HOW TO BUILD A

NON-VOLATILE MEMORY
DATABASE SYSTEM

J[lY ARULRAJ & ANDY PAVLO

CARNEGIE MELLON UNIVERSITY
5|6MOD 2017, CHICAGO

NON-VOLATILE MEMORY (NVM)

DRAM NVM SSD

Like DRAM, low latency loads and stores

Like SSD, persistent writes and high density

TUTORIAL OVERVIEW
* Blueprint of an NVM DBMS

— Overview of major design decisions impacted by NVM

DBMS

prAM [TTLTT L0 |

TUTORIAL OVERVIEW

» Target audience
— Developers, researchers, and practitioners

* Assume knowledge of DBMS internals
— No need for any in-depth experience with NVM

TUTORIAL OVERVIEW

 Highlight recent research findings
— ldentify a set of open problems

TECHNISCHE %
UNIVERSITAT UC San Dle 0 UNIVERSITY OF
DRESDEN w 80 % ¥ TORONTO

TECHNISCHE
UNIVERSITAT
MUNCHEN

- O CARNEGIE MELLON
(|ntel) %= DATABASE GROUP

OUTLINE

e Introduction

— Recent Developments
— NVM Overview
— Motivation

 Blueprint of an NVM DBMS

— Access Interfaces
— Storage Manager
— Execution Engine

e Conclusion
— Qutlook

RECENT DEVELOPMENTS

#1: INDUSTRY STANDARDS

* Form factors (e.g., JEDEC classification)
— NVDIMM-F: Flash only. Has to be paired with DRAM DIMM.

— NVDIMM-N: Flash and DRAM together on the same DIMM.
— NVDIMM-P: True persistent memory. No DRAM or flash.

* Interface specifications (e.g., NVM Express over Fabrics)

JEDEC I
EXPRESS

#2: OPERATING-SYSTEM SUPPORT

* Growing OS support for NVM
— Linux 4.8 (e.g. NVM Express over Fabrics library)
— Windows 10 (e.g. Direct access to files on NVM)

Windows 10

OCTOBER 2016 S !

#3. PROCESSOR SUPPORT

* [SA updates in Kaby Lake Processor for NVM management
— Instructions for flushing cache-lines to NVM
— Removed PCOMMIT instruction

MARCH 2017

10

NVM OVERVIEW

NVM PROPERTIES

@ Byte addressable
— Loads and stores unlike SSD/HDD

@ High random write throughput
— Orders of magnitude higher than SSD/HDD
— Smaller gap between sequential & random write throughput

Q Read-write asymmetry & wear-leveling

— Writes might take longer to complete compared to reads
— Excessive writes to a single NVM cell can destroy it

12

EVALUATION SETUP

» Benchmark storage devices on NVM emulator
— Write throughput of a single thread with fio
— Synchronous writes to a large file

* Devices
— Hard-disk drive (HDD) [Seagate Barracuda]
— Solid-state disk (SSD) [Intel DC S3700]
— Emulated NVM

13

PERFORMANCE

Bl +oo B ssp NVM
1,000,000 1 100x 1500X
IOPS 10,000

100 I l
, —

Sequential Writes Random Writes

14

MOTIVATION

EXISTING DBMSs ON NVM

* How do existing systems perform on NVM?
— Treat NVM like a faster SSD

 Evaluate two types of database systems
— Disk-oriented DBMS

— Memory-oriented DBMS

« TPC-C benchmark

— 1/8th of database fits in DRAM
— Rest on NVM

A PROLEGOMENON ON OLTP DATABASE SYSTEMS
FOR NON-VOLATILE MEMORY
ADMS 2014

16

EXISTING DBMSs

« Compare representative DBMSs of each architecture

NMysoL. [g)-Store

17

NVM HARDWARE EMULATOR

 Special CPU microcode to add stalls on cache misses
— Tune DRAM latency to emulate NVM

* New instructions for managing NVM
— Cache-line write-back (CLWB) instruction

STORE I : i CLWB
I L1 Cache I
L2 Cache

18

PERFORMANCE

B Disk-Oriented DBMS

. In-memory DBMS

8x DRAM Latency

40,000 1 12x
Throughput
(txn/sec) 20,000
0 |

Database systems

19

PERFORMANCE

. Disk-Oriented DBMS . In-memory DBMS

2x DRAM Latency ‘4X

Legacy database systems are not prepared for NVM

Throughput

(txn/sec) 20,000

Database systems

20

=3
DRAM Buffer Pool
CF
(= 3
NVM Table Heap
=3

21

#1: DISK-ORIENTED DBMSs

Log

Checkpoints n

Designed to minimize
random writes to NVM

But, NVM supports
fast random writes

22

#2:. MEMORY-ORIENTED DBMSs

=3

DRAM Table Heap

-

- 2 .

