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DEVICE CHARACTERISTICS

CHARACTERISTIC = DRAM__| _NVM___ S50

Device Latency 1x 10x 1000x
Byte-Addressability v v X
Durability X v v
High Capacity X v v



BWTREE: LATCH-FREE B+TREE
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BZTREE: NVM-CENTRIC LATCH-FREE B+TREE
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BWTREE: SSD-CENTRIC ARCHITECTURE
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BWTREE: LATCH-FREE ALGORITHMS
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BWTREE: RECAP

* Delivers high performance on a DRAM + SSD system
— SSD-centric architecture
— Latch-free algorithms
— Logging & recovery protocol

e Limitations
— NVM invalidates the key design assumptions of BwTree
— Challenging to design & extend such latch-free data structures
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PROBLEM #1: ALGORITHMIC COMPLEXITY
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PROBLEM #2: PROTOCOL COMPLEXITY
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PROBLEM #3: ARCHITECTURAL COMPLEXITY
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HOW CAN WE SIMPLIFY
LATGH-FREE PROGRAMMING ON
NON-VOLATILE MEMORY?
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BZTREE: OVERVIEW

* NVM-centric design
— Based on a new NVM-centric software primitive
— Provides same guarantees as disk-centric BwTree

e BzTree supersedes BwTree (skipped BxTree and ByTree)

— Because we think that it is the last index you will ever need!

 Key techniques
— Adopt a simpler NVM-centric architecture
— Reduce complexity using software primitive
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BZTREE: NVM-CENTRIC ARCHITECTURE
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BZTREE: DURABILITY & ATOMICITY

PERSISTENT
MULTI-WORD CAS
OPERATION TABLE

% LOCATION EXPECTED OLD VALUE m FLUSHED

0x100 OLD CHILD POINTER ~ NEW CHILD POINTER 1
0x200 OLD NODE STATUS NEW NODE STATUS 1
0x300 OLD PARENT POINTER  NEW PARENT POINTER 0
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SOLUTION #1: ALGORITHMIC COMPLEXITY
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SOLUTION #2: PROTOCOL COMPLEXITY
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SOLUTION #3: ARCHITECTURAL COMPLEXITY
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EVALUATION

* Index data structures: BzTree vs. BwTree index
— Code complexity
— Runtime performance
— Recovery time

* Benchmark: Yahoo Cloud Serving benchmark
— Read-mostly & Balanced workloads

* Storage device
— Emulated Non-Volatile Memory
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CODE COMPLEXITY

CODE COMPLEXITY METRIC | BWTREE | BZTREE
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RUNTIME PERFORMANCE
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RECOVERY TIME

* BZTree: no recovery logic
— Recovery is entirely handled by software primitive
— Rolls back operations that were in progress during the crash

LOWETS " RECOVERY TIME ~5000us 145 us

Better

v 30x
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CONCLUSION

* NVM invalidates design assumptions in data structures
* Presented the design of a NVM-centric latch-free B+tree
* Importance of tailoring data structures for NVM
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