
Visualization of Test Information to Assist
Fault Localization

James A. Jones, Mary Jean Harrold, John Stasko
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

{jjones,harrold,stasko}@cc.gatech.edu

ABSTRACT
One of the most expensive and time-consuming components
of the debugging process is locating the errors or faults. To
locate faults, developers must identify statements involved
in failures and select suspicious statements that might con-
tain faults. This paper presents a new technique that uses
visualization to assist with these tasks. The technique uses
color to visually map the participation of each program
statement in the outcome of the execution of the program
with a test suite, consisting of both passed and failed test
cases. Based on this visual mapping, a user can inspect
the statements in the program, identify statements involved
in failures, and locate potentially faulty statements. The
paper also describes a prototype tool that implements our
technique along with a set of empirical studies that use the
tool for evaluation of the technique. The empirical studies
show that, for the subject we studied, the technique can be
effective in helping a user locate faults in a program.

1. INTRODUCTION
Attempts to reduce the number of delivered faults1 in soft-

ware are estimated to consume 50% to 80% of the develop-
ment and maintenance effort [4]. Among the tasks required
to reduce the number of delivered faults, debugging is one
of the most time-consuming [3, 15], and locating the errors
is the most difficult component of this debugging task (e.g.,
[16]). Clearly, techniques that can reduce the time required
to locate faults can have a significant impact on the cost and
quality of software development and maintenance.

Pan and Spafford analyzed the debugging process and
observed that developers consistently perform four tasks
when attempting to locate the errors in a program: (1)
identify statements involved in failures—those executed by

1In our discussion, we use errors, bugs, and faults inter-
changeably.

failed test cases; (2) narrow the search by selecting suspi-
cious statements that might contain faults; (3) hypothesize
about suspicious faults; and (4) restore program variables to
a specific state [10, page 2]. Our work addresses the second
task—selecting suspicious statements that may contain the
fault. To identify suspicious statements, programmers typ-
ically use debugging tools to manually trace the program,
with a particular input, encounter a point of failure, and
then backtrack to find related entities and potential causes.

There are a number of ways, however, that this approach
can be improved. First, the manual process of identifying
the locations of the faults can be very time consuming. A
technique that can automate, or partially automate, the pro-
cess can provide significant savings. Second, tools based on
this approach lead developers to concentrate their attention
locally instead of providing a global view of the software.
An approach that provides a developer with a global view
of the software, while still giving access to the local view,
can provide more useful information. Third, the tools use
results of only one execution of the program instead of using
information provided by many executions of the program. A
tool that provides information about many executions of the
program can help the developer understand more complex
relationships in the system. However, with large programs
and large test suites, the huge amount of data produced by
such an approach, if reported in a textual form, may be
difficult to interpret.

In previous work [5], we presented a visualization tech-
nique that provides a global view of the results of executing
a program with an entire test suite. The technique uses color
to visually map the participation of each program statement
in the outcome of the execution of the program with a test
suite, consisting of both passed and failed test cases. Based
on this visual mapping, a user can inspect the statements in
the program, and identify potential faulty statements.

Agrawal, Horgan, London, and Wong presented a similar
technique [1, 2] and an implementation, called χSlice. χSlice
also presents a color mapping applied to the statements of
the program under test. Agrawal et al.’s approach uses set
operations to determine the representation of statements in
the program. Our approach, while similar, provides a more
complex mapping from testing results to the program rep-
resentation which lets more information be conveyed in the
source-code display. We discuss, in more detail, the similar-
ities and differences between our approach and Agrawal et

 int x,y,z,m;
 mid() {

P P P P F

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

 1: read("Enter 3 numbers:",x,y,z);

 2: m = z;

 3: if (y<z)

 4: if (x<y)

 5: m = y;

 6: else if (x<z)

 7: m = y;

 8: else

 9: if (x>y)

 10: m = y;

 11: else if (x>z)

 12: m = x;

 13: print("Middle number is:",m);

 } Pass/Fail Status

Test Cases

P

Figure 1: Example faulty program (left); test suite, code coverage, and test results (right).

al.’s approach in Section 4.
This paper presents the details of our visualization tech-

nique along with a description of a tool, Tarantula, that
implements the technique. This paper also presents the re-
sults of two empirical studies that evaluate the technique
to determine whether the visualization can help a user lo-
cate faults in the program. We performed the first study
on a program with a number of faulty versions, each con-
taining one known fault. We performed the second study
on a program with a number of faulty versions, each con-
taining from two to five known faults. These studies show
that, for our subject program, versions, and test suite, our
visual mapping does illuminate the faulty statements most
of the time. The studies also show that the visual mapping
rarely suggests suspicion of a fault in nonfaulty statements.
These results suggest that the technique can help localize
the faulty statements in a program.

The main contributions of the paper are

1. A presentation of a new technique for visually mapping
the results of program testing that provides a global
view of these results while still letting the user access
local information. The visual mapping helps in locat-
ing faults in a program by illuminating possible faulty
statements.

2. A description of a tool called Tarantula that imple-
ments the visualization technique. Tarantula gives
the user a number of options for visualizing the testing
results and the program itself.

3. The results of a set of empirical studies, performed
using Tarantula. These studies evaluate the effec-
tiveness of our technique for fault localization using a
real C program and versions containing faults found in
the field.

In the next section, we present our visualization method-
ology and illustrate it with an example. In Section 3, we
present our empirical studies that illustrate the potential ef-
fectiveness of our technique. In Section 4, we present related
research and compare it with our work. Finally, in Section
5, we conclude and discuss future work.