NVM log ‘ -Checkpomts n

!

Designed to overcome
the volatility of memory

But, writes to NVM
are persistent

BLUEPRINT OF AN NVM DBMS

ACCESS ALLOCATOR FILESYSTEM
INTERFACES INTERFACE INTERFACE

(2 B STORAGE LOGGING & DATA ACCESS
MANAGER RECOVERY PLACEMENT METHODS

© RGN PLAN QUERY sqL
ENGINE EXECUTOR OPTIMIZER EXTENSIONS

HOW TO BUILD A NON-VOLATILE MEMORY DBMS
SIGMOD 2017 (TUTORIAL)

23

ACCESS INTERFACES

ACCESS INTERFACES

* Two interfaces used by the DBMS to access NVM
— Allocator interface (byte-level memory allocation)
— Filesystem interface (POSIX-compliant filesystem API)

 Support in latest versions of major operating systems
— Windows Server 2016

— Linux 4.7
& Windows 10

25

#1: ALLOCATOR INTERFACE

 Similar to regular DRAM allocator
— Dynamic memory allocation
— Meta-data management

« Additional features with respect to DRAM allocator
— Durability mechanism
— Naming mechanism
— Recovery mechanism

- | NVM—ALLOC: MEMORY ALLOCATION FOR NVRAM
| ADMS 2015

26

DURABILITY MECHANISM

* Ensure that data modifications are persisted
— Necessary because they may reside in volatile processor caches
— Lost if a power failure happens before changes reach NVM

Persist(Address, Length)

* Two-step implementation
— Allocator first writes out dirty cache-lines (CLWB)
— Issues a memory fence (SFENCE) to ensure changes are visible

27

NAMING MECHANISM

 Pointers should be valid even after the system restarts
— NVM region might be mapped to a different base address

Absolute pointer = Base address + Relative pointer

* Allocator maps NVM to a well-defined base address
— Pointers, therefore, remain valid even after system restart
— Foundation for building crash-consistent data structures

28

RECOVERY MECHANISM

« Unlike DRAM, persistent memory leaks with NVM
— Let’s say an application allocates a memory chunk

— But crashes before linking the chunk to its data structure
— Neither allocator nor application can reclaim the space

» Recovery ensures all chunks are either allocated or free
— Interesting problem, will be covered in next tutorial

Data Structures Engineering For NVM

29

#2: FILESYSTEM INTERFACE

 Traditional block-based filesystem like EXT4

— File 1/0: 2 copies (Device — Page Cache — App Buffer)
— Efficiency of |/0 stack not critical when hidden by disk latency
— However, NVM is byte-addressable and supports very fast 1/0

FH @)
DRAM Page Cache |—>| App Buffer ‘
+
-
NVM Device

=i

30

NON-VOLATILE MEMORY FILESYSTEM

* Direct access storage (DAX) to avoid data duplication
— DBMS can directly manage database by skipping page cache
— File I/0: 1 copy (Device — App Buffer)

(=3

DRAM | Page Cache
- S

- 2
NVM Device

| SYSTEM SOFTWARE FOR PERSISTENT MEMORY
| EUROSYS 2014

App Buffer

31

NON-VOLATILE MEMORY FILESYSTEM

* To ensure durability, uses a hybrid recovery protocol
— NVM only supports 64-byte (cacheline) atomic updates

— DATA CHANGES: Copy-on-write mechanism at page granularity
— METADATA CHANGES: In-place updates & write-ahead logging

* NVM filesystem
— Reduces data duplication
— Uses lightweight recovery protocol
— 10x more IOPS compared to EXT4

