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Viz-A-Vis: Toward Visualizing Video through Computer Vision

Mario Romero, Jay Summet, John Stasko, Member, IEEE, and Gregory Abowd, Member, IEEE

Abstract— In the established procedural model of information visualization, the first operation is to transform raw data into data
tables [1]. The transforms typically include abstractions that aggregate and segment relevant data and are usually defined by a
human, user or programmer. The theme of this paper is that for video, data transforms should be supported by low level computer
vision. High level reasoning still resides in the human analyst, while part of the low level perception is handled by the computer.
To illustrate this approach, we present Viz-A-Vis, an overhead video capture and access system for activity analysis in natural
settings over variable periods of time. Overhead video provides rich opportunities for long-term behavioral and occupancy
analysis, but it poses considerable challenges. We present initial steps addressing two challenges. First, overhead video
generates overwhelmingly large volumes of video impractical to analyze manually. Second, automatic video analysis remains an

open problem for computer vision.

Index Terms— Spatiotemporal visualization, time series data, video visualization, sensor analytics, image/video analytics.

1 INTRODUCTION

Many disciplines spend considerable resources studying activity and
behavior [2-4]. Methods range from qualitative pen-and-paper
observation [5] to automatic video content analysis [6]. A method’s
appropriateness depends on the analytical goal, the observable
features of target behaviors, the observers’ tolerance to ambiguity,
and the subjects’ tolerance to intrusiveness. We present a method
that is appropriate for variable term, continuous and high-resolution
analysis of subjects that consent to overhead camera observation.

Overhead video has the temporal and spatial resolution to
potentially open new insights into everyday human behavior by
objectively revealing its invisible spatiotemporal structures, large [7]
and small [8]. If analyzed thoroughly enough, it may function as a
window into how people relate to each other and how they
appropriate natural spaces and the objects within. Overhead video
has potential for new analytical applications in multiple areas. For
example, it may be applied to the long-term objective evaluation of
behavioral therapy in special classrooms. It may track developmental
progress in a baby’s nursery. It may provide objective, long-term,
and continuous physical therapy progress reports in natural
environments beyond the doctor’s office. It may quantify detailed
occupancy for the analysis of architectural design, trace factory
operations to increase industrial productivity, and discover customer
behaviors to boost retail space marketability.

While overhead video presents abundant analytic opportunities, it
also introduces important challenges. First, it rapidly generates
overwhelmingly large data sets for manual analysis. Second, reliable
high level automatic analysis remains elusive. Third, video intrudes
on privacy. We address the first two challenges.

We present Viz-A-Vis (Figure 1), an overhead video capture and
access system [9], as an initial approach to building information
visualization interfaces on top of computer vision abstractions. Our
focus is on bridging the semantic gap between high level human
analysis and low level machine sensing [10]. From the computer’s
side, we bridge the gap through simple but robust computer vision.
From the human’s side, we bridge it with information visualization
methods. Bridging the gap with computer vision alone remains an
open problem. Bridging it with visualization alone requires
significant user input and is impractical for lengthy video.

An important difference between computer vision and
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information visualization is the source of inference. In computer
vision, inference occurs in the machine. In information visualization,
it is centered in the user’s cognitive and perceptual structures. We
explore the rich potential for a mixed-initiative interface [13]. We
use simple low level computer vision to hide most of the unnecessary
detail in raw video, but purposely avoid higher level abstractions that
introduce brittleness. Illustrated in Figure 2, our model of video
visualization keeps the human at the core of inference and places
computer vision as a support structure for data transformation.

We have explored several methods to tackle the privacy
challenge. We have continuously deleted original frames [11] and
saved only relevant processed frames that eliminate identity. We
have experimented with physical blur filters [12]. We have given
users control to stop and delete data capture [13]. While these
techniques have a detrimental effect on potential analytic depth due
to lower raw data quality, they still depend on subjects’ trust. Privacy
remains an open concern for all sensing technologies. Ultimately, it
is up to subjects to consent to the sensing and to trust that the data
will be ethically handled. Subjects should decide if benefits outweigh
costs. This is the principle of proportionality [14].

In the following section we contextualize Viz-A-Vis within
related work. In section 3, we describe in detail the architecture of
Viz-A-Vis. In section 4, we present a preliminary case study where
partial use of Viz-A-Vis opened new insight into behavioral patterns.
Lastly, we conclude and propose future work.