2. METHOD
Software testers gather large amounts of data about a

software system under test. These data are used to iden-
tify failures, and to help locate faults in the system. The
data are also used to demonstrate the exhaustiveness of the
testing, and find areas of the source code not executed by
the test suite, thus prompting the need for additional test
cases. We have developed a technique that utilizes this data,
commonly gathered by software testers and testing environ-
ments, to aid in the debugging process, specifically fault
localization.

The fundamental idea of our approach is to create a visu-
alization of the source code of a software system in which the
individual statements are colored according to their partici-
pation in the testing. To facilitate our visualization, given a
test suite T for a software system S and a test case t in T ,
our technique requires two types of information about the
execution of S with t: pass/fail results and code coverage.
Test case t passes if the actual output for an execution of S
with t is the same as the expected output for t; otherwise,
t fails. The code coverage for t consists of the source-code
statements that are executed when S is run with t. Thus,
the input to the visualization consists of three components:
the source code for S; the pass/fail results for executing S
with each t in T ; and the code coverage of executing S with
each t in T .

A sample input to the visualization is shown below.

1 P 1 2 3 12 13 14 15 ...

2 P 1 2 23 24 25 26 27 ...

3 F 1 2 3 4 5 123 124 125 ...

On each line, the first field is the test-case number, the sec-
ond field is the pass/fail (P or F) information about the test
case, and the trailing integers are the code coverage (state-
ments executed) for that test case.

To best illustrate our technique, consider the erroneous
program for determining the median of the three input val-
ues, as shown in Figure 1. In this program, the fault lies on
line 7. There, the value m, representing the median, should
be assigned the value of x rather than the value of y. Six

 }

12: m = x;

11: else if (x>z)

10: m = y;

8: else

9: if (x>y)

6: else if (x<z)

7: m = y;

5: m = y;

4: if (x<y)

3: if (y<z)

2: m = z;

1: read("Enter 3 numbers:",x,y,z);

 int x,y,z,m;
 mid() {

P P P P P F

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Test Cases

13: print("Middle number is:",m);

Pass/Fail Status

Figure 2: Example faulty program with source code colored according to the discrete three-color mapping.

test cases are supplied to the program as shown on the right
in the figure: five of the executions produce the correct out-
put and one of the executions produces an incorrect output.
Each test case is represented by a column in Figure 1. The
test-case input is at the top of each column; the test-case
coverage of the statements in the program is shown by the
black circles at the intersection of the column for the test
case and the row for the statement; and the pass/fail result
of the test case, listed as “P” or “F,” respectively, is at the
bottom of the column. For example, the first test case has
an input of “3,3,5”, executes statements 1, 2, 3, 6, 7, 8, and
13, and passes.

One approach to coloring the source code (which we ini-
tially tried) could use a simple color mapping: if a statement
is executed only during failed executions, it is colored red; if
a statement is executed only during passed executions, it is
colored green; if a statement is executed during both passed
and failed executions, it is colored yellow. We call this the
discrete approach. Using this discrete color mapping, the
source code for the program would be presented as in Fig-
ure 2. (Lines 1-3, 6-7, and 13 are colored yellow, and lines
4-5 and 8-10 are colored green; no lines are colored red in
this example.)2 Unfortunately, this simple approach is not
very informative as most of the program is yellow, and the
analyst is not given many helpful clues about the location
of the fault.

Our approach uses a much richer visual mapping to assist
the analyst in identifying the faults. The mapping consists
of a continuous level of varying color (hue)3 and brightness
to indicate the ways in which the source-code statements
participate in the passed and failed test cases. We call this
the continuous approach.

2.1 Color Component

2Because color is central to our technique, we present this
and other figures and charts throughout the rest of the pa-
per in color. When the paper is viewed or printed in black
and white, the figures and charts display in grayscale. The
figures and charts can be seen in the color version of the
paper at http://www.cc.gatech.edu/aristotle/Publications.
3Throughout the paper, we use “color” instead of hue.

The first component of the visual mapping is the color.
Our technique utilizes color to indicate, for each statement
in the program, the relative percentage of passed test cases
that execute the statement to failed test cases that execute
the statement. If a higher percentage of passed test cases ex-
ecutes a statement, the statement appears more green. Con-
versely, if a higher percentage of failed test cases executes
a statement, the statement appears more red. Statements
executed by nearly equal percentages of passed and failed
test cases appear yellow.4 The key idea is that the color
of a statement can be anywhere in the continuous spectrum
of colors from red to yellow to green. The intuition is that
statements that are executed primarily by failed test cases
should be highly suspicious as being faulty, and thus are col-
ored red to denote “danger”; statements that are executed
primarily by passed test cases are not likely to be faulty,
and thus are colored green to denote “safety”; and state-
ments that are executed by a mixture of passed and failed
test cases do not lend themselves to suspicion or safety, and
thus are colored yellow to denote “caution.”

In particular, the color of a statement, s, is computed by
the following equation:

color(s) = low color (red)+
%passed(s)

%passed(s) + %failed(s)
∗color range

(1)

In the equation, %passed(s) is a function that returns, as
a percentage, the ratio of the number of passed test cases
that executed s to the total number of passed test cases
in the test suite. %failed(s), likewise, is a function that
returns, as a percentage, the ratio of the number of failed
test cases that executed s to the total number of failed test
cases in the test suite. The value for the low end of the
desired spectrum—in our case, red—is represented by “low
color (red).” The “color range” denotes the value for the
high end of the desired color spectrum—in our case, green—
minus the value for the low color. For example in the image

4We conducted a series of iterative trials with a variety of
different colors, and the red-yellow-green combination was
found to be the most natural and the best for viewing.