32

RECAP: ACCESS INTERFACES

e Allocator interface
— Non-volatile data structures
— Table heap, Indexes

* Filesystem interface
— Log files, Checkpoints

33

BLUEPRINT OF AN NVM DBMS

(1 W ACCESS
INTERFACES

ALLOCATOR FILESYSTEM
INTERFACE INTERFACE

STORAGE LOGGING & DATA ACCESS
MANAGER RECOVERY PLACEMENT METHODS

© REE)

PLAN QUERY SQL

ENGINE EXECUTOR OPTIMIZER EXTENSIONS

HOW TO BUILD A NON-VOLATILE MEMORY DBMS
SIGMOD 2017 (TUTORIAL)

34

STORAGE MANAGER

MULTI-VERSIONED DBMS

|
% §Qlf_ Server PostgreSQL
ORACLE WMysoL.

36

THOUGHT EXPERIMENT

* To keep things simple, NVM-only storage hierarchy
— No volatile DRAM

37

LOGGING AND RECOVERY

 Traditional write-ahead logging in off-the-shelf DBMS

. Can we avoid duplicating data in
the log as well as the checkpoints?

38

NON-VOLATILE POINTER

POINTER DATA POINTER DATA
- (=3 (-3 =3
DRAM ==p DRAM NVM =—p NVM
= -

=S -
NON-VOLATILE POINTER

VOLATILE POINTER

39

AVOIDING DATA DUPLICATION

* Only store non-volatile tuple pointers in log records

Table Heap Write-Ahead Log

TUPLE ID | TUPLE DATA TRADITIONAL MANAGER
100 XYZ INSERT TUPLE XYZ
101 XY’ UPDATE TUPLE XYZ - X’Y’Z’

NVM-AWARE MANAGER
INSERT TUPLE 100
UPDATE TUPLE 100 - 101

== | LET’S TALK ABOUT STORAGE AND RECOVERY METHODS FOR
NON-VOLATILE MEMORY DATABASE SYSTEMS
SIGMOD 2015

40

41

NVM-AWARE STORAGE MANAGER

* Write-ahead meta-data logging

oTable Heap

Meta

L Data
NVM

El @ CheckR¥oints
Log L_Ll ‘ \
|

EVALUATION

« Compare storage managers on NVM emulator
— Traditional storage manager
— Write-ahead logging + Filesystem interface
— NVM-aware storage manager
— Write-ahead meta-data logging + Allocator interface

* Yahoo! Cloud Serving Benchmark
— Database fits on NVM

42

RUNTIME PERFORMANCE

. Traditional Manager . NVM-Aware Manager

8x DRAM Latency

1,500,000

1,000,000
Throughput 1 3x

(txn/sec)
500,000 -
0]

Storage Managers

43

44

RUNTIME PERFORMANCE

. Traditional Manager . NVM-Aware Manager

2x DRAM Latency ‘4X

NVM latency has a significant impact on the
performance of NVM-aware storage manager

Storage Managers

45

DEVICE LIFETIME

. Traditional Manager . NVM-Aware Manager

100

Redesigning the storage manager for NVM
not only improves runtime performance

but also extends device lifetime

Storage Managers

RECAP: WRITE-AHEAD METADATA LOGGING

» Targets an NVM-only storage hierarchy
— Leverages the durability of memory
— Skips duplicating data in the log and checkpoints
— Improves runtime performance
— Extends lifetime of the device

46

WRITE-BEHIND LOGGING

TWO-TIER STORAGE HIERARCHY

* Generalize the logging and recovery algorithms

DBMS

A1 LA Rt 18!

DRAM NVM

= WRITE-BEHIND LOGGING
VLDB 2016

48

WRITE-AHEAD LOGGING

* Write-ahead log serves two purposes
— Transform random database writes into sequential log writes

— Support transaction rollback
— Design makes sense for disks with slow random writes

* But, NVM supports fast random writes
— Directly write data to the multi-versioned database
— LATER, only record meta-data about committed txns in log
— Core idea behind write-behind logging

49

WRITE-BEHIND LOGGING

(= 5
DRAM BLSE:!

