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NON-VOLATILE MEMORY (NVM)
2

NVMDRAM SSD

Like DRAM, low latency loads and stores

Like SSD, persistent writes and high density
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TUTORIAL OVERVIEW
• Blueprint of an NVM DBMS
– Overview of major design decisions impacted by NVM
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DRAM NVM

DBMS
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TUTORIAL OVERVIEW
• Target audience
– Developers, researchers, and practitioners

• Assume knowledge of DBMS internals 
– No need for any in-depth experience with NVM
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TUTORIAL OVERVIEW
• Highlight recent research findings
– Identify a set of open problems
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OUTLINE
• Introduction
– Recent Developments
– NVM Overview
– Motivation

• Blueprint of an NVM DBMS
– Access Interfaces
– Storage Manager
– Execution Engine

• Conclusion
– Outlook
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RECENT DEVELOPMENTS
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#1: INDUSTRY STANDARDS
8

• Form factors (e.g., JEDEC classification)
– NVDIMM-F: Flash only. Has to be paired with DRAM DIMM.
– NVDIMM-N: Flash and DRAM together on the same DIMM.
– NVDIMM-P: True persistent memory. No DRAM or flash.

• Interface specifications (e.g., NVM Express over Fabrics)

JUNE 2016
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#2: OPERATING-SYSTEM SUPPORT
9

• Growing OS support for NVM
– Linux 4.8 (e.g. NVM Express over Fabrics library)
– Windows 10 (e.g. Direct access to files on NVM)

OCTOBER 2016
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#3: PROCESSOR SUPPORT
10

• ISA updates in Kaby Lake Processor for NVM management
– Instructions for flushing cache-lines to NVM
– Removed PCOMMIT instruction

MARCH 2017
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NVM OVERVIEW
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NVM PROPERTIES
12

• Byte addressable
– Loads and stores unlike SSD/HDD

• High random write throughput
– Orders of magnitude higher than SSD/HDD
– Smaller gap between sequential & random write throughput

• Read-write asymmetry & wear-leveling
– Writes might take longer to complete compared to reads
– Excessive writes to a single NVM cell can destroy it

1

2
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EVALUATION SETUP
13

• Benchmark storage devices on NVM emulator 
– Write throughput of a single thread with fio
– Synchronous writes to a large file

• Devices
– Hard-disk drive (HDD) [Seagate Barracuda]

– Solid-state disk (SSD) [Intel DC S3700]

– Emulated NVM
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PERFORMANCE
14
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MOTIVATION
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EXISTING DBMSs ON NVM
• How do existing systems perform on NVM?
– Treat NVM like a faster SSD

• Evaluate two types of database systems
– Disk-oriented DBMS
– Memory-oriented DBMS

• TPC-C benchmark
– 1/8th of database fits in DRAM
– Rest on NVM

16

A PROLEGOMENON ON OLTP DATABASE SYSTEMS 
FOR NON-VOLATILE MEMORY
ADMS 2014
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EXISTING DBMSs
• Compare representative DBMSs of each architecture
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DISK-ORIENTED DBMS MEMORY-ORIENTED DBMS
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NVM

NVM HARDWARE EMULATOR
• Special CPU microcode to add stalls on cache misses
– Tune DRAM latency to emulate NVM

• New instructions for managing NVM
– Cache-line write-back (CLWB) instruction

18

STORE CLWB

CPU

L1 Cache

L2 Cache

CACHE
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PERFORMANCE
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In-memory DBMSDisk-Oriented DBMS

Throughput
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Throughput
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In-memory DBMSDisk-Oriented DBMS

2x DRAM Latency 4x

1x

1xLegacy database systems are not prepared for NVM
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#1: DISK-ORIENTED DBMSs

Table Heap

Log
Checkpoints

Buffer PoolDRAM

NVM

Designed to minimize
random writes to NVM

But, NVM supports 
fast random writes
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#2: MEMORY-ORIENTED DBMSs 
22

Log
Checkpoints

Table HeapDRAM

NVM

Designed to overcome 
the volatility of memory

But, writes to NVM 
are persistent
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BLUEPRINT OF AN NVM DBMS
23
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HOW TO BUILD A NON-VOLATILE MEMORY DBMS
SIGMOD 2017 (TUTORIAL)
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ACCESS INTERFACES
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ACCESS INTERFACES
25

• Two interfaces used by the DBMS to access NVM 
– Allocator interface (byte-level memory allocation)
– Filesystem interface (POSIX-compliant filesystem API)

• Support in latest versions of major operating systems
– Windows Server 2016
– Linux 4.7
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#1: ALLOCATOR INTERFACE
26

• Similar to regular DRAM allocator
– Dynamic memory allocation
– Meta-data management

