
1

BzTree: A High-Performance Latch-free
Range Index for Non-Volatile Memory
JOY ARULRAJ
JUSTIN LEVANDOSKI
UMAR FAROOQ MINHAS
PER-AKE LARSON
Microsoft Research

2

NON-VOLATILE MEMORY [NVM]

PERFORMANCE

DURABILITY

FAST

SLOW

VOLATILE NON-VOLATILE

SSD

NVMDRAM

3

DEVICE CHARACTERISTICS

CHARACTERISTIC DRAM NVM SSD
Device Latency 1x 10x 1000x
Byte-Addressability
Durability
High Capacity

4

BWTREE: LATCH-FREE B+TREE

10

5

1 5

15

10 151051

SINGLE-WORD
COMPARE-AND-SWAP

INSTRUCTION CPU

5

BZTREE: NVM-CENTRIC LATCH-FREE B+TREE

10

5 15

1051 15

LATCH-FREE
B+TREE

NON-VOLATILE
MEMORY

6

BWTREE
INDEX

BZTREE
INDEX

EXPERIMENTAL
RESULTS

BWTREE
INDEX

BZTREE
INDEX

EXPERIMENTAL
RESULTS

7

BWTREE: SSD-CENTRIC ARCHITECTURE
BUFFER POOL

INDEX

DRAM

SSD

PAGE ID ADDRESS
101
102

MAPPING TABLE

LOG-STRUCTURED STORE

8

PAGE ID ADDRESS
101

MAPPING TABLE

BWTREE: LATCH-FREE ALGORITHMS

SINGLE-WORD
COMPARE-AND-SWAP

INSTRUCTION CPU

[1, 2]

INSERT 3

DELETE 2

NODE P

DELTA

DELTA

9

BWTREE: LOGGING & RECOVERY PROTOCOL

1

3

BUFFER POOL

LOG
INDEX

2

BEGIN TRANSACTION
Update Stock by Stock ID
COMMIT TRANSACTION

INDEX-SPECIFIC
LOGGING &
RECOVERY

DRAM

SSD

10

BWTREE: RECAP

• Delivers high performance on a DRAM + SSD system
� SSD-centric architecture
� Latch-free algorithms
� Logging & recovery protocol

• Limitations
� NVM invalidates the key design assumptions of BwTree
� Challenging to design & extend such latch-free data structures

11

PROBLEM #1: ALGORITHMIC COMPLEXITY

S

AB BA

S’

SPLITTING
A NODE

1

3

2

4

SINGLE-WORD
COMPARE-AND-SWAP

INSTRUCTION CPU

LATCH-FREEDOM

INTERMEDIATE
STATES

12

PROBLEM #2: PROTOCOL COMPLEXITY

1

3

BUFFER POOL

INDEX

2
DURABILITY &

ATOMICITY

INDEX-SPECIFIC
LOGGING &
RECOVERY

LOG

NVM

13

PROBLEM #3: ARCHITECTURAL COMPLEXITY

NVM

BUFFER POOL

INDEX

PAGE ID ADDRESS
101
102

MAPPING TABLE

LOCATION
VIRTUALIZATION

14

14

HOW CAN WE SIMPLIFY
LATCH-FREE PROGRAMMING ON

NON-VOLATILE MEMORY?

15

BWTREE
INDEX

BZTREE
INDEX

EXPERIMENTAL
RESULTS

BWTREE
INDEX

BZTREE
INDEX

EXPERIMENTAL
RESULTS

16

BZTREE: OVERVIEW

• NVM-centric design
� Based on a new NVM-centric software primitive
� Provides same guarantees as disk-centric BwTree

• BzTree supersedes BwTree (skipped BxTree and ByTree)
� Because we think that it is the last index you will ever need!