 }

12: m = x;

11: else if (x>z)

10: m = y;

8: else

9: if (x>y)

6: else if (x<z)

7: m = y;

5: m = y;

4: if (x<y)

3: if (y<z)

2: m = z;

1: read("Enter 3 numbers:",x,y,z);

 int x,y,z,m;
 mid() {

P P P P P F

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Test Cases

13: print("Middle number is:",m);

Pass/Fail Status

Figure 3: Example faulty program with source code colored according to the continuous visual mapping.

manipulation and paint program, gimp, red is represented
by a 0 value and green is represented by 120. In this case,
the low color is thus 0 and the color range is 120 (high color
value minus low color value).

If a statement is executed by 100% of the failed test cases
and 50% of the passed test cases, for example, its color will
be 1/3 of the way from pure red to pure green on a contin-
uous color scale, thus making it an orange-ish color.

To more carefully represent the test data, the technique
utilizes the percentage of test cases that execute a state-
ment rather than the number of test cases that execute that
statement. For example, if all 10 of the failed cases in a test
suite execute a statement, but only 20 of the 200 passed
cases execute that same statement, the statement will be a
reddish-orange in our mapping (100% vs. 10%). However,
the same statement would be a yellow-green if the technique
simply considered the number of test cases (10 vs. 20).

2.2 Brightness Component
The second component of the visual mapping is bright-

ness. Our techniques uses brightness to encode the percent-
age of coverage by either the passed or the failed test cases,
whichever is higher. If all test cases in either set execute a
particular statement (100%), then that statement is drawn
at full brightness. If only a small percentage of the test
cases executes a particular statement, then that statement
is drawn very dark.5 The intuition is that statements that
are executed by a high percentage of the failed test cases
are more likely to contain the fault than those that are ex-
ecuted by a small percentage of failed test cases, and thus
are presented more brightly to attract the user’s attention.
Conversely, the statements that are executed by a high per-
centage of the passed test cases are more likely to be correct
than those that are executed by a small percentage of passed
test cases, and thus are presented more brightly to express
the level of confidence in their correctness.

In particular, the brightness of a statement, s, is computed
by the following equation:

5In color space models, a pigment with zero brightness ap-
pears as black.

bright(s) = max(% passed(s),% failed(s)) (2)

Functions %passed(s) and %failed(s) are the same as those
used in Equation 1. This mapping helps to encode the rela-
tive contribution of each statement during the testing. Con-
sider two statements that are never executed in any passed
test cases but are executed in some of the ten failed test
cases. According to our color mapping equation, the state-
ments must be a pure red because every test case that exe-
cutes the statement fails. Suppose, however, that one state-
ment is executed in all ten of the possible ten failed test
cases and the other statement is executed in only one of the
ten failed test cases. According to our brightness mapping
equation, the first statement will be (maximally) bright red
(100%), but the second will be a very dark red (10%), thus
drawing the viewer’s eye to the first statement.

Equation 2 uses the maximum of the two execution per-
centages rather than the combination of the two because
we believe that it is a more faithful rendering of the execu-
tion data. If a statement was executed in four of the five
failed test cases and in six of the 300 passed test cases in
a test suite, our visualization will render the statement at
80% brightness, informing the viewer that a relatively high
percentage of the failed test cases executed statement and
it likely requires closer examination. If we combine the val-
ues, then the statement would be rendered at 10/305 = 3%
brightness, virtually black and unnoticeable.

Now, reconsider the simple program introduced in Figure
1. By applying the two rendering equations of our visualiza-
tion technique to each statement, the presentation as shown
in Figure 3 results. Lines 1-3 and 13 are colored yellow; lines
4-5 and 9-10 are colored dark green; line 8 is a brighter, but
not the brightest, green; line 6 is orange-ish; and line 7 is
orange-ish red.2 This presentation highlights the potential
(and actual) fault in the code more clearly than the one
using the discrete approach as shown in Figure 2.

2.3 Prototype
Our continuous approach provides a presentation that can

highlight suspicious statements in the program. Unfortu-

Figure 4: A screen snapshot of the Tarantula system in Continuous mode.

nately, showing program source code as displayed in Figures
2 and 3 for any large system is problematic as it would re-
quire a tremendous amount of screen real estate. Thus, we
utilize the visual mapping introduced by Eick et al. in the
SeeSoft system [3, 6] to map each source-code statement to
a short, horizontal line of pixels. This “zoomed away” per-
spective lets more of the software system be presented on
one screen.

We have built a program visualization system, Taran-
tula, that implements this visual mapping. Tarantula is
written in Java and consists of 3600 lines of code. It takes
as input a software system’s source code and the results of
executing a test suite on the system. Tarantula displays
an interactive view of the system according to a variety of
visual mappings. Figure 4 displays a screen snapshot of the
system running.2 The source code is displayed in the large
center region.

The upper left has a pull-down menu (combo box) for
selecting the display mode. Shown here in the Continuous
mode. The system can display in six modes. The default
mode simply shows the program source without coloration.

The discrete mode uses the simple three-color mapping that
we described above (the discrete approach). The contin-
uous mode is the more complex mode utilizing the color
and brightness equations described above (the continuous
approach). Figure 4 shows Tarantula in this continuous
mode. There are three additional modes that let the user
focus on only statements executed in passed, failed, or a
combination of passed and failed (mixed) test cases. These
three modes also use the continuous coloration and bright-
ness.