• Additional features with respect to DRAM allocator
– Durability mechanism
– Naming mechanism
– Recovery mechanism

NVM—ALLOC: MEMORY ALLOCATION FOR NVRAM
ADMS 2015
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DURABILITY MECHANISM
27

• Ensure that data modifications are persisted
– Necessary because they may reside in volatile processor caches
– Lost if a power failure happens before changes reach NVM

• Two-step implementation
– Allocator first writes out dirty cache-lines (CLWB)
– Issues a memory fence (SFENCE) to ensure changes are visible 

Persist(Address, Length)
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NAMING MECHANISM
28

• Pointers should be valid even after the system restarts
– NVM region might be mapped to a different base address

• Allocator maps NVM to a well-defined base address
– Pointers, therefore, remain valid even after system restart
– Foundation for building crash-consistent data structures

Absolute pointer = Base address + Relative pointer
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RECOVERY MECHANISM
29

• Unlike DRAM, persistent memory leaks with NVM
– Let’s say an application allocates a memory chunk
– But crashes before linking the chunk to its data structure
– Neither allocator nor application can reclaim the space

• Recovery ensures all chunks are either allocated or free
– Interesting problem, will be covered in next tutorial

Data Structures Engineering For NVM
Ismail Oukid and Wolfgang Lehner, TU Dresden
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#2: FILESYSTEM INTERFACE
30

• Traditional block-based filesystem like EXT4
– File I/O: 2 copies (Device ⟶ Page Cache ⟶ App Buffer)
– Efficiency of I/O stack not critical when hidden by disk latency
– However, NVM is byte-addressable and supports very fast I/O

Device

Page CacheDRAM

NVM

App Buffer

1

2
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NON-VOLATILE MEMORY FILESYSTEM
31

• Direct access storage (DAX) to avoid data duplication
– DBMS can directly manage database by skipping page cache
– File I/O: 1 copy (Device ⟶ App Buffer)

Device

Page CacheDRAM

NVM

App Buffer

SYSTEM SOFTWARE FOR PERSISTENT MEMORY
EUROSYS 2014

1
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NON-VOLATILE MEMORY FILESYSTEM
32

• To ensure durability, uses a hybrid recovery protocol
– NVM only supports 64-byte (cacheline) atomic updates
– DATA CHANGES: Copy-on-write mechanism at page granularity
– METADATA CHANGES: In-place updates & write-ahead logging

• NVM filesystem
– Reduces data duplication
– Uses lightweight recovery protocol
– 10x more IOPS compared to EXT4
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RECAP: ACCESS INTERFACES
33

• Allocator interface
– Non-volatile data structures 
– Table heap, Indexes

• Filesystem interface
– Log files, Checkpoints
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BLUEPRINT OF AN NVM DBMS
34
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STORAGE MANAGER

35
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MULTI-VERSIONED DBMS
36

BEGIN
TIMESTAMP

END
TIMESTAMP

PREVIOUS
VERSION

TUPLE 
ID

TUPLE
DATA

10 ∞ —1 X

10 ∞ —2 Y

20 ∞ 23 Y’

10 20 —
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THOUGHT EXPERIMENT
• To keep things simple, NVM-only storage hierarchy
– No volatile DRAM

37

NVM

DBMS
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LOGGING AND RECOVERY
38

Table Heap

Log
Checkpoints

1

2 3

DataData

NVM

• Traditional write-ahead logging in off-the-shelf DBMS

Can we avoid duplicating data in 
the log as well as the checkpoints?
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NON-VOLATILE POINTER
39

POINTER DATA

DRAM DRAM

POINTER DATA

NVM NVM

VOLATILE POINTER NON-VOLATILE POINTER

RESTART: DISAPPEARS RESTART: VALID

ü✗



40

AVOIDING DATA DUPLICATION
• Only store non-volatile tuple pointers in log records

40

TRADITIONAL MANAGER

INSERT TUPLE XYZ

UPDATE TUPLE XYZ → X’Y’Z’

NVM-AWARE MANAGER

INSERT TUPLE 100

UPDATE TUPLE 100 → 101

Table Heap Write-Ahead Log

TUPLE ID TUPLE DATA

100 XYZ

101 X’Y’Z’

LET’S TALK ABOUT STORAGE AND RECOVERY METHODS FOR
NON-VOLATILE MEMORY DATABASE SYSTEMS
SIGMOD 2015
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NVM-AWARE STORAGE MANAGER
41

Table Heap

Log

1

2
NVM

Meta
Data

Checkpoints✗

• Write-ahead meta-data logging
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EVALUATION
• Compare storage managers on NVM emulator
– Traditional storage manager
– Write-ahead logging + Filesystem interface
– NVM-aware storage manager
– Write-ahead meta-data logging + Allocator interface