2 RELATED WORK

Viz-A-Vis is a multi-disciplinary tool. It employs numerous methods
from computer vision, information visualization, and video content
analysis. We explore the relation with the most relevant work only.

Ivanov et.al. present a visualization of the history of living spaces
[15]. They visualize multimodal, long term sensor data that include a
number of motion detectors and video cameras. A low level
perception technique they use for the high level visualization is path
tracking of people in space and time. In relation to our paper, they
provide abstract visualization and navigation tools and rapid
indexing to original motion sensor and video raw data. We set
similar goals, but present a number of important methodological
differences. First, our video data comes from overhead cameras that
have a one-to-one correspondence with architectural space. Second,
our goal is to study a broader range of behaviors, more than can be
inferred from simply tracking paths. For example, we distinguish
sitting watching television versus reading a book.

Two important contributions to this discussion line are to
explicitly embed computer vision as part of the information
visualization pipeline and to directly map image space to
architectural space. An important difference is the price our method
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Fig. 1. Viz-A-Vis overview: capture and visualize activity. (a) Place of
interest, (b) overhead camera, (c) image sequence, (d) motion
sequence, (e) spatial and temporal aggregation, (f) semantic
aggregation, and (g) visualization of activity.

pays for the increased data gathered and the increased cost of the
sensing infrastructure. We map a pixel to approximately 1 cm?,
which means that for a large floor plan, as the one studied by Ivanov
et al, we require significantly more cameras and storage space.
Cameras are not only more expensive, they are significantly harder
to install than motion detectors. These factors need to be included in
the consideration of using overhead video. We manage the storage
space problem by constantly deleting images without subject
presence (zero-motion over a long enough period of time). We keep
a small buffer which retroactively starts saving images once activity
is detected and we continue to save images for a reasonable time
after activity disappears. For all our installations (over 7500 hours),
this simple mechanism reduced data gathering from about 240 to 3
GB per day, making it technically feasible to record over a month of
activity with today’s typical laptop internal hard-drives (120 GB).
Finally, by wusing the third dimension of our geographical
information system to map time, our method cannot directly
generalize to multiple floors. Tracking multiple levels of an office
building was the main reason Ivanov et al. avoided mapping time to
a third dimension in their visualization.

Our general goal is to visualize a multivariate time series in its
spatial context. There is a long history of proposed solutions. The
most relevant to our work are [16] and [17]. Kapler and Wright
contextualize time series data using the third dimension of a space-
time cube that’s base is the relevant 2D map. The main
methodological difference in our paper is that we visualize denser
data coming from overhead cameras. While GeoTime visualizes one-
dimensional paths across 3D space, we visualize two dimensional
surfaces. Kwan and Lee visualize large scale activity patterns in
time-geographies that visualize summarized data for large
populations over city-size areas. We visualize spatiotemporally
dense data for small populations over house-size areas.

Video visualization is a vibrantly active field of research in recent
years. Daniel and Chen present a visualization that holds many
similarities to our activity cube [18]. They visualize motion in a
video space-time cube. They map motion pixels to low translucency
in the cube and static pixels to high translucency, thus enabling a
human operator to see through inactive sub-volumes of the video
cube. Other relevant approaches that model and visualize video as a
space-time cube are [19-22]. Our approach takes these ideas a couple
steps further. First, we directly map the video cube to a geographic
information system, where the horizontal plane is both image and
architectural space and the vertical plane is time. Second, we
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Fig. 2. Traditional information visualization procedural model [1]
augmented with computer vision. Analysis remains in the human.

aggregate motion into regions of interest and linearize the aggregates
into the rows of a two-dimensional matrix (the activity table) that
summarizes the semantics of activity with respect to place and time.

With MUVIS Kiranyaz et al. present a multi-media browser with
automatic low level feature extraction and high level visual
summaries that support navigation, indexing, and querying [23]. The
main difference with our work is that they do not contextualize their
data in physical space. Their work is primarily concerned with media
content and not real-world context.

3 Viz-A-ViIS ARCHITECTURE

Viz-A-Vis is a capture and access system. The capture comes from
overhead cameras and the access occurs during the analytical process
mediated by information visualization on top of computer vision.
The video goes through two inverse processes: a process of
abstraction, where relevancy is automatically detected and
aggregated, and a process of reification, where visual overviews are
explored, filtered, zoomed, contextualized, annotated, and indexed
back to relevant video sequences. The goal is to provide a visual
roadmap that serves as a video semantic navigation tool.