The pull-down menu (combo box) to the right of the
display-mode menu provides users with options for viewing
the source code. There are currently three options. The first
option displays the source code by statements and shows
the statements using variable width (i.e., proportional to
the length of the statements in the source code). In this
view, the structure of the code is apparent. Figure 4 shows
Tarantula using this option. The second option displays
the source code by statements and shows the statements us-
ing a fixed width (i.e., the length of all statements is the
same). The third option displays the procedures in the

source code, colored with the color of the reddest statement
in the procedure.

The slider in the upper right of the display controls the
grayscale brightness of lines not being drawn using the red-
yellow-green mapping (comments, unexecuted lines, filtered
lines, etc.) In Figure 4, the slider is positioned to show those
statements not involved in the mapping as light grey.

The text-entry box in the upper left, labeled “Test,” pro-
vides a filter that lets the viewer enter the number or num-
bers of particular test cases. The display is then updated
to show the source code as if those test cases were the only
ones in the suite. Just to the right of the text-entry box is
a long horizontal rectangle with thin vertical bands of red
and green. Each band represents a different test case in
the suite, in order, with red and green representing failed
and passed test cases, respectively. Clicking on one of the
bands selects that band as the focus, and the code coverage
of that particular test case is shown in the main display area
as colored lines of red or green.

When the mouse moves over a source-code line in the main
display area, the source text for the line and a few surround-
ing statements are displayed in the lower left, and details of
that statement’s contribution in the entire test suite is shown
in the lower center (pass and fail ratios). When the screen
shot shown in Figure 4 was captured, the mouse was over
line 7254 in the source code. For that line, 32 of the 300 test
cases executed it: 29 of the 297 passed test cases and all of
the failed test cases.

The color legend at the lower right includes a small black
dot at each position in the color space occupied by a source-
code statement. By rubber-banding a rectangle in this re-
gion around some points, the viewer can modify (filter) the
main display area, showing and coloring only statements
having the selected color and brightness values.

For more details on the system and the visual mappings,
see [5].

3. EMPIRICAL STUDIES
To investigate the effectiveness of our visualization tech-

nique and guide our future work, we have designed a number
of studies of Tarantula displays. The first set of studies
investigates the effectiveness of our technique in illuminating
the faulty statements in the program.

We used the Space program, which is an interpreter for
an array definition language,6 as the subject for our stud-
ies. Space is written in C and consists of 9564 lines of code
(6218 of which are executable). Space has 33 associated
versions, each containing a single fault that had been dis-
covered during the program’s development. We constructed
a test pool for Space in two stages. We obtained an initial
pool of 10,000 test cases from Vokolos and Frankl; they had
created this pool for another study by randomly generating
test cases [17]. Beginning with this initial pool, we instru-
mented the program for coverage and then supplied addi-
tional test cases to the pool until it contained at least 30
test cases that exercised nearly every statement and edge.7

This process yielded a test pool of 13,585 test cases.

6Alberto Pasquini, Phyllis Frankl, and Filip Vokolos pro-
vided the Space program and many of its test cases
7Only infeasible or extremely difficult to execute branches
(such as those controlling an out-of-memory error condition)
were not executed.

Using this pool of test cases, we extracted 1000 randomly
sized, randomly generated, near-decision-adequate test suites
from this test pool. This subject and these test suites have
been used in similar studies (e.g., [7, 9, 12, 13]). These
test suites are near decision-coverage-adequate: they cov-
ered 80.7% to 81.6% of the 539 conditions in the 489 deci-
sions. The test suites ranged in size from 159 to 4712 test
cases.

To investigate the effectiveness of our visualization techique
in illuminating the faulty statements, we considered two
questions:

1. How often does our technique color the faulty state-
ment(s) in a program red or in a reddish color?

2. How often does our technique color nonfaulty state-
ments in a program red or in a reddish color?

The first question helps us investigate how often our tech-
nique produces false negatives—that is, it fails to color the
faulty statements red. The second question helps us investi-
gate how often our technique produces false positives—that
is, it colors nonfaulty statements red.

3.1 Study 1: Single-fault Versions
The goal of our first study is to determine the effectiveness

of our technique in helping to localize the fault for programs
that have a single fault.

We used twenty faulty versions of Space, each contain-
ing a different, single fault8; these were the twenty versions
in which the fault resulted in a failure across all 1000 test
suites. We executed each version with instrumentation on
each of the 1000 test suites, and then applied the continuous
color mapping technique to each version-test suite pair. The
instrumentation gathered the coverage information about
the test suites.

To answer the first question and report how frequently our
technique colors the faulty statements red, we analyzed the
color mapping applied to our subject. Figure 5 shows the
results of this part of the study as a segmented bar chart.
The chart contains one bar for each of the twenty versions
of the program that we studied. Each bar in the segmented
bar chart represents 100% of the faulty statements of that
version of the program across all test suites. Each segment
of each bar represents the number of times that the faulty
statements were colored within a partition of the color spec-
trum. To simplify the presentation, we divided the color
spectrum from red to green into ten equally-sized partitions,
and thus there are ten segments in each bar.2 We used
the median color to represent each of these partitions; these
colors and their partitions are illustrated and numbered in
Figure 7.

The size of each segment represents the percentage of the
times that the faulty statements fell into that color parti-
tion across all test suites. For example in Figure 5, across
all 1000 test suites, version 20 (the rightmost bar in the
chart) had approximately 3% of its faulty statements given
colors within partition 1 of the red-to-green spectrum, 60%
in partition 2, 34% in partition 3, 3% in partition 4, and less
than 1% for all the rest of the color partitions (5-10).