• Yahoo! Cloud Serving Benchmark
– Database fits on NVM

42
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RUNTIME PERFORMANCE
43

Throughput
(txn/sec)

0
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1,000,000

1,500,000

Storage Managers
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NVM-Aware ManagerTraditional Manager

8x DRAM Latency
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NVM latency has a significant impact on the 
performance of NVM-aware storage manager
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DEVICE LIFETIME
45

NVM Stores
(M)

0

50
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Storage Managers

2x

NVM-Aware ManagerTraditional Manager

LOWER
IS 

BETTER

Redesigning the storage manager for NVM 
not only improves runtime performance 

but also extends device lifetime
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RECAP: WRITE-AHEAD METADATA LOGGING
46

• Targets an NVM-only storage hierarchy
– Leverages the durability of memory
– Skips duplicating data in the log and checkpoints
– Improves runtime performance
– Extends lifetime of the device
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WRITE-BEHIND LOGGING

47
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TWO-TIER STORAGE HIERARCHY
• Generalize the logging and recovery algorithms

48

DRAM NVM

DBMS

WRITE-BEHIND LOGGING
VLDB 2016
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WRITE-AHEAD LOGGING
• Write-ahead log serves two purposes
– Transform random database writes into sequential log writes
– Support transaction rollback
– Design makes sense for disks with slow random writes

• But, NVM supports fast random writes
– Directly write data to the multi-versioned database
– LATER, only record meta-data about committed txns in log
– Core idea behind write-behind logging

49
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WRITE-BEHIND LOGGING
50

Table Heap
2

Table Heap

Log

1

3

DRAM

NVM
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Data Data
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WRITE-BEHIND LOGGING
51

• Recovery algorithm is simple
– No need to REDO the log, unlike write-ahead logging
– Since all changes are already persisted in database at commit
– Can recover the database almost instantaneously from failure

• Supporting transaction rollback
– Need to record meta-data about in-flight transactions
– In case of failure, ignore their effects
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WRITE-BEHIND LOGGING
52

• DBMS assigns timestamps to transactions
– All transactions in a particular group commit
– Get timestamps within same group commit timestamp range
– To ignore the effects of all in-flight transactions

• Idea: Use failed group commit timestamp range
– DBMS uses this timestamp range during tuple visibility checks
– Ignores tuples created or updated within this timestamp range
– UNDO is, therefore, implicitly done via visibility checks
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WRITE-BEHIND LOGGING
53

• Recovery consists of only analysis phase
– Can immediately start processing transactions after restart

• Garbage collection eventually kicks in
– Undoes effects of all uncommitted transactions
– Using timestamp range information in write-behind log
– After this finishes, no need to do extra visibility checks
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METADATA FOR INSTANT RECOVERY
• Group commit timestamp range
– Use it to ignore effects of transactions in failed group commit
– Maintain list of failed timestamp ranges

54

(T1, T2)

Group Commit

Time

(T2, T3) (T3, T4) (T4, T5)

Garbage Collection

Current range

T1 T4T3T2
Write-behind logging not only avoids data 

duplication but also enables instant recovery

(T1, T2) (T1, T2) Failed ranges
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EVALUATION SETUP
• Compare logging protocols in Peloton DBMS
– Write-Ahead logging
– Write-Behind logging

• TPC-C benchmark
• Storage devices
– Solid-state drive
– Non-volatile memory

55
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RECOVERY TIME
56
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THROUGHPUT
57

Write-Behind LoggingWrite-Ahead Logging

Throughput
(txn/sec)
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RECAP: WRITE-BEHIND LOGGING

• Rethinking key algorithms
– Write-behind logging enables instant recovery
– Improves device utilization by reducing data duplication
– Extends the device lifetime

58
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DATA PLACEMENT
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THREE-TIER STORAGE HIERARCHY
• Cost of first-generation NVM devices
– SSD is still going to be in the picture

• Data placement 
– Three-tier DRAM + NVM + SSD hierarchy

60
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THREE-TIER STORAGE HIERARCHY
61

Database
2

Database

Log

1
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NVM
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DATA PLACEMENT
• Unlike SSD, can directly read data from NVM
– No need to always copy data over to DRAM for reading

• Cache hot data in DRAM
– Dynamically migrate cold data to SSD
– And keep warm data on NVM

62

OPEN PROBLEM:
How do NVM capacity and access latencies 

affect the performance of DBMS?