31 Process of Abstraction

The process of abstraction for sensing infrastructures begins at the
selection and placement of sensors. There are usually many
competing considerations, such as acuity, relevancy, and
intrusiveness. The sensor should have enough acuity to capture most
observable phenomena of target events. We chose cameras because
they can capture most visually observable human behavior, down to
single fingers moving.

The second choice is placement. We chose to place the cameras
over areas of interest for several practical physical and algorithmic
considerations. Physically, by being on the ceiling, cameras are
relatively out of the way. Algorithmically, by having an overhead
view of the world, the computation of low level vision is simplified.
We have installed the system in a research laboratory, five area
homes, and two museums. In each installation we carefully analyzed
the space, the objects in it, and the occupancy of the space through
preliminary interviews (Figure 1a-b).

In video, the process of abstraction begins at the hardware level,
with quantization and discretization of time (frame rate), space
(resolution), luminance (sensitivity to light), and chrominance
(sensitivity to color). The camera should have the speed, resolution,
and sensitivity to capture most target behaviors in its field of view
for its intended application. For our applications, we used off-the-
shelf cameras and ran them at relatively low frame rates, between 1
and 1.5 frames per second, relatively low resolutions, between 160 x
120 and 640 x 480 pixels, and normal 24 bit color. We changed the
lens to a 120° field of view, wide-angle lens to increase coverage.

Tabulating video without abstraction is equivalent to representing
each pixel as an independent variable across time. For typical video,
this representation is a time series with several hundred thousand
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Fig. 3. Computing motion by adjacent frame difference (AFD). (a) Previous frame, (b) present frame, (c) adjacent frame difference (AFD), (d)
sum of AFD over time, (e) activity cube shows motion over space (living room) and time (80 minutes) in 3D.

variables that is prohibitively obscure to analyze in practice. In
practice, for overhead video, each pixel is not an independent
variable. It shares high correlation with its spatial and temporal
neighbors. Furthermore, the vast majority of pixels are irrelevant
most of the time because nothing changes in their field of view. We
take advantage of these inherent properties of overhead video to
automatically compute simple and robust low level abstractions.

Of the abundant computer vision techniques, we purposefully
chose to restrict our abstraction to motion. Motion is considered one
of the most robust and lowest level abstractions from video [24].
Overhead video readily affords a number of important technical
simplifications. First, the camera is fixed, both in its internal and
external parameters (focal length, position, and orientation). Second,
the optical axis is vertical. These two simplifications mean that we
can, in practicality, assume there is a one-to-one correspondence
between image and architectural space and that there is a single plane
of interest, the ground. Ignoring the slight error introduced by
parallax, mapping pixels to small areas in physical space is a simple,
realistic, and robust abstraction. Third, in natural settings, changes in
architectural space (image background) are rare events. Fourth,
dramatic illumination changes occur very sporadically. Fifth, the
likelihood of people appearing identical to the background is
extremely low. At least some part of their body will be of a different
color, shade or texture than the background. And sixth, the likelihood
of people holding perfectly still drops to zero very quickly. Under
these practical conditions, we compute motion from video by simple
adjacent frame difference (AFD) [25] and we associate this motion
with the physical space it occupies.

We subtract gray-scaled adjacent frames in time (Figures 3a-b)
and threshold the difference (Figures 3c). The result is a binary
motion image, where white pixels represent motion. We clean up the
binary image with the morphological operators open and close. The
threshold and the morphological operators serve as signal-to-noise
ratio control parameters.

The binary motion image is significantly more compact than the
original frame, yet it contains most of its semantic relevancy. It
shows when, where, and how much motion occurred. As a concrete
example, consider a 640 x 480-pixel, 24-bit frame. It contains
7,372,800 bits. A binary motion image of the same resolution
contains 307,200 bits. Typically, motion is sparse. Assuming 5%
percent of the pixels are active, a typical motion image can be
encoded in a sparse matrix with roughly 15,000 bits. This is an
abstraction that hides roughly 99.8% of mostly irrelevant data.

Since image space has a one-to-one correspondence with physical
space, we can easily aggregate the data over space and time (figs. 1{-
g, 3d, and 4b-h), and we can stack the motion frames so that time is
represented in the third axis of a motion cube (Figures 3e and 4a).
We call this cube the activity cube. It encodes the motion of people
across image space, physical space, and architectural space across
time. The activity cube and the aggregates we compute from it serve
as the basis for our visualization (Figures 1g).