8A single logical fault may consist of multiple statements,
or the absence of a necessary statement. In the latter case,
we considered the statement preceding the absent statement
to be the fault for the purposes of determining whether the
users’ attention may be directed to the location of the fault.

%
 o

f
st

at
em

en
ts

 in
 c

ol
or

 p
ar

tit
io

ns

Program version including single fault (fault number)

2019181716151413121110987654321

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Figure 5: Resulting color of the faulty statements across all test suites for 20 versions of Space.

%
 o

f
st

at
em

en
ts

 in
 c

ol
or

 p
ar

tit
io

ns

20

Program version including single fault (fault number)

19181716151413121110987654321

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Figure 6: Resulting color of the nonfaulty statements across all test suites for 20 versions of Space.

1 2 3 4 5 6 7 8 9 10Partition

R
ed

Y
el

lo
w

G
re

en

Figure 7: Legend for segmented bar charts showing

color partitions of the red-to-green spectrum used for

the segments of each bar chart.

Figure 5 shows that, for our programs and versions, most
of the faulty statements across all 1000 test suites were col-
ored with colors that are in the reddest three color partitions
(1, 2, and 3) of the spectrum. However, for two versions—11
and 12—the faulty statements were colored with colors that
are in the orange-yellow range of the spectrum (partitions 3,
4 and 5). We examined these two versions, and discovered
that in them, the fault was in code that initializes variables
in statements that are executed by all or most test cases. For
these versions, the fault manifests itself as a failure later in

the code.
To answer the second question and report how frequently

our technique colors nonfaulty statements red, we again an-
alyzed the color mapping applied to our subject. For this
part of the study, we applied the same technique, and we
display our results in the same fashion as in Figure 5 ex-
cept that the segmented bar chart represents the nonfaulty
statements, instead of the faulty ones.

Figure 6 shows these results. In all 20 versions, less than
20% of the nonfaulty statements are colored in the reddest
20% of the spectrum (partitions 1 and 2), and often much
less, indicating that, for this subject, faults, and test cases,
the technique significantly narrows the search space for the
faults. Of the statements in the reddest 20%, we do not
currently know how much is code immediately surrounding
the fault. For example, if the statements immediately pre-
ceding and following the fault in the code listing are also
colored red, the technique would still focus the user’s atten-
tion to the faulty area of the code. In fact, we expect that a
substantial number of these red statements are statements

immediately surrounding the fault in the code—those test
cases that execute the fault likely (and in some cases, neces-
sarily) also execute these surrounding statements. In future
experiments, we will study the proximity of the nonfaulty
red statements to the fault, using both source code locality
and slicing techniques.

It is worth noting that versions 11 and 12, whose faults
were colored in the yellow range (see Figure 5), have almost
no red faulty or nonfaulty statements. This means that for
these versions, our technique does not mislead the user, but
simply fails to highlight the fault—no or few false positives.
Perhaps these kinds of views—where all statements are yel-
low and green–are an indication that the fault lies in some
main-line or initialization code. In the future we will at-
tempt to address this situation by incorporating other types
of analyses and new visualizations. Dependency analyses
and slicing may provide useful information to overcome such
situations.

3.2 Study 2: Multiple-fault Versions
The goal of our second study is to determine the effec-

tiveness of our technique in helping to localize faults for
programs that have multiple faults.

We again used the Space program but we modified it so
that each of the faults from the single-fault study could be
included or excluded with a compiler preprocessing macro.
We used a script to create multi-fault versions of Space by
randomly selecting the faults for inclusion or exclusion. For
the experiment, we generated 40 versions of the program: 10
with two faults; 10 with three faults; 10 with four faults; and
10 with five faults. We executed each version with instru-
mentation on each of the 1000 test suites, and then applied
the continuous color mapping technique to each version-test
suite pair. The instrumentation provided the coverage in-
formation about the test suites. The results were recorded
and analyzed in the same fashion as Study 1.

To answer the first question and report how frequently
our technique colors the faulty statements red, we analyzed
the color mapping applied to our subject. Figures 9(a)-
9(d) show the results of this part of the study in the same
segmented bar-chart manner as Study 1. As expected, the
effectiveness of the technique declines on all faults as the
number of faults increases. However, even up to five faults,
the majority of the faults are colored in the red half of the
spectrum (spectrum partitions 1 through 5). In fact, a large
portion of the faulty statements are colored in the reddest
three partitions (1-3). The decreasing effectiveness across all
faults as the number of faults increases is a general trend,
and is not always the actual behavior—the particular faults
that are included are more important. This fact is exempli-
fied by Figures 9(a) and 9(b). The 3-fault versions in (b)
are generally more red than the 2-fault versions in (a). Had
we used an additive approach in selecting faults—keeping
the same faults of the (n− 1)-fault versions and adding one
new random fault for the n-fault versions—instead of ran-
domly selecting all faults, we would expect this trend to be
much more distinct. Overall, the decline in effectiveness in
highlighting the faulty statements is less than we expected.
Even up to five faults, the technique performed fairly well.

