
1

DATA MANAGEMENT ON
NON-VOLATILE MEMORY
JOY ARULRAJ
Carnegie Mellon University

2

1960 1980 2000 2020

DRAM NON-VOLATILE
MEMORY

FLASH
MEMORY

EVOLUTION OF MEMORY TECHNOLOGY

1970 1990 2010

3

NON-VOLATILE MEMORY [NVM]

PERFORMANCE

DURABILITY

FAST

SLOW

VOLATILE NON-VOLATILE

SSD

NVMDRAM

4

DEVICE CHARACTERISTICS

CHARACTERISTIC DRAM NVM SSD
Device Latency 1x 10x 1000x
Byte-Addressability
Durability

Cost/GB 100x 10x 1x
High Capacity

5

50 YEARS OF DATABASE SYSTEMS RESEARCH

SEPARATE
MEMORY & STORAGE

DRAM

SSD SSD

CPU

SSD

COMPUTE/STORAGE
BALANCE

RANDOM VS.
SEQUENTIAL

21 3

6

RESEARCH OVERVIEW

• How to manage data on NVM?
– Challenging because of NVM’s unique characteristics
– Important given the sudden shift in compute/storage balance

DATABASE
SYSTEM

NVM

7

#1: INDUSTRY STANDARDS

• Standardization of NVM technologies
– Design standards
– Interface specifications

JUNE 2016

8

#2: OPERATING SYSTEM SUPPORT

• Major operating systems natively support NVM
– Linux 4.8
– Windows 10

AUGUST 2015

9

#3: ARCHITECTURAL SUPPORT

• New assembly instructions in ISA updates
– Efficiently flush data from volatile CPU cache to NVM
– Kaby Lake processor

MAY 2016

10

HOW DO TODAY’S
DATABASE SYSTEMS PERFORM

ON NON-VOLATILE MEMORY?

11

NVM HARDWARE EMULATOR [INTEL]

• Emulates a wide range of NVM technologies
– Special CPU microcode
– Supports recently added assembly instructions

STORE
CACHE LINE

WRITE-BACK

CPU CACHE NVM

L1 CACHE

L2 CACHE

12

TODAY’S DATABASE SYSTEMS ON NVM

• Database System: MySQL
• Storage device performance
– NVM’s performance compared to that of disk
– I/O benchmark

• Database system performance
– On NVM compared to that on disk
– TPC-C benchmark

13

STORAGE HIERARCHIES

NVMDRAM

SSD

DISK-BASED HIERARCHY NVM-BASED HIERARCHY

BOTH MEMORY
& STORAGE

21

14

I/O
Throughput
(Operations/sec

/thread)

0

100,000

200,000

300,000

STORAGE DEVICE PERFORMANCE

>100x

Higher is
Better

278971

2541

SOLID-STATE
DISK

NON-VOLATILE
MEMORY

15

Transactional
Throughput

(Transactions/sec)

0

3,000

6,000

9,000

DATABASE SYSTEM PERFORMANCE

Higher is
Better

Disk-centric design
hurts performance on NVM

SOLID-STATE
DISK

NON-VOLATILE
MEMORY

1750

5510

3x

16

INDEXING
(VLDB’18)

STORAGE
MANAGEMENT

(SIGMOD’15)
LOGGING AND
RECOVERY
(VLDB’17)

QUERY
PROCESSING

(SIGMOD’16)