In Figure 4 we show our first-stage model of visualization and
interaction with the activity cube. As with other 3D visualizations,
the cube presents a number of challenges. Because of perspective
and occlusion, to get a clear picture of the structures, we need to be
able to rotate, translate and zoom the view in three dimensions.

We use the cube as a high level overview to the data and provide
a number of marginal aggregations that serve as 2D and 1D “x-rays”
of the cube (Figures 4b-h). These aggregates are higher abstractions
of the data. Next, we augment these aggregate views with dynamic
querying capabilities through double sided sliders. Finding target
events in the cube is equivalent to defining the relevant spatial and
temporal boundaries of a sub-space or manifold inside the cube
(Figure 41). At this stage, the only possible shape of the sub-space is
an orthogonal parallelepiped. In reality, finding target events may
require following translating motion across space. These types of
events would be snake-like 3D manifolds inside the cube. Simple
orthogonal query sliders are unable to capture such structures. To
coarsely achieve this, a first approach is to augment the
conjunctional queries with disjunction capabilities.
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Fig. 4. Model of visualization and navigation for the activity cube. (a)
Activity cube showing 5 aggregate 2D isocontour slices of motion
across 80 minutes, (b) aggregation of motion across entire 80
minutes, (c) aggregation of motion across X (Y vs. T), (d) aggregation
of motion across Y (X vs. T), (e-f) aggregation of motion across X and
Y, (g) aggregation of motion across Y and T, (h) aggregation of
motion across X and T, (i) sub-space result of the query
(Ko<X<X1)&(Yo<Y<Y4)&(To<T<T,). The dynamic query is performed
through double sided sliders on X (blue), Y (red), and T (green). The
fourth querying dimension is aggregate motion M (yellow).
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Fig 5. Semantic aggregation of motion: the Activity Table (a) and the Aware Home floor plan (b) with overhead images and Semantic Activity
Zones (SAZ) on top. The activity table’s rows visualize the level of motion over the places of the home across time. We map aggregate motion
to brightness. Because spatial semantics are maintained, large spatial movements are clear across the table. The data presented is a dinner
party with 8 people. We annotated some episodes during the 150-minute dinner party.

So far, we have presented purely spatial and temporal
abstractions. These abstractions segment relevant semantics, but are
not intrinsically semantic. The final level of abstraction we present in
this paper is aggregation over places of interest. We define places (or
regions) of interest manually. They could be defined dynamically
and automatically, but we wanted to keep control of this process with
the human at this first stage. We segment image/physical space into
meaningful regions. We start with the observation that place is
socially meaningful space. Our first method is to divide the image
space into architectural elements of the space, such as hallways,
doorframes, chimneys, kitchen counters and appliances. This is
equivalent to segmenting the activity cube into pre-defined
orthogonal parallelepipeds spanning the height of the cube. Next, we
divide the space based on large furniture such as the couch, the
coffee table, the dining table. We call these divisions semantic
activity zones (SAZ) [26]. In all our observations these definitions
remained stable throughout the deployments, even up to 6 months. If
the furniture layout changes, though, there are simple computer
vision algorithms to detect and track those changes. The furniture has
fixed appearance since its distance to the camera remains relatively
constant and there are no out-of-plane rotations. We did not address
this automatic tracking since our deployments did not require it.

In Figure 5 we present the activity table. This version of the
activity table maps the aggregate of motion over places of interest
across time onto the intensity level of its rows across its columns,
respectively. More generally, the activity table is a tabular
representation of semantically aggregated motion across time. Figure
5b shows the floor plan of the Aware Home, Georgia Tech’s living
laboratory [27]. Figure 5b also shows the manual segmentation of the
floor plan into SAZs. In this space we defined 39 zones. To highlight
a couple of interesting examples, zone 15 is the living room sofa in
front of the television that is mounted above the fireplace (zone 13).
Zone 23 is the dining room table. The activity table in Figure 5a
shows the activity of the 39 SAZs labeled on the left. The image
streams come from 10 cameras, 4 in the living room, 2 in the dining
room, 2 in the kitchen, and 2 in the hallway. We color coded the

zones based on the regions they belong to: kitchen is yellow, dining
room, red, living room, blue, and transit green. We added the color
coding on the left and right edges of the activity table.