We, however, expected that the results of this study may
be somewhat misleading. Because we are presenting the
number of faulty statements in each partition for all faults in
Figures 9(a)-9(d), colors for statements of individual faults

are not distinguished. For example, the second bar of Fig-
ure 9(a) does not allow us to determine how the individual
faults (14 and 17) fell into the different color partitions—
did both fault 14 and fault 17 fall into both the green and
red partitions, or, did one fault account for all of the green?
We believe that this distinction is important because a fault
that is not illuminated by the technique may eventually be
illuminated if another more evident fault is located and re-
moved. To investigate this situation, we plotted the data for
each individual fault of a multi-fault version. From the left
side of Figure 9, we chose a segmented bar that had both
green and red segments (partitions 1 and 10) to dissect.

For this case study, we chose the 2-fault version contain-
ing faults 14 and 17—the second bar in Figure 9(a). Figure
8 shows the results of this case study. The first segmented
bar in Figure 8 shows the colors assigned to the statement
containing fault 14 across all 1000 test suites. The second
segmented bar shows the colors assigned to the statement
containing fault 17 across all 1000 test suites. Fault 14 is
given a color in partition 1 (red) for 90% of the test suites,
given a color in partition 2 for 1% of the test suites, and
given a color in partion 10 (green) for 10% of the test suites.
Fault 17 is given a color in partition 1 (red) for all 100% of
the test suites. The final bar in Figure 8 shows the effect of
rerunning Tarantula on the program containing fault 14
after removing fault 17. Therefore, for this version, in the
10% of the test suites when only one fault is illuminated by
the technique, the illuminated fault can be located and re-
moved, thus allowing the technique to be reapplied to locate
the second fault. This phenomenon further indicates the ef-
fectiveness of the technique, as at least one of the faults is
illuminated for this version. In cases where fewer than all
of the faults are revealed by this technique, the user could
iteratively remove the discovered faults, retest, and reapply
the technique until the test suite passes on all test cases.

1714

be
en

 r
em

ov
ed

14
 a

ft
er

 1
7

ha
s

Faults

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

100%

Figure 8: Resulting color for each individual fault in

a 2-fault version (left); resulting color for the remaining

fault after the discovered fault has been removed (right).

To answer the second question and report how frequently
our technique colors nonfaulty statements red, we again an-
alyzed the color mapping applied to our subject. Figure

9(e)-9(h) displays these results. For all multi-fault versions,
we again notice the low number of red nonfaulty statements:
less than 20% in color partitions 1 and 2, and often much
less. This substantially reduces the search space of the pro-
gram. We were surprised to find that there does not seem
to be a trend toward more red nonfaulty statements as the
number of faults increases in the program. It is still un-
clear how often the nonfaulty red statements are near the
fault either in proximity or dependency. For example, the
statements that immediately precede or follow the faulty
statements may be red, in effect directing the user’s atten-
tion to the faulty area of the program. Also, the code that
calls a faulty procedure may be colored red. A user debug-
ging the program may be directed to look at the code calling
the faulty procedure and follow it to the fault. Based on our
usage of Tarantula, we have found that these are common
cases. In future work, we plan to study the frequency of the
closeness of the nonfaulty red statements to the fault, and
develop techniques to illuminate this dependence.

Overall, our empirical studies indicate that the technique
is effective in illuminating the fault or directing attention
toward the fault, and narrowing the search space of the pro-
gram for the fault. More studies need to be conducted on
different subjects to study the generality of the approach,
and to investigate further visualizations and analyses that
can help the user in locating faults.

4. RELATED WORK
Eick et al. presented the SeeSoft system [3, 6] to display,

with limited screen real estate, properties of large amounts
of code. The “zoomed away” perspective provided by the
SeeSoft technique gives a global view of the program that
lets an abundance of information that has been mapped to
the source code to be displayed. SeeSoft was used to dis-
play coverage information, but was not used to display the
pass/fail results of the test cases on the program executed.
We employ this SeeSoft technique to display the program
under test. We provide a new color mapping—not provided
by the SeeSoft system—to assist in fault localization.

Agrawal, Horgan, London, and Wong [1, 2] have also pre-
sented a technique that uses statement coverage (or exe-
cution slices) to aid in the task of fault localization. This
technique is implemented in a tool called χSlice. Their tech-
nique also colors statements in a program to show their par-
ticipation in passed and failed test cases. In Reference [2],
Agrawal, et al., present a technique for locating faults that
subtracts a single passed test case’s execution slice from a
single failed test case’s execution slice. The resulting differ-
ence, or dice, is expected to contain the fault. In our usage
of Tarantula we have observed that this assumption is of-
ten incorrect. Figure 2 exemplifies one such case—if the first
test case were chosen as the passed test case and the sixth
test case were chosen as the failed test case, the difference
would be the empty set.

In Reference [1], a brief description of a richer technique is
described. This technique works by subtracting the union of
the execution slices of the passed test cases from an execu-
tion slice of a single failed test case. The difference, or dice,
is presented to the user in a pure red color. χSlice does show
each statement that was in the intersection of the passed ex-
ecution slices and failed execution slices in a gradient color
scheme based on the number of passed execution slices to
which the statement belonged; these statements in the in-

tersection are presented as varying shades of blue. χSlice,
however, uses only one failed test case’s execution slice for
the computation. Thus, using this technique, a statement,
a, that is executed by one passed test case and 10 failed test
cases, and another statement, b, that is executed by one
passed test case and 1000 failed test cases, would be colored
equivalently if both were executed by the failed test case
picked for the dice. Our technique, on the other hand, uses
all test cases in the test suite, both passed and failed, to
attempt to localize the fault. This more complex mapping
is richer and presents more data to the user.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented the details of our visual-

ization technique that can assist in fault localization. Based
on the results of executing a test suite for a faulty program,
the technique provides a visual mapping of the participation
of each program statement in the testing. To provide the vi-
sual mapping, the program statements are colored using a
continuous spectrum from red to yellow to green: the greater
the percentage of failed test cases that execute a statement,
the brighter and more red the statement should appear. The
paper also presented an overview of a tool that we have de-
veloped that implements our technique, along with the re-
sults of two studies that evaluate the effectiveness of the
visualization technique. These results show that our tech-
nique is promising for helping locate suspicious statements—
statements that may be faulty—and suggest some directions
for future work.

