BzTree: A High-Performance Laich-free
Range Index for Non-Volatile Memory

JOY ARULRA)

JUSTIN LEVANDOSKI
UMAR FAROOQ MINHAS
PER-AKE LARSON

Microsoft Research

NON-VOLATILE MEMORY [NVM]
VOLATILE NON-VOLATILE

0 x| T T
m! SLOW

DURABILITY

FAST

PERFORMANCE

DEVICE CHARACTERISTICS

CHARACTERISTIC = DRAM__| _NVM___ S50

Device Latency 1x 10x 1000x
Byte-Addressability v v X
Durability X v v
High Capacity X v v

BWTREE: LATCH-FREE B+TREE

SINGLE-WORD m
COMPARE-AND-SWAP

INSTRUCTION CPU

BZTREE: NVM-CENTRIC LATCH-FREE B+TREE

LATCH-FREE a NON-VOLATILE
B+TREE MEMORY

o

BWTREE BZTREE EXPERIMENTAL
INDEX INDEX RESULTS

BWTREE: SSD-CENTRIC ARCHITECTURE

BUFFER POOL
| PAGEID | ADDRESS .t |

101 [
102

INDEX

LOG-STRUCTURED STORE

BWTREE: LATCH-FREE ALGORITHMS

MAPPING TABLE

DELETE 2 DELTA

PAGE ID ADDRESS

101 INSERT 3 DELTA

SINGLE-WORD

COMPARE-AND-SWAP m NODE P

INSTRUCTION

BWTREE: LOGGING & RECOVERY PROTOCOL

BUFFER POOL o

N
BEGIN TRANSACTION
Update Stock by Stock ID
COMMIT TRANSACTION

m e‘hoc \
-

INDEX-SPECIFIC
LOGGING &
RECOVERY

INDEX 06

BWTREE: RECAP

* Delivers high performance on a DRAM + SSD system
— SSD-centric architecture
— Latch-free algorithms
— Logging & recovery protocol

e Limitations
— NVM invalidates the key design assumptions of BwTree
— Challenging to design & extend such latch-free data structures

10

PROBLEM #1: ALGORITHMIC COMPLEXITY

SINGLE-WORD m
COMPARE-AND-SWAP

INSTRUCTION

LATCH-FREEDOM

INTERMEDIATE

SPLITTING STATES
A NODE

11

PROBLEM #2: PROTOCOL COMPLEXITY
BUFFER POOL

teoe |

DURABILITY &
ATOMICITY

INDEX-SPECIFIC
LOGGING &
RECOVERY

LOG

INDEX

12

PROBLEM #3: ARCHITECTURAL COMPLEXITY

BUFFER POOL

AT (9@ |
1o } AT

102

MAPPING TABLE

LOCATION
VIRTUALIZATION

INDEX

HOW CAN WE SIMPLIFY
LATGH-FREE PROGRAMMING ON
NON-VOLATILE MEMORY?

o

BWTREE BZTREE EXPERIMENTAL
INDEX INDEX RESULTS

BZTREE: OVERVIEW

* NVM-centric design
— Based on a new NVM-centric software primitive
— Provides same guarantees as disk-centric BwTree

e BzTree supersedes BwTree (skipped BxTree and ByTree)

— Because we think that it is the last index you will ever need!

 Key techniques
— Adopt a simpler NVM-centric architecture
— Reduce complexity using software primitive

16

NVM-CENTRIC SOFTWARE PRIMITIVE
HARDWARE SOFTWARE
PRIMITIVE m PRIMITIVE @

 DRAM NVM

VOLATILE SINGLE-WORD PERSISTENT MULTI-WORD
COMPARE-AND-SWAP COMPARE-AND-SWAP

17

BZTREE: NVM-CENTRIC ARCHITECTURE
L1 CACHE BUFFER POOL PERSISTENT @
MULTI-WORD CAS
000 | i &
‘ ah ah
m t\ BEGIN TRANSACTION

BEGIN TRANSACTION

BEGIN TRANSACTION
Update Stock by Stock ID
LOG COMMIT TRANSACTION

INDEX

18

BZTREE: DURABILITY & ATOMICITY

PERSISTENT
MULTI-WORD CAS
OPERATION TABLE

% LOCATION EXPECTED OLD VALUE m FLUSHED

0x100 OLD CHILD POINTER ~ NEW CHILD POINTER 1
0x200 OLD NODE STATUS NEW NODE STATUS 1
0x300 OLD PARENT POINTER NEW PARENT POINTER 0

19

SOLUTION #1: ALGORITHMIC COMPLEXITY

PERSISTENT
MULTI-WORD CAS

EXPONENTIALLY
FEWER
INTERMEDIATE
STATES

SPLITTING
A NODE

20

SOLUTION #2: PROTOCOL COMPLEXITY

INDEX

PERSISTENT

MULTI-WORD CAS @

LOCATION OLD VALUE NEW VALUE m

0x100 OLD CHILD POINTER ~ NEW CHILD POINTER 1

0x200 OLD NODE STATUS ~~ NEW NODE STATUS 1
0x300 OLD PARENT POINTER NEW PARENT POINTER 0

NO INDEX-SPECIFIC
PROTOCOL

DURABILITY & ATOMICITY

21

SOLUTION #3: ARCHITECTURAL COMPLEXITY

NO MAPPING TABLE

NO DELTA RECORDS &
INDIRECTION OVERHEAD

\00¢ |

NO LOG STRUCTURED STORE

22

o

BWTREE BZTREE EXPERIMENTAL
INDEX INDEX RESULTS

EVALUATION

* Index data structures: BzTree vs. BwTree index
— Code complexity
— Runtime performance
— Recovery time

* Benchmark: Yahoo Cloud Serving benchmark
— Read-mostly & Balanced workloads

* Storage device
— Emulated Non-Volatile Memory

24

CODE COMPLEXITY

CODE COMPLEXITY METRIC | BWTREE | BZTREE

Loweris CYCLOMATIC COMPLEXITY 12 7 ¥ X
Better | INES OF CODE 750 200 | 4x
o FEWER © \o INDEX-SPECIFIC

INTERMEDIATE STATES LOGGING PROTOCOL

25

RUNTIME PERFORMANCE

B DISK-CENTRIC BWTREE I NVM-CENTRIC BZTREE

90
Throughput In addition to simplifying programming,
(M Operations/sec) 60 BzTree also delivers better performance
Higher is I X

Better 30

0

READ-MOSTLY BALANCED
WORKLOAD WORKLOAD

26

RECOVERY TIME

* BZTree: no recovery logic
— Recovery is entirely handled by software primitive
— Rolls back operations that were in progress during the crash

LOWETS " RECOVERY TIME ~5000us 145 us

Better

v 30x

27

CONCLUSION

* NVM invalidates design assumptions in data structures
* Presented the design of a NVM-centric latch-free B+tree
* Importance of tailoring data structures for NVM

DEVELOPMENT COST PERFORMANCE RECOVERY TIME

28

