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DEVICE CHARACTERISTICS

CHARACTERISTIC DRAM NVM SSD
Device Latency 1x 10x 1000x
Byte-Addressability
Durability
High Capacity
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BWTREE: LATCH-FREE B+TREE
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BZTREE: NVM-CENTRIC LATCH-FREE B+TREE

10

5 15

1051 15

LATCH-FREE 
B+TREE

NON-VOLATILE 
MEMORY



6

BWTREE
INDEX

BZTREE
INDEX

EXPERIMENTAL
RESULTS

BWTREE
INDEX

BZTREE 
INDEX

EXPERIMENTAL
RESULTS



7

BWTREE: SSD-CENTRIC ARCHITECTURE
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BWTREE: LOGGING & RECOVERY PROTOCOL
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BWTREE: RECAP

• Delivers high performance on a DRAM + SSD system
� SSD-centric architecture
� Latch-free algorithms
� Logging & recovery protocol

• Limitations
� NVM invalidates the key design assumptions of BwTree
� Challenging to design & extend such latch-free data structures
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PROBLEM #1: ALGORITHMIC COMPLEXITY
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PROBLEM #2: PROTOCOL COMPLEXITY
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PROBLEM #3: ARCHITECTURAL COMPLEXITY
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HOW CAN WE SIMPLIFY
LATCH-FREE PROGRAMMING ON

NON-VOLATILE MEMORY?
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BZTREE: OVERVIEW

• NVM-centric design
� Based on a new NVM-centric software primitive
� Provides same guarantees as disk-centric BwTree

• BzTree supersedes BwTree (skipped BxTree and ByTree)
� Because we think that it is the last index you will ever need!

• Key techniques
� Adopt a simpler NVM-centric architecture
� Reduce complexity using software primitive
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NVM-CENTRIC SOFTWARE PRIMITIVE
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BZTREE: NVM-CENTRIC ARCHITECTURE
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BZTREE: DURABILITY & ATOMICITY

OPERATION TABLE
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SOLUTION #1: ALGORITHMIC COMPLEXITY
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SOLUTION #2: PROTOCOL COMPLEXITY
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SOLUTION #3: ARCHITECTURAL COMPLEXITY
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EVALUATION

• Index data structures: BzTree vs. BwTree index
� Code complexity
� Runtime performance
� Recovery time

• Benchmark: Yahoo Cloud Serving benchmark
� Read-mostly & Balanced workloads

• Storage device
� Emulated Non-Volatile Memory
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CODE COMPLEXITY

CODE COMPLEXITY METRIC BWTREE BZTREE
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RUNTIME PERFORMANCE
NVM-CENTRIC BZTREEDISK-CENTRIC BWTREE
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In addition to simplifying programming, 
BzTree also delivers better performance
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RECOVERY TIME

• BzTree: no recovery logic 
� Recovery is entirely handled by software primitive
� Rolls back operations that were in progress during the crash

BWTREE BZTREE

RECOVERY TIME ~5000 us 145 usLower is
Better 30x
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CONCLUSION

• NVM invalidates design assumptions in data structures
• Presented the design of a NVM-centric latch-free B+tree
• Importance of tailoring data structures for NVM

RECOVERY TIMEPERFORMANCEDEVELOPMENT COST