LAYERS OF A
DATABASE SYSTEM

PELOTON NVM DATABASE SYSTEM

17

WRITE-BEHIND
LOGGING

BZTREE
INDEX

FUTURE
DIRECTIONS

WRITE-BEHIND
LOGGING

BZTREE
INDEX

FUTURE
DIRECTIONS

18

LOGGING & RECOVERY: MOTIVATION

BEGIN TRANSACTION
Add Order
Update Stock
COMMIT TRANSACTION

DATABASE
SYSTEM

SHOPPING
APPLICATION

DURABILITY

FAULT-TOLERANCE

ATOMICITY

ALL-OR-NOTHING

19

WRITE-AHEAD LOGGING: DURABILITY
BUFFER POOL

DATABASE

ORDER

STOCK

ORDER

STOCK

LOG

BEGIN TRANSACTION
Add Order
Update Stock
COMMIT TRANSACTION

DRAM

SSD

1

ORDER

STOCK

23

20

WRITE-AHEAD LOGGING: ATOMICITY
LOG

TRANSACTION #1 – BEGIN

TRANSACTION #1 – ADD ORDER

SYSTEM CRASH

TRANSACTION #2 – BEGIN

TRANSACTION #1 – UPDATE STOCK

TRANSACTION #3 – BEGIN

TRANSACTION #3 – ADD ORDER

BEGIN TRANSACTION
Add Order
Update Stock
COMMIT TRANSACTION

BEGIN TRANSACTION
Add Order
Update Stock
COMMIT TRANSACTION

BEGIN TRANSACTION
Add Order
Update Stock
COMMIT TRANSACTION

21

WRITE-AHEAD LOGGING: RECOVERY PROTOCOL

ACTIVE TRANSACTION TABLE
TXN ID STATUS LATEST CHANGE
TXN #2 RUNNING LOG RECORD #7
TXN #3 RUNNING ---

DIRTY PAGE TABLE
PAGE ID CHANGE THAT DIRTIED PAGE

PAGE #30 LOG RECORD #5
PAGE #40 LOG RECORD #7

BUFFER POOL

DATABASE
LOG

LOG ANALYSIS1 REDO CHANGES2 UNDO CHANGES3

DRAM

SSD

22

PROBLEM #1: DATA DUPLICATION

STORAGE COST

PERFORMANCE

BUFFER POOL

DATABASE
LOG

NVM

DATA

DATA

DATA

23

1

23

PROBLEM #2: SLOW RECOVERY
BUFFER POOL

DATABASE
LOG

AVAILABILITY

LINEAR-TIME RECOVERY

NEEDS TO REDO LOG

NVM

24

24

HOW TO IMPROVE
PERFORMANCE AND AVAILABILTY

ON NON-VOLATILE MEMORY?

WRITE-BEHIND LOGGING
VLDB 2017

25

WRITE-BEHIND LOGGING: OVERVIEW

• NVM-centric design
– Improves availability by enabling instant recovery
– Provides same guarantees as write-ahead logging

• Key techniques
– Directly propagate changes to the database
– Only record meta-data in log

26

STOCK STOCK’ STOCK’’DATA
VERSION

0 100 200TRANSACTION
TIMESTAMP

DATA VERSIONING USING TIMESTAMPS

DATABASE

STOCK
STOCK’

STOCK’’

27

WRITE-BEHIND LOGGING: DURABILITY
BUFFER POOL

DATABASE

ORDER ORDER

LOG

BEGIN TRANSACTION
Add Order
Update Stock
COMMIT TRANSACTION

BEGIN TRANSACTION
Add Order
Update Stock
COMMIT TRANSACTION

BEGIN TRANSACTION
Add Order
Update Stock
COMMIT TRANSACTION

NVM

STOCK’

STOCK

ORDER

STOCK’’

1

L1 CACHE

L2 CACHE

28

<10, 20>

WRITE-BEHIND LOGGING: ATOMICITY

<10, 20>

TIMESTAMP INTERVAL
FOR EACH TRANSACTION BATCH

DATABASE

DATABASE
SYSTEM

LOG

BEGIN TRANSACTION
Add Order
Update Stock
COMMIT TRANSACTION

BEGIN TRANSACTION
Add Order
Update Stock
COMMIT TRANSACTION

BEGIN TRANSACTION
Add Order
Update Stock
COMMIT TRANSACTION

ORDER ORDER

STOCK’