First, the studies show that, for our subject program and
versions, in many cases faulty statements are displayed in
a color and a brightness that illuminates the fault. As ex-
pected, the faulty statements were easier to identify in the
versions that had single faults—the versions used in Study
1. We were surprised, however, at how often at least one of
the faulty statements was easy to identify in versions with
multiple faults—the versions used in Study 2. We are con-
ducting additional studies to further evaluate our technique.
One set of studies will consider additional combinations of
faults, producing more multiple-fault versions of Space with
two to five faults; these studies will let us further validate
our initial results. Another set of studies will consider ver-
sions with more faults; these studies will let us see how the
technique works with very buggy programs.

Second, an interesting phenomenon that we observed in
Study 2 was the coloration of some faulty statements in the
green range. We realized that this occurred in cases where
a test case that fails when executing one faulty statement
may pass when also executing another faulty statement that
happens to mask the effects of the first. However, a usual
debugging process, in which faults are identified one at a
time, can be helped by the visualization. Even though some
faulty statements may appear green in the first view, other
faulty statements will often appear in the red range. After
the user finds and fixes one of these faults, reruns the test
cases, and uses our visualization to view the results, another
faulty statement is likely to be illuminated. The second
part of Study 2, illustrated by Figure 8, demonstrates this
process. We will conduct a study with our subject program
and versions to see how often this occurs. For this study, we
will start with versions containing a number of faults, and
repeatedly determine if the visualization illuminates any of
them, remove one of the illuminated faults, and rerun the

(d)

8,
13

,1
5,

17
,2

0

7,
13

,1
5,

18
,1

9

8,
15

,1
6,

20

11
,1

3,
14

,1
7

12
,1

3,
15

,1
7

2,
12

,1
3,

14

3,
4,

6,
20

11
,1

2

14
,1

7

16
,1

7

17
,2

0

1,
5

3,
20

4,
14

4,
17 2,
9

10
,1

6

4,
8,

11
,1

8

3,
4,

6,
20

2,
12

,1
3,

14

5,
7,

11
,1

2

5,
12

,1
3,

14

7,
10

,1
6,

19

1,
9,

14
,1

6

4,
8,

11
,1

8

7,
13

,1
5,

18
,1

9
12

,1
3,

15

3,
14

,2
0

3,
5,

19

4,
7,

12

4,
6,

16

5,
17

,1
9

5,
18

,1
9

6,
15

,1
9

1,
9,

10

2,
10

,1
8

(c)

(b)

(a)

(h)

(g)

(f)

(e)

2,
4,

10
,1

6,
19

2,
3,

6,
9,

16

1,
2,

8,
11

,1
8

4,
7,

10
,1

4,
20

3,
5,

10
,1

6,
18

2,
5,

9,
12

,1
4

6,
11

,1
2,

15
,1

7

6,
8,

11
,1

7,
19

12
,1

3,
15

,1
7

12
,1

3,
15

8,
13

,1
5,

17
,2

0

6,
8,

11
,1

7,
19

1,
9,

14
,1

6

7,
10

,1
6,

19

5,
12

,1
3,

14

5,
7,

11
,1

2

2,
9

6,
11

,1
2,

15
,1

7

11
,1

3,
14

,1
7

8,
15

,1
6,

20

2,
10

,1
8

1,
9,

10

6,
15

,1
9

5,
18

,1
9

5,
17

,1
9

4,
6,

16

4,
7,

12

3,
5,

19

3,
14

,2
0

4,
17

14
,1

7

10
,1

6

2,
5,

9,
12

,1
4

11
,1

2

4,
14

3,
201,
5

17
,2

0

16
,1

7

2,
4,

10
,1

6,
19

2,
3,

6,
9,

16

1,
2,

8,
11

,1
8

4,
7,

10
,1

4,
20

3,
5,

10
,1

6,
18

3−fault versions

4−fault versions

5−fault versions

80%

70%

60%

50%

40%

30%

20%

10%

0%

80%

70%

60%

50%

40%

30%

20%

10%

0%

80%

70%

60%

50%

40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90%

30%

20%

10%

0%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

100%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

2−fault versions

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

90%

90%

100%

70%

80%

40%

50%

60%

20%

30%

100%

100%

90%

0%

10%

Figure 9: Resulting color for the faulty statements (left) and nonfaulty statements (right) in multiple fault versions

across all tests suites.

test cases.
Third, both studies show that, although our visualization

often illuminates the faulty statements (in the red range),
sometimes there are no statements colored in the red range
in the visualization. The bars in Figure 5, representing ver-
sions 11 and 12 for Space, illustrate this problem. We man-
ually checked a few of these versions and found that they
had faults in the initialization code or on the main path
in the program. Perhaps the absence of a red area is an
indicator that the faulty code is executed by most of the
test cases in the suite. However, the number of data points
precludes our drawing any conclusions about the meaning
of this type of coloration. In future work, we will perform
more experiments and determine why the faulty statements
are not colored in the red range. We will also investigate
other avenues to assist in fault localization when the cur-
rent technique fails to highlight a fault.