Note that the adjacency relationship between zones in the floor
plan is two-dimensional. By aligning the zones along a single
column, some adjacency relationships are lost. For example, zone 9
is adjacent to 8, 10, 15, 18, 19, 22, and 39. In the table, it is adjacent
to 8 and 10 only. Thus, in order to visually track changes in location
it is necessary to skip rows. This can be mitigated by row re-ordering
or hiding. The problem with reordering and hiding is that part of the
process of learning to read activity in this table relies heavily on row
stability.

The data shown on this instance of the activity table is a dinner
party of eight adults. They prepared dinner, ate, cleaned up, and
played a game board in the living room. The data that we have
shown in Figures 1 through 4 come from the lower right camera in
the living room and from the period where the 8 adults played
cranium.

The activity table is highly abstracted. It allows us to visualize 3
hours of data coming from 10 cameras at 1.5 fps and 320 x 240
resolution in a single 2D view. Without abstraction and excluding
color, there are 768000 variables. With this abstraction, there are 39.
We have eliminated 99.995% of the complexity. Of course, this
reduction comes with a price.

The activity table is an effective visualization for large motions
across space. The transitions between kitchen, dining room, and
space are very apparent. We label this type of motion translation.
The activity table, on the other hand, is not as an effective
visualization for motion that does not produce a change in location.
We call motion that occurs over the same space vibration. It is hard
to distinguish fine events inside the large episodes annotated in
Figure 5a. For example, during the game of Cranium™, there is a
finer granularity that is lost in this visualization. The game has turn
taking, it has different modalities of play, and it has different
outcomes at each turn. All of these behaviors are washed out at this
level of abstraction.
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Fig. 6. Viz-A-Vis formative evaluation prototypes.

We tried several techniques to avoid losing sight of vibrations,
including zooming and finer granularity for the parsing of space, a
type of semantic zooming. These techniques help, but are not
enough. We now present the process of reification, the practice of
going from abstract to concrete representations.

3.2 Process of Interactive Reification

Up to this point, the only input from the analyst is the definition of
semantic activity zones. We now describe in detail the types of
exploratory interactions we designed for Viz-A-Vis, which serves as
a reification toward the relevant raw data. At the abstract level users
make hypothesis that they reify and test by looking at the original
video.

Figure 7 shows the final interface for Viz-A-Vis. It is a
geographical information system (GIS) where the geography is the
floor plan of the environment, annotated with simple outlines of the
furniture and spaces contained within it. The layers stacked on top of
the floor plan are aggregate slices of motion across time.

The data in Figures 6 and 7 come from the bottom right camera in
the living room during the episode of playing cranium at the end of
the events in Figure 5.

This GIS-style visualization is the third prototype of a sequence
we formatively evaluated through interviews with 8 information
visualization researchers. We presented the three prototypes to each
expert, explained the data, the analytical goals, the transformations
and the views. The first prototype unfolded the orthographic
aggregates horizontally and vertically (see Figure 6a) and
downplayed the view of the cube in preference of the activity table.
All but one of the reviewers found integrating the vertical and
horizontal views of time awkward. The second prototype showed all
aggregates across time horizontally, from left to right. The downside
of this is that the X vs. T aggregate view is transposed and maps left
to up and right to down (Figure 6b). Integrating the spatial
information continued to be a challenge. We arrived at our GIS
visualization for two main reasons: first, the visual integration of the
aggregate views is simpler under 3D perspective; second, the floor
plan provides valuable context for visually disambiguating the
activity cube and its aggregates.

We will now review the design of the third prototype. First, we
provide high level overviews in the activity table on the left and the
activity cube. The activity table is not part of the 3D structure and
sits in front of the cube. Rotations and translations do not affect the
table. The user can brush space, place and time on both views,
though, and zooming and filtering on either will affect the other and
all the other views of the orthogonal aggregations. The activity table
in Figure 7 is a transpose of the table in Figure 5. The SAZs are the
columns of this table, and time goes from bottom to top, in the same
direction of the cube. It seems more natural to show time starting at
the ground and advancing up without boundaries.

Directly on top of the ground we show a heat map aggregating
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the entire time period being considered. Together with the outline of
the floor plan and the furniture on it, this temporal aggregate serves
as an effective summary of the activity during the time period at
hand. Unfortunately, it hides the sequence of events. There are
techniques that show aggregate and sequence of motion, for
example, temporal templates [28]. This technique fades the motion
as time goes by. Unfortunately, it does not scale well for long and
complex sequences where multiple actors occupy the space under
observation.