STOCK

ORDER

STOCK’’NVM

29

WRITE-BEHIND LOGGING: RECOVERY PROTOCOL

BATCH 1
TRANSACTION

BATCH

—
FAILED

TIMESTAMP
INTERVAL

DATABASE

10

<10, 20>

<20, 30>

<30, 40>

<40, 50>

<50, 60>

BATCH 2

—

BATCH 3

—

BATCH 4

<20, 30>

BATCH 5

—

15

20
25

35

10

1535

LOG
NVM

<20, 30>

30

SOLUTION #1: NO DATA DUPLICATION

DATA META-DATA

DATABASE

ORDER

STOCK

<10, 20>

NVM

LOG

1

STORAGE COSTPERFORMANCE

31

SOLUTION #2: INSTANT RECOVERY

REDO2ANALYSIS1 UNDO3

ANALYSIS1

WRITE-AHEAD LOGGING Linear-Time Recovery

WRITE-BEHIND LOGGING Constant-Time Recovery

AVAILABILITY

32

WRITE-BEHIND LOGGING

• Enables instant recovery from failures
• Eliminates data duplication
• Generalizes to single-versioned database systems
• Supports a multi-tier storage hierarchy
• Handles long lived transactions
• Copes with failures during recovery

33

EVALUATION

• Logging Protocols: Write-Behind vs. Write-Ahead Logging
– Recovery Time
– Database System Performance

• Workload: TPC-C benchmark on Peloton
• Storage devices
– Solid-state disk
– Non-volatile memory

34

RECOVERY TIME

0

100

200

300

SOLID-STATE DISK NON-VOLATILE MEMORY

WRITE-BEHIND LOGGINGWRITE-AHEAD LOGGING

160x250x

Recovery
Time
(sec)

Lower is
Better

260

481.7 0.3

35

DATABASE SYSTEM PERFORMANCE

0

40,000

80,000

120,000

SOLID-STATE DISK NON-VOLATILE MEMORY

2x

5x
8K 41K

1.7K

88K
Write-behind logging only

works well on NVM

WRITE-BEHIND LOGGINGWRITE-AHEAD LOGGING

Transactional
Throughput

(Transactions/sec)

Higher is
Better

36

WRITE-BEHIND LOGGING: SUMMARY

Advances the state of the art by shifting the
complexity class of the recovery protocol on NVM

STORAGE COSTPERFORMANCEAVAILABILITY

37

PELOTON NVM DATABASE SYSTEM

INDEXING
(VLDB’18)

STORAGE
MANAGEMENT

(SIGMOD’ 15)
LOGGING AND
RECOVERY
(VLDB’17)

QUERY
PROCESSING

(SIGMOD’16)

LAYERS OF A
DATABASE SYSTEM

38

WRITE-BEHIND
LOGGING

BZTREE
INDEX

FUTURE
DIRECTIONS

WRITE-BEHIND
LOGGING

BZTREE
INDEX

FUTURE
DIRECTIONS

39

INDEXING DATA: MOTIVATION

BEGIN TRANSACTION
Update Stock By Stock ID
COMMIT TRANSACTION

DATABASE
SYSTEM

SHOPPING
APPLICATION

1010

STOCK INDEX

STOCK ID > 5 AND < 15

5

1 5

15

10 15

15

10

40

SYNCHRONIZATION WITH LOCKS

BEGIN TRANSACTION
Update Stock by Stock ID
COMMIT TRANSACTION

BEGIN TRANSACTION
Update Stock by Stock ID
COMMIT TRANSACTION

BEGIN TRANSACTION
Update Stock by Stock ID
COMMIT TRANSACTION

1010

5

1 5

15

10 15

15

105

10

5

1

10

5

41

BWTREE: LOCK-FREE B+TREE [MICROSOFT]