Fourth, we were encouraged that, for our studies the
technique significantly reduced the search space for the fault.
Less than 20% of the nonfaulty statements were colored in
the reddest 20% of the red-to-green spectrum, and often
much less, while the fault usually resided in the reddest 20%
of the spectrum. Both Study 1 and Study 2 illustrate this
result. We want to investigate these red nonfaulty state-
ments further and determine their “closeness” to the faulty
statements. One approach we will consider is to use slicing
to determine if they affect the faulty statement, and thus are
always executed with it. Another approach is to determine
if they are in the red range because they are in the same
control-dependence region as the faulty statement. We plan
to use these other analyses to provide additional information
and views that can help locate faulty code.

Fifth, we plan to extend our study to include the bright-
ness component of our visualization. In the studies pre-
sented herein, we focused on the color component of the
mapping. The brightness component also needs to be stud-
ied to detect false positves and false negatives as was done
for the color.

Sixth, we plan to improve the usability of Tarantula in
several ways. We will investigate approaches to providing a
zoomable interface that lets the user view the results at var-
ious levels. This interface is necessary because we want to
use our visualization for large software systems. Closely re-
lated to this zoomable interface is an approach to summarize
useful information at different levels. Our current version of
Tarantula displays the source code at the statement and
procedure levels. Clearly, more abstraction will be required
for large systems.

Seventh, we plan to investigate the use of additional soft-
ware visualizations [14] for use in fault localization. We
also plan to explore the incorporation of further program-
analysis information such as slicing, dependence, and control-
flow data into Tarantula in the future.

Finally, We plan to provide Tarantula with the ca-
pability of editing and dynamic update. We will integrate
an editor into Tarantula so that a user can modify the
source code after locating a fault. We also plan to modify
Tarantula so that it can rerun the modified program on
the test suite, and dynamically update the view. To do this
efficiently, we will incorporate our regression-test-selection
technique [8, 11] into the system. This technique will select
a subset of the test suite to run, based on the modifications.

6. ACKNOWLEDGMENTS
This work was supported in part by a grant from Boeing

Aerospace Corporation to Georgia Tech, by National Science
Foundation award CCR-9707792 to Ohio State University,
and awards CCR-9988294, CCR-0096321, and EIA-0196145
to Georgia Tech, and by the State of Georgia to Georgia
Tech under the Yamacraw Mission. Alberto Pasquini pro-
vided the source code for the Space.

7. REFERENCES
[1] xSlice: A tool for program debugging.

http://xsuds.argreenhouse.com/html-man/coverpage.html.
[2] H. Agrawal, J. Horgan, S. London, and W. Wong. Fault lo-

calization using execution slices and dataflow tests. In Pro-
ceedings of IEEE Software Reliability Engineering, pages
143–151, 1995.

[3] T. Ball and S. G. Eick. Software visualization in the large.
Computer, 29(4):33–43, Apr. 1996.

[4] J. S. Collofello and S. N. Woodfield. Evaluating the effective-
ness of reliability-assurance techniques. Journal of Systems
and Software, 9(3):191–195, 1989.

[5] J. Eagan, M. J. Harrold, J. Jones, and J. Stasko. Technical
note: Visually encoding program test information
to find faults in software. In Proceedings of IEEE Informa-
tion Visualization, pages 33–36, October 2001.

[6] S. G. Eick, L. Steffen, Joseph, and E. E. Sumner Jr. Seesoft—
A tool for visualizing line oriented software statistics. IEEE
Transactions on Software Engineering, 18(11):957–968, Nov.
1992.

[7] S. Elbaum, A. Malishevsky, and G. Rothermel. Prioritizing
test cases for regression testing. In Proceedings of the ACM
International Symposium on Softw. Testing and Analysis,
pages 102–112, Aug. 2000.

[8] M. J. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. S., S. Spoon, and A. Gujarathi. Regression test se-
lection for java software. In Proceedings of the ACM Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications, pages 312–326, October 2001.

[9] J. Jones and M. J. Harrold. Test-suite reduction and prior-
itization for modified condition/decision coverage. In Pro-
ceedings of the International Conference on Software Main-
tenance, pages 92–101, November 2001.

[10] H. Pan, R. A. DeMillo, and E. H. Spafford. Failure and fault
analysis for software debugging. In Proceedings of COMP-
SAC 97, pages 515–521, Wahington, D.C., August 1997.

[11] G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software En-
gineering and Methodology, 6(2):173–210, Apr. 1997.

[12] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An
empirical study of the effects of minimization on the fault de-
tecti on capabilities of test suites. In Proceedings of the Inter-
national Conference on Software Maintenance, Nov. 1998.

[13] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Prior-
itizing test cases for regression testing. IEEE Transactions
on Software Engineering, 27(10):929–948, October 2001.

[14] J. Stasko, J. Domingue, M. Brown, and B. Price, editors.
Software Visualization: Programming as a Multimedia Ex-
perience. MIT Press, Cambridge, MA, 1998.

[15] Telcordia Technologies, Inc. xATAC: A tool for improving
testing effectiveness. http://xsuds.argreenhouse.com/html-
man/coverpage.html.

[16] I. Vessey. Expertise in debugging computer programs. Inter-
national Journal of Man-Machine Studies: A process anal-
ysis, 23(5):459–494, 1985.

[17] F. Vokolos and P. Frankl. Empirical evaluation of the textual
differencing regression testing tec hniques. In International
Conference on Software Maintenance, November 1998.

