DATA MANAGEMENT ON NON-VOLATILE MEMORY

JOY ARULRAJ Georgia Institute of Technology

2019 ACM SIGMOD Jim Gray Award Talk

EVOLUTION OF MEMORY TECHNOLOGY

NON-VOLATILE MEMORY [NVM]

DURABILITY

DEVICE CHARACTERISTICS

CHARACTERISTIC	DRAM	NVM	SSD
Device Latency	1x	~10x	1000x
Fine-Grained Access	\checkmark	\checkmark	×
Durability	×	\checkmark	\checkmark
High Capacity	×	\checkmark	\checkmark
Cost/GB	100x	~10x	1x

RECENT NVM-RELATED DEVELOPMENTS

- #1: Industry standards
 - Design specifications
- #2: Operating system support – Linux 4.8+, Windows 10
- #3: Architectural support – New assembly instructions
- #4: Intel has started shipping NVM DIMMs
 - Optane DC DIMMs (April 2019)

50 YEARS OF DATABASE SYSTEMS RESEARCH

THESIS OVERVIEW

- How to manage data on NVM?
 - Challenging because of NVM's unique characteristics

PELOTON NVM DATABASE SYSTEM

LOGGING & RECOVERY: MOTIVATION

SHOPPING APPLICATION

BEGIN TRANSACTION Add Order Update Stock COMMIT TRANSACTION

DURABILITY

FAULT-TOLERANCE

ATOMICITY

ALL-OR-NOTHING

WRITE-AHEAD LOGGING: DURABILITY

WRITE-AHEAD LOGGING: ATOMICITY

LOG

TRANSACTION #1 – BEGIN

TRANSACTION #1 – ADD ORDER

TRANSACTION #2 – BEGIN

TRANSACTION #1 – UPDATE STOCK

TRANSACTION #3 – BEGIN

TRANSACTION #3 – ADD ORDER

BEGIN TRANSACTION BEGIN TRANSACTION BEGIN TRANSACTION Add Order Update Stock COMMIT TRANSACTION

WRITE-AHEAD LOGGING: RECOVERY PROTOCOL

ACTIVE TRANSACTION TABLE

TXN ID	STATUS	LATEST CHANGE
TXN #2	RUNNING	LOG RECORD #7
TXN #3	RUNNING	

DIRTY PAGE TABLE

PAGE ID	CHANGE THAT DIRTIED PAGE
PAGE #30	LOG RECORD #5
PAGE #40	LOG RECORD #7

PROBLEM #1: DATA DUPLICATION

PROBLEM #2: SLOW RECOVERY

HOW TO IMPROVE PERFORMANCE AND AVAILABILTY **ON NON-VOLATILE MEMORY?**

WRITE-BEHIND LOGGING: OVERVIEW

- NVM-centric design
 - Improves availability by enabling instant recovery
 - Provides same guarantees as write-ahead logging
- Key techniques
 - Directly propagate changes to the database
 - Only record meta-data in log

WRITE-BEHIND LOGGING: DURABILITY

WRITE-BEHIND LOGGING: ATOMICITY

SOLUTION #1: NO DATA DUPLICATION

SOLUTION #2: INSTANT RECOVERY

WRITE-BEHIND LOGGING Constant-Time Recovery

WRITE-BEHIND LOGGING: SUMMARY

Advances the state of the art by shifting the complexity class of the recovery protocol on NVM

FUTURE RESEARCH

- Most hardware-centric optimizations are system-specific
 - One-to-one mapping between hardware-centric optimizations & systems

DECLARATIVE HARDWARE MANAGEMENT

CONCLUSION

- Advent of NVM has begun a new era in systems research
 - Presented the design of an NVM-centric logging and recovery protocol
 - Broader impact on all types of data processing systems
- This thesis was greatly influenced by several NVM researchers
 - Ismail Oukid and Wolfgang Lehner, TU Dresden
 - Tianzheng Wang and Ryan Johnson, University of Toronto
 - Alexander van Renen, Viktor Leis, and Thomas Neumann, TU Munich
 - Joel Coburn and Steve Swanson, University of California San Diego

ADVISOR

ANDY PAVLO

MENTORS

SAM MADDEN

DONALD KOSSMANN

H.V. JAGADISH

COLLEAGUES & COLLABORATORS

- Subramanya Dulloor, Viktor Leis, Justin Levandoski, Lin Ma, Krishna Teja Malladi, Prashanth Menon, Umar Farooq Minhas, Per-Ake Larson, Matthew Perron, Kai Ren, Jungmin Seo, Vivek Seshadri, Anthony Tomasic, Dana Van Aken, Yingjun Wu, and Michael Zhang.
- This work was done in collaboration with the Intel Science and Technology Center for Big Data, Microsoft Research, and Samsung Research.

END ajoy_arulraj