10

5

1 5

15

10 151051

SINGLE-WORD
COMPARE-AND-SWAP

INSTRUCTION CPU

42

BWTREE: DURABILITY & ATOMICITY

1

3

BUFFER POOL

LOG
INDEX

2

BEGIN TRANSACTION
Update Stock by Stock ID
COMMIT TRANSACTION

INDEX-SPECIFIC
LOGGING &
RECOVERY

DRAM

SSD

43

PROBLEM #1: HIGH CODE COMPLEXITY

S

AB BA

S’

SPLITTING
A NODE

1

3

2

4

SINGLE-WORD
COMPARE-AND-SWAP

INSTRUCTION CPU

LOCK-FREEDOM

INTERMEDIATE
STATES

44

PROBLEM #2: INDEX-SPECIFIC PROTOCOL

1

3

BUFFER POOL

INDEX

2
DURABILITY &

ATOMICITY

INDEX-SPECIFIC
LOGGING &
RECOVERY

LOG

NVM

45

45

HOW TO SIMPLIFY PROGRAMMING
ON NON-VOLATILE MEMORY?

BZTREE: A HIGH-PERFORMANCE LATCH-FREE INDEX
FOR NON-VOLATILE MEMORY
VLDB 2018

46

BZTREE: OVERVIEW

• NVM-centric design
– Uses a new software primitive to simplify programming
– Provides same guarantees as disk-centric BwTree

• BzTree supersedes BwTree
– But, we skipped BxTree & ByTree
– Because we think it’s the “last” index you will ever need!

• Key techniques
– Offload programming complexity to the software primitive
– Adopt a simpler NVM-centric architecture

47

NVM-CENTRIC SOFTWARE PRIMITIVE

VOLATILE
SINGLE-WORD

COMPARE-AND-SWAP

1

3

2

HARDWARE
PRIMITIVE

1

SOFTWARE
PRIMITIVE

1

1NVMDRAM

PERSISTENT
MULTI-WORD

COMPARE-AND-SWAP

48

BZTREE: NVM-CENTRIC ARCHITECTURE

1

BUFFER POOL

INDEX

NVM
LOG

BEGIN TRANSACTION
Update Stock by Stock ID
COMMIT TRANSACTION

BEGIN TRANSACTION
Update Stock by Stock ID
COMMIT TRANSACTION

BEGIN TRANSACTION
Update Stock by Stock ID
COMMIT TRANSACTION

SOFTWARE
PRIMITIVE

L1 CACHE

L2 CACHE

49

BZTREE: DURABILITY AND ATOMICITY

OPERATION TABLE
LOCATION EXPECTED OLD VALUE NEW VALUE FLUSHED

NVM
0x300 OLD PARENT POINTER NEW PARENT POINTER 0

0x100 OLD CHILD POINTER NEW CHILD POINTER 1

0x200 OLD NODE STATUS NEW NODE STATUS 1

SOFTWARE
PRIMITIVE

1

1

1

PERSISTENT
MULTI-WORD

COMPARE-AND-SWAP

50

SOLUTION #1: LOW CODE COMPLEXITY

S

AB BA

S’

SPLITTING
A NODE

1

1

1

1
EXPONENTIALLY

FEWER
INTERMEDIATE

STATES

SOFTWARE
PRIMITIVE

51

SOLUTION #2: NO INDEX-SPECIFIC PROTOCOL

LOCATION OLD VALUE NEW VALUE FLUSHED

0x100 OLD CHILD POINTER NEW CHILD POINTER 1

0x200 OLD NODE STATUS NEW NODE STATUS 1

0x300 OLD PARENT POINTER NEW PARENT POINTER 0

1

INDEX

NVM

DURABILITY & ATOMICITY

SOFTWARE
PRIMITIVE

52

EVALUATION

• Index data structures: BzTree vs. BwTree index
– Code complexity
– Index Performance

• Benchmark: Yahoo Cloud Serving benchmark
– Read-mostly workload
– Balanced workload

• Storage devices
– Non-volatile memory (BzTree only works on NVM)