=2 9 |§Table Heap
NVM Log

=

oTable Heap

WRITE-BEHIND LOGGING

* Recovery algorithm is simple
— No need to REDO the log, unlike write-ahead logging

— Since all changes are already persisted in database at commit
— Can recover the database almost instantaneously from failure

 Supporting transaction rollback

— Need to record meta-data about in-flight transactions
— In case of failure, ignore their effects

51

WRITE-BEHIND LOGGING

« DBMS assigns timestamps to transactions
— All transactions in a particular group commit

— Get timestamps within same group commit timestamp range
— To ighore the effects of all in-flight transactions

* |dea: Use failed group commit timestamp range
— DBMS uses this timestamp range during tuple visibility checks
— Ignores tuples created or updated within this timestamp range
— UNDO is, therefore, implicitly done via visibility checks

52

WRITE-BEHIND LOGGING

» Recovery consists of only analysis phase
— Can immediately start processing transactions after restart

» Garbage collection eventually kicks in
— Undoes effects of all uncommitted transactions
— Using timestamp range information in write-behind log
— After this finishes, no need to do extra visibility checks

53

METADATA FOR INSTANT RECOVERY

* Group commit timestamp range
— Use it to ignore effects of transactions in failed group commit
— Maintain list of failed timestamp ranges

Write-behind logging not only avoids data

duplication but also enables instant recovery
ige

Garbage Collection

54

EVALUATION SETUP

« Compare logging protocols in Peloton DBMS
— Write-Ahead logging
— Write-Behind logging

* TPC-C benchmark

 Storage devices
— Solid-state drive
— Non-volatile memory

55

56

RECOVERY TIME

. Write-Ahead Logging .Write-Behind Logging

1,000
LOWER
100 S
Recovery l BETTER
Time 10
(sec) ‘250X . ‘BOX
I

1
Solid State Drive Non-Volatile Memory

57

THROUGHPUT

. Write-Ahead Logging .Write-Behind Logging

30,000

$1.3x

20,000

Throughput
(txn/sec) 10.000
R
0

Solid State Drive Non-Volatile Memory

RECAP: WRITE-BEHIND LOGGING

 Rethinking key algorithms
— Write-behind logging enables instant recovery

— Improves device utilization by reducing data duplication
— Extends the device lifetime

58

DATA PLACEMENT

THREE-TIER STORAGE HIERARCHY

» Cost of first-generation NVM devices
— SSD is still going to be in the picture

* Data placement
— Three-tier DRAM + NVM + SSD hierarchy

60

61

THREE-TIER STORAGE HIERARCHY

(=3

DRAM Meta o Database

=E Data /\

= 9 P Database
NVM Log

= 1
5SD P Database

DATA PLACEMENT

» Unlike SSD, can directly read data from NVM

— No need to always copy data over to DRAM for reading

« Cache hot data in DRAM
— Dynamically migrate cold data to SSD

— And keep warm data on NVM
OPEN PROBLEM:

How do NVM capacity and access latencies
affect the performance of DBMS?

62

ACCESS METHODS

NVM-AWARE ACCESS METHODS

* Read-write asymmetry & wear-leveling
— Writes might take longer to complete compared to reads
— Excessive writes to a single NVM cell can destroy it

 Write-limited access methods
— NVM-aware B+tree, hash table

Perform , and instead do

EIIDGTI\}}SED 2%1H6YB RID SCM-DRAM PERSISTENT AND CONCURRENT B-TREE FOR STORAGE CLASS MEMORY

64

NVM-AWARE B+TREE

» Leave the entries in the leaf node unsorted
— Require a linear scan instead of a binary search
— But, fewer writes associated with shuffling entries

15 3 2 4|l |1 2 3 4 5]

W Fever Writes More Writes]

65

NVM-AWARE B+TREE

» Temporarily relax the balance of the tree
— Extra node reads, fewer writes associated with balancing nodes

N &b

N Feverwiites _ ore Writes i}

66

NVM-AWARE ACCESS METHODS

* More design principles will be covered in next tutorial

Data Structures Engineering For NVM

OPEN PROBLEM:
Synthesizing other NVM-aware access methods.