• Key techniques
� Adopt a simpler NVM-centric architecture
� Reduce complexity using software primitive

17

NVM-CENTRIC SOFTWARE PRIMITIVE

VOLATILE SINGLE-WORD
COMPARE-AND-SWAP

1

3

2

HARDWARE
PRIMITIVE

1

SOFTWARE
PRIMITIVE

1

1NVMDRAM

PERSISTENT MULTI-WORD
COMPARE-AND-SWAP

EASY LOCK-FREE INDEXING IN NON-VOLATILE MEMORY
ICDE 2018

18

BZTREE: NVM-CENTRIC ARCHITECTURE

1

BUFFER POOL

INDEX

NVM
LOG

BEGIN TRANSACTION
Update Stock by Stock ID
COMMIT TRANSACTION

BEGIN TRANSACTION
Update Stock by Stock ID
COMMIT TRANSACTION

BEGIN TRANSACTION
Update Stock by Stock ID
COMMIT TRANSACTION

PERSISTENT
MULTI-WORD CAS

L1 CACHE

L2 CACHE

19

BZTREE: DURABILITY & ATOMICITY

OPERATION TABLE
LOCATION EXPECTED OLD VALUE NEW VALUE FLUSHED

NVM
0x300 OLD PARENT POINTER NEW PARENT POINTER 0

0x100 OLD CHILD POINTER NEW CHILD POINTER 1

0x200 OLD NODE STATUS NEW NODE STATUS 1

1

1

1

PERSISTENT
MULTI-WORD CAS

20

SOLUTION #1: ALGORITHMIC COMPLEXITY

S

AB BA

S’

SPLITTING
A NODE

1

1

1

1
EXPONENTIALLY

FEWER
INTERMEDIATE

STATES

PERSISTENT
MULTI-WORD CAS

21

SOLUTION #2: PROTOCOL COMPLEXITY

LOCATION OLD VALUE NEW VALUE FLUSHED

0x100 OLD CHILD POINTER NEW CHILD POINTER 1

0x200 OLD NODE STATUS NEW NODE STATUS 1

0x300 OLD PARENT POINTER NEW PARENT POINTER 0

1

INDEX

NVM

DURABILITY & ATOMICITY

PERSISTENT
MULTI-WORD CAS

NO INDEX-SPECIFIC
PROTOCOL

22

SOLUTION #3: ARCHITECTURAL COMPLEXITY

NVM

INDEX

NO MAPPING TABLE
NO DELTA RECORDS &

INDIRECTION OVERHEAD

NO LOG STRUCTURED STORE

23

BWTREE
INDEX

BZTREE
INDEX

EXPERIMENTAL
RESULTS

BWTREE
INDEX

BZTREE
INDEX

EXPERIMENTAL
RESULTS

24

EVALUATION

• Index data structures: BzTree vs. BwTree index
� Code complexity
� Runtime performance
� Recovery time

• Benchmark: Yahoo Cloud Serving benchmark
� Read-mostly & Balanced workloads

• Storage device
� Emulated Non-Volatile Memory

25

CODE COMPLEXITY

CODE COMPLEXITY METRIC BWTREE BZTREE

Lower is
Better

2x
4xLINES OF CODE 750 200

FEWER
INTERMEDIATE STATES

NO INDEX-SPECIFIC
LOGGING PROTOCOL

CYCLOMATIC COMPLEXITY 12 7

1 2

26

RUNTIME PERFORMANCE
NVM-CENTRIC BZTREEDISK-CENTRIC BWTREE

Throughput
(M Operations/sec)

Higher is
Better

0

30

60

90

READ-MOSTLY
WORKLOAD

BALANCED
WORKLOAD

4x
2x

27M 7M
45M

31M

In addition to simplifying programming,
BzTree also delivers better performance

27

RECOVERY TIME

• BzTree: no recovery logic
� Recovery is entirely handled by software primitive
� Rolls back operations that were in progress during the crash

BWTREE BZTREE

RECOVERY TIME ~5000 us 145 usLower is
Better 30x

28

CONCLUSION

• NVM invalidates design assumptions in data structures
• Presented the design of a NVM-centric latch-free B+tree
• Importance of tailoring data structures for NVM

RECOVERY TIMEPERFORMANCEDEVELOPMENT COST