53

CODE COMPLEXITY [NODE SPLIT PROTOCOL]

CODE COMPLEXITY METRIC BWTREE BZTREE

Lower is
Better

2x
4xLINES OF CODE 750 200

FEWER INTERMEDIATE
STATES

NO INDEX-SPECIFIC
PROTOCOL

CYCLOMATIC COMPLEXITY 12 7

1 2

54

INDEX PERFORMANCE

NVM-CENTRIC BZTREEDISK-CENTRIC BWTREE

Throughput
(M Operations/sec)

Higher is
Better

0

30

60

90

READ-MOSTLY
WORKLOAD

BALANCED
WORKLOAD

4x
2x

27M 7M
45M

31M

In addition to simplifying programming,
BzTree also delivers better performance

55

BZTREE: SUMMARY

Advances the state of the art by illustrating a simpler way
to design data structures for NVM

STORAGE COSTPERFORMANCEAVAILABILITY

56

56

OTHER RESEARCH PROJECTS

57

57

CURRENT RESEARCH AGENDA

AREA #1:
NON-VOLATILE MEMORY

DATABASE SYSTEMS

AREA #2:
SELF-DRIVING

DATABASE SYSTEMS

58

AREA #1: NVM DATABASE SYSTEM

INDEXING
(VLDB’18)

STORAGE
MANAGEMENT

(SIGMOD’15)
LOGGING AND
RECOVERY
(VLDB’17)

QUERY
PROCESSING

(SIGMOD’16)

LAYERS OF A
DATABASE SYSTEM

59

AREA #2: SELF-DRIVING DATABASE SYSTEM

INDEX TUNING
(UNDER REVIEW)

STORAGE LAYOUT
TUNING

(SIGMOD’16)
SELF-DRIVING
DESIGN
(CIDR’17)

SELF-DRIVING
DATABASE SYSTEM

60

WRITE-BEHIND
LOGGING

BZTREE
INDEX

FUTURE
DIRECTIONS

WRITE-BEHIND
LOGGING

BZTREE
INDEX

FUTURE
DIRECTIONS

61

• Storage management tailored for a multi-tier hierarchy
– Industry collaboration: Intel Labs, Samsung Research

CROSS-MEDIA STORAGE MANAGEMENT

DRAM SSDCPU NVM

62

DECLARATIVE HARDWARE MANAGEMENT

DATABASE
SYSTEM

MACHINE
LEARNING

SYSTEM

• Most hardware-centric optimizations are system-specific

NVM TPU

This approach does not scale!

63

DECLARATIVE HARDWARE MANAGEMENT

DECLARATIVE
HARDWARE MANAGER

DECLARATIVE
REQUESTS

HARDWARE-CENTRIC
MECHANISMS

DATABASE
SYSTEM

MACHINE
LEARNING

SYSTEM

NVM TPU

64

CONCLUSION

• Non-volatile memory invalidates age-old design assumptions
• Presented the design of a new NVM-centric database system
• Broader impact on other types of data processing systems

BZTREE
INDEX

WRITE-BEHIND
LOGGING

65

http://pelotondb.io

INDEXING
(VLDB’18)

STORAGE
MANAGEMENT

(SIGMOD’15) LOGGING AND
RECOVERY
(VLDB’17)

QUERY
PROCESSING

(SIGMOD’16)

66

66

BACKUP SLIDES

67

DECLARATIVE STORAGE MANAGEMENT

DECLARATIVE
HARDWARE MANAGER

DECLARATIVE
STORAGE ALGEBRA

STORAGE-CENTRIC
MECHANISMS

DATABASE
SYSTEM

MACHINE LEARNING
SYSTEM

• DATA LAYOUT
• DATA MIGRATION
• DATA ORDERING
• DATA DISTRIBUTION
• DATA PACKING

NVMDRAM SSD

68

WRITE-BEHIND LOGGING: RELATED WORK

• NVM-centric logging, but only support linear-time recovery
– NVM Group Commit [VLDB’13], Passive Group Commit [VLDB’14]

