensivity knob
– Write-limited algorithms

WRITE-LIMITED SORTS AND JOINS FOR PERSISTENT MEMORY
VLDB 2014

71

SEGMENT SORT
71

• Hybrid sorting algorithm
– Run merge sort on a part of the input (segment): x%
– Run selection sort on the rest of the input: (1-x)%
– Adjust “x” to limit the number of writes

1 5 3 9 4 7 2 10 11 12 6 8

Selection Sort Merge Sort

Fewer Writes More Writes

72

SEGMENT GRACE JOIN
72

• Hybrid join algorithm
– Materialize a part of the input partitions: x%
– Iterate over input for remaining partitions: (1-x)%
– Adjust “x” to limit the number of writes

Iterate P1 P2 P3

Don’t Materialize Materialize

Fewer Writes More Writes

73

SQL EXTENSIONS

73

74

SQL EXTENSIONS
74

• Allow the user to control data placement on NVM
– Certain performance-critical tables and materialized views

• Store only a subset of the columns on NVM
– Exclude certain columns from being stored on NVM

ALTER TABLESPACE nvm_table_space DEFAULT ON_NVM;

ALTER TABLE orders ON_NVM EXCLUDE(order_tax);

75

NVM-RELATED SQL EXTENSIONS
75

• Need to construct new NVM-related extensions
– Standardize these extensions

OPEN PROBLEM:
Need to construct new extensions and

standardize them.

76

QUERY OPTIMIZER

76

77

QUERY OPTIMIZATION
77

• Cost-based query optimizer
– Distinguish between sequential & random accesses
– But not between reads and writes

• NVM-oriented redesign
– Differentiate between reads and writes in cost model

MAKING COST-BASED QUERY OPTIMIZATION ASYMMETRY-AWARE
DAMON 2012

78

SEQUENTIAL SCAN
78

• Accounts for sequential access of all pages in table
– Does not distinguish reads and writes

• Updated cost function

Cost(seqential scan) = Costsequential ‖Table‖page-count

Cost(seqential scan) = Costsequential-reads ‖Table‖page-count

79

HASH JOIN
79

• Function accounts for reading and writing all data once
– Does not distinguish reads and writes

• Updated cost function

Cost(hash join) = (Costsequential + Costrandom) *
(‖Inner-Table‖#pages+ ‖Outer-Table‖#pages)

Cost(hash join) = (Costsequential-reads + Costrandom-writes) *
(‖Inner-Table‖#pages+ ‖Outer-Table‖#pages)

80

EVALUATION
80

• Compare different cost models on NVM emulator
– Traditional cost model
– NVM-aware cost model

• TPC-H benchmark on Postgres
• Performance impact
– 50% speedup of queries
– Maximum speedup: 500% (!)
– Maximum slowdown: 1%

81

NVM-ORIENTED DESIGN
81

• Page-oriented cost functions
– NVM is byte-addressable

OPEN PROBLEM:
Update cost model to factor in

byte-addressability of NVM

82

LESSONS LEARNED

82

83

LESSONS LEARNED
83

• Important to reexamine the design choice
– To leverage the raw device performance differential
– Across different components of the DBMS
– Helpful to think about an NVM-only hierarchy

NVM

DBMS

84

LESSONS LEARNED
84

• NVM invalidates multiple long-held assumptions
– Storage is several orders of magnitude slower than DRAM
– Large performance gap between sequential & random accesses
– Memory read and write latencies are symmetric

85

BLUEPRINT OF AN NVM DBMS
85

ACCESS
INTERFACES

STORAGE
MANAGER

EXECUTION
ENGINE

PLAN
EXECUTOR

QUERY
OPTIMIZER

SQL
EXTENSIONS

LOGGING &
RECOVERY

DATA
PLACEMENT

ACCESS
METHODS

ALLOCATOR
INTERFACE

FILESYSTEM
INTERFACE

HOW TO BUILD A NON-VOLATILE MEMORY DBMS
SIGMOD 2017 (TUTORIAL)

1

2

3

86

FUTURE WORK
86

• Highlighted a set of open problems
– Data placement
– Access methods
– Query optimization

• Improvement in performance of storage layer
– By several orders of magnitude over a short period of time
– We anticipate high-impact research in this space

8787

8888