67

BLUEPRINT OF AN NVM DBMS

0 ACCESS ALLOCATOR FILESYSTEM
INTERFACES INTERFACE INTERFACE

(2 | STORAGE LOGGING & DATA ACCESS
MANAGER RECOVERY PLACEMENT METHODS

EXECUTION PLAN QUERY SQL
ENGINE EXECUTOR OPTIMIZER EXTENSIONS

HOW TO BUILD A NON-VOLATILE MEMORY DBMS
SIGMOD 2017 (TUTORIAL)

68

EXECUTION ENGINE

PLAN EXECUTOR

* Query processing algorithms
— Sorting algorithm
— Join algorithm

* Reduce the number of writes
— Adjusting the write-intensivity knob
— Write-limited algorithms

| WRITE-LIMITED SORTS AND JOINS FOR PERSISTENT MEMORY
- | VLDB 2014

70

SEGMENT SORT

« Hybrid sorting algorithm
— Run merge sort on a part of the input (segment): x%

— Run selection sort on the rest of the input: (1-x)%
— Adjust “x” to limit the number of writes

[1 5 3 9 4 7 2 1011126 8]

S S — E—
| SelectionSort [MergeSort

(N fever writes [l More Wiites 1}

71

SEGMENT GRACE JOIN

« Hybrid join algorithm
— Materialize a part of the input partitions: x%

— |terate over input for remaining partitions: (1-x)%
— Adjust “x” to limit the number of writes

| lterate P1 P2 P3]

—_——
_Don’t Materialize J Materialize

N ever virites [More Writes i}

72

SQL EXTENSIONS

SQL EXTENSIONS

 Allow the user to control data placement on NVM
— Certain performance-critical tables and materialized views

ALTER TABLESPACE DEFAULT ON_NVM;

 Store only a subset of the columns on NVM
— Exclude certain columns from being stored on NVM

ALTER TABLE ON_NVM EXCLUDE();

74

NVM-RELATED SQL EXTENSIONS

 Need to construct new NVM-related extensions
— Standardize these extensions

OPEN PROBLEM:

Need to construct new extensions and
standardize them.

75

QUERY OPTIMIZER

QUERY OPTIMIZATION

» Cost-based query optimizer
— Distinguish between sequential & random accesses
— But not between reads and writes

* NVM-oriented redesign
— Differentiate between reads and writes in cost model

| MAKING COST-BASED QUERY OPTIMIZATION ASYMMETRY-AWARE
~ | bamoN 2012

77

SEQUENTIAL SCAN

» Accounts for sequential access of all pages in table
— Does not distinguish reads and writes

Cost(segential scan) = ITable|lpage-count

» Updated cost function

Cost(segential scan) = ITable||page-count

78

HASH JOIN

* Function accounts for reading and writing all data once
— Does not distinguish reads and writes

Cost(hash join) = () *

([Inner-Table||pages* lIOUter-Table|lspages)

» Updated cost function
Cost(hash join) = () *

(lInner-Table||ypages* lIOUter-Table|lspages)

79

EVALUATION

« Compare different cost models on NVM emulator
— Traditional cost model
— NVM-aware cost model

« TPC-H benchmark on Postgres

» Performance impact
— 50% speedup of queries
— Maximum speedup: 500% (!)
— Maximum slowdown: 1%

80

NVM-ORIENTED DESIGN

» Page-oriented cost functions
— NVM is byte-addressable

OPEN PROBLEM:

Update cost model to factor in
byte-addressability of NVM

81

LESSONS LEARNED

LESSONS LEARNED

* Important to reexamine the design choice
— To leverage the raw device performance differential

— Across different components of the DBMS
— Helpful to think about an NVM-only hierarchy

DBMS

wi! (D

(o

83

LESSONS LEARNED

* NVM invalidates multiple long-held assumptions
— Storage is several orders of magnitude slower than DRAM

— Large performance gap between sequential & random accesses
— Memory read and write latencies are symmetric

84

BLUEPRINT OF AN NVM DBMS

C1 W AccEss ALLOCATOR FILESYSTEM
INTERFACES INTERFACE INTERFACE

(2 B STORAGE LOGGING & DATA ACCESS
MANAGER RECOVERY PLACEMENT METHODS

© RGN PLAN QUERY sqL
ENGINE EXECUTOR OPTIMIZER EXTENSIONS

HOW TO BUILD A NON-VOLATILE MEMORY DBMS
SIGMOD 2017 (TUTORIAL)

85

FUTURE WORK

 Highlighted a set of open problems
— Data placement
— Access methods
— Query optimization
* Improvement in performance of storage layer

— By several orders of magnitude over a short period of time
— We anticipate high-impact research in this space

86

Cfob = NVM Ready
<> Autonomous
thE/%pTghNg ¢ Apache Licensed

N

@joy_arulraj & @andy_pavlo