• NVM-centric logging with non-commodity hardware features
– MARS [SOSP’13], BPFS [SOSP’09]

68

Write-behind logging enables constant-time recovery
using only commodity hardware features

69

BZTREE: RELATED WORK

• NVM-centric indexing, but with index-specific recovery logic
– FP-Tree [SIGMOD’16], NV-Tree [FAST’15]

• DRAM-centric indexing
– ART [ICDE’13], MassTree [Eurosys’12]

69

BzTree illustrates a simpler way to design persistent data
structures by obviating the need for index-specific recovery

70

RESEARCH IMPACT

• Research groups are shaping their systems for NVM
– Oracle, SAP HANA

• Byte-addressable NVM is still not commercially available
– Intel shipped block-addressable NVM in 2017
– Intel plans to ship byte-addressable NVM in 2019
– Peloton will be the only open-source database system ready for NVM

70

71

SHADOW PAGING
71

RECOVERY PROTOCOL
CHARACTERISTIC

SHADOW
PAGING

WRITE-BEHIND
LOGGING

PROTOCOL TYPE NO REDO/ NO UNDO NO REDO/ UNDO
COMMIT OVERHEAD HIGH LOW
SYSTEM INTEGRATION COMPLEX SIMPLE
CONCURRENCY SUPPORT NEED LOGGING YES

72

VISTA RECOVERABLE MEMORY
72

SYSTEM
CHARACTERISTIC

RECOVERABLE
MEMORY

WRITE-BEHIND
LOGGING

UNDO MECHANISM PHYSICAL UNDO LOGICAL UNDO
CONCURRENCY SUPPORT NO YES
DBMS INTEGRATION COMPLEX SIMPLE

73

THE LOG IS THE DATABASE
73

SYSTEM
CHARACTERISTIC

AMAZON
AURORA

WRITE-BEHIND
LOGGING

PROTOCOL TYPE REDO/ UNDO NO REDO/ UNDO
MATERIALIZATION YES NO
READ OVERHEAD HIGH LOW

74

BATTERY-BACKED DRAM

• Available only in specialized environments
– General-purpose database systems are not designed to leverage it

• Limitations of battery-backed DRAM
– Physical form factor, Availability, Reliability, Cost

74

DRAM

75

MEDIA FAILURE

• Write-behind logging focuses on software failures
– Transaction failures, System failures
– Software failures outnumber media failures 10-to-1

• Media failure
– Replicating data to another machine’s non-volatile memory

75

NVM-1 NVM-2

REPLICATION

76

SECURITY/PROTECTION

• Virtual memory protection mechanism
– All accesses should go through the TLB
– Using write-permission bits in the page table

76

PAGE PAGE PAGE

ENABLE
WRITES

DISABLE
WRITES

77

TRANSACTIONAL MEMORY
77

SYSTEM
CHARACTERISTIC

SOFTWARE
TRANSACTIONAL

MEMORY

HARDWARE
TRANSACTIONAL

MEMORY

PERSISTENT
MULTI-WORD

CAS

DURABILITY YES NO YES

PERFORMANCE HEAVYWEIGHT LIGHTWEIGHT LIGHTWEIGHT

FALSE ABORTS NO YES NO

78

READ-COPY-UPDATE
78

SYNCHRONIZATION
PRIMITIVE
CHARACTERISTIC

READ-
COPY-

UPDATE

PERSISTENT
MULTI-WORD

CAS

MULTI-LOCATION NO YES

DURABILITY NO YES

WRITERS USE LOCKS YES NO

79

CANDIDATE NVM TECHNOLOGIES
79

FLASH-BACKED
DRAM

SPIN-TRANSFER
TORQUE MRAM

MEMRISTOR

PHASE-CHANGE
MEMORY

2D & 3D
FLASH

Faster than
DRAM

Slower than
DRAM