63

ACCESS METHODS
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NVM-AWARE ACCESS METHODS
64

• Read-write asymmetry & wear-leveling
– Writes might take longer to complete compared to reads
– Excessive writes to a single NVM cell can destroy it

• Write-limited access methods
– NVM-aware B+tree, hash table

Perform fewer writes, and instead do more reads

FPTREE: A HYBRID SCM-DRAM PERSISTENT AND CONCURRENT B-TREE FOR STORAGE CLASS MEMORY
SIGMOD 2016
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1 5 3 2 4

NVM-AWARE B+TREE
65

• Leave the entries in the leaf node unsorted
– Require a linear scan instead of a binary search
– But, fewer writes associated with shuffling entries

1 2 3 4 5

Unsorted Data Sorted Data

Fewer Writes More Writes
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NVM-AWARE B+TREE
66

• Temporarily relax the balance of the tree
– Extra node reads, fewer writes associated with balancing nodes

Unbalanced Tree Balanced Tree

Fewer Writes More Writes
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NVM-AWARE ACCESS METHODS
67

• More design principles will be covered in next tutorial

Data Structures Engineering For NVM
Ismail Oukid and Wolfgang Lehner, TU Dresden

OPEN PROBLEM:
Synthesizing other NVM-aware access methods.
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BLUEPRINT OF AN NVM DBMS
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EXECUTION ENGINE
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PLAN EXECUTOR
70

• Query processing algorithms
– Sorting algorithm
– Join algorithm

• Reduce the number of writes
– Adjusting the write-intensivity knob
– Write-limited algorithms 

WRITE-LIMITED SORTS AND JOINS FOR PERSISTENT MEMORY
VLDB 2014
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SEGMENT SORT
71

• Hybrid sorting algorithm
– Run merge sort on a part of the input (segment): x%
– Run selection sort on the rest of the input: (1-x)%
– Adjust “x” to limit the number of writes

1 5 3 9 4 7 2 10 11 12 6 8

Selection Sort Merge Sort

Fewer Writes More Writes
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SEGMENT GRACE JOIN
72

• Hybrid join algorithm
– Materialize a part of the input partitions: x%
– Iterate over input for remaining partitions: (1-x)%
– Adjust “x” to limit the number of writes

Iterate P1 P2 P3

Don’t Materialize Materialize

Fewer Writes More Writes
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SQL EXTENSIONS

73
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SQL EXTENSIONS
74

• Allow the user to control data placement on NVM
– Certain performance-critical tables and materialized views

• Store only a subset of the columns on NVM
– Exclude certain columns from being stored on NVM

ALTER TABLESPACE nvm_table_space DEFAULT ON_NVM;

ALTER TABLE orders ON_NVM EXCLUDE(order_tax);
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NVM-RELATED SQL EXTENSIONS
75

• Need to construct new NVM-related extensions
– Standardize these extensions

OPEN PROBLEM:
Need to construct new extensions and 

standardize them.
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QUERY OPTIMIZER

76
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QUERY OPTIMIZATION
77

• Cost-based query optimizer
– Distinguish between sequential & random accesses
– But not between reads and writes

• NVM-oriented redesign
– Differentiate between reads and writes in cost model

MAKING COST-BASED QUERY OPTIMIZATION ASYMMETRY-AWARE
DAMON 2012
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SEQUENTIAL SCAN
78

• Accounts for sequential access of all pages in table
– Does not distinguish reads and writes

• Updated cost function

Cost(seqential scan) = Costsequential ‖Table‖page-count

Cost(seqential scan) = Costsequential-reads ‖Table‖page-count
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HASH JOIN
79

• Function accounts for reading and writing all data once
– Does not distinguish reads and writes

• Updated cost function

Cost(hash join) = (Costsequential + Costrandom) *
( ‖Inner-Table‖#pages+ ‖Outer-Table‖#pages)

Cost(hash join) = (Costsequential-reads + Costrandom-writes) *
( ‖Inner-Table‖#pages+ ‖Outer-Table‖#pages)
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EVALUATION
80

• Compare different cost models on NVM emulator
– Traditional cost model
– NVM-aware cost model

• TPC-H benchmark on Postgres
• Performance impact
– 50% speedup of queries
– Maximum speedup: 500% (!)
– Maximum slowdown: 1%
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NVM-ORIENTED DESIGN
81

• Page-oriented cost functions
– NVM is byte-addressable

OPEN PROBLEM:
Update cost model to factor in 

byte-addressability of NVM
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LESSONS LEARNED
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LESSONS LEARNED
83

• Important to reexamine the design choice
– To leverage the raw device performance differential
– Across different components of the DBMS
– Helpful to think about an NVM-only hierarchy

NVM

DBMS
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LESSONS LEARNED
84

• NVM invalidates multiple long-held assumptions
– Storage is several orders of magnitude slower than DRAM
– Large performance gap between sequential & random accesses
– Memory read and write latencies are symmetric
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FUTURE WORK
86

• Highlighted a set of open problems
– Data placement
– Access methods
– Query optimization

• Improvement in performance of storage layer
– By several orders of magnitude over a short period of time
– We anticipate high-impact research in this space
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