Separated by a prudent gap to avoid occlusions, the activity cube
lies directly above the temporal aggregate and the architectural space
it tracks. Here, we are showing the same data as in Figure 3e and 4a.
Since the motion captured in this video sequence is vibration, the
activity cube naturally forms cylindrical columns in the places where
people sat.

We aggregate the data into roughly one-minute slices. The
temporal window of aggregation is an important parameter of the
visualization. Different temporal patterns will emerge at different
aggregation granularities. Some patterns will emerge with a two-
second aggregation window, like loading the dishwasher, while other
patterns will emerge with a one-day granularity, like weekdays
versus weekends. Furthermore, the number of temporal slices is
constrained by the space and resolution of the display screen. For
Viz-A-Vis we compute by default a discrete optimal aggregation
window as a function of the length of the sequence and the size of
the screen. We also allow the user to manually define the
aggregation window if needed. We double map each heat map layer
in the cube to color and opacity. Thus, areas with lower aggregate
values will be simultaneously darker and more translucent. We
experimented with several views, including, voxel representations,
isocontours, and isosurfaces. Translucent aggregate slices maintained
the visual structure of the data better than the other options.

On the “walls” of the GIS we show the aggregate of motion
across X and Y. They serve as x-rays of the activity cube. The offer
navigation and contextual affordances through brushing and dynamic
querying over time.

We’ve extracted the original frame and the binary motion image
at the temporal point of brushing. This rapid indexing provides detail
and focus and maintains the temporal and spatial context. It lets the
user interpret the video data from the source. The images are laid out
horizontally, as if cards drawn from a deck. The user has the option
of hiding this detail. The analyst can brush the cube and pull out the
original data by scrubbing with the mouse over the temporal brush.
We provide typical video playback capabilities as well.

On the left hand side of figure 7 are three 2D graphs: the activity
table, the aggregate and dispersion of motion, and the heat map with
the semantic activity zones overlaid. The heat map of activity aids
the user define the regions of interest in the X-Y plane. It provides a
high level view of real usage patterns over the space of interest.
Together with the floor plan, they help discover the real and dynamic
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Fig. 7. Viz-A-Vis interface. Overview : Activity Table, Activity Cube. Zoom: double-sided sliders for dynamic query on time and space. Filter:
motion level double-sided sliders, cube translucency, and opaque time brush surface on cube. Detail, index and focus: binary motion image and
original frame at time t with playback controls. Context: floor plan, activity cube, temporal and spatial aggregates. Temporal aggregation: heat
map. Spatial aggregation: X vs. T and Y vs. T. Semantic aggregation: semantic activity zones definition and activity table. Semantic Zooming:
activity table. Brushing: time brushing. View transformations: 3D-view rotate and translate, camera roll, pitch, yaw, position, and field of view, and

variable illumination from multiple lights.

social semantics of architectural space.

We conclude this section with a description of the line-and-area
plot of the aggregate and dispersion of motion on figure 7. The white
line in the plot encodes the aggregate of motion over the entire space
of observation. It is a very high level summary of the amount of
activity in the scene. The plotted blue area in the same axis encodes
the dispersion of motion over the semantic activity table. It measures
how compact or disperse the motion is. It helps differentiate similar
motion aggregates resulting from different behaviors. For example, a
single person moving rapidly may generate the same motion
aggregate as numerous people moving slowly. The dispersion of
multiple people will be higher. We approximately compute
dispersion by thresholding the activity table and summing the pair-
wise distances between non-zeros elements. This definition and
approximation to dispersion is one example of higher level semantics
from computer vision and pattern recognition. Together with the
motion aggregate, these abstractions have proved instrumental in the
analysis of this time series.

4 PRELIMINARY CASE STUDY OF Viz-A-Vis: VRP occuPANCY
We present a preliminary case study of applying Viz-A-Vis to

understanding behavior. The study explores the effect of three
different projection technologies on groups of people collaboratively
interacting with a projection surface. We report our application of
Viz-A-Vis to the problem of understanding the effect of three
different Virtual Rear Projection (VRP) technologies [29] on a
collaborative group of users working with an interactive projection
surface. The goal of VRP is to simulate the experience of true rear
projection without sacrificing the physical space necessary for it. A
VRP system aims to eliminate shadows on the projection surface and
prevent light from falling on objects (such as users) other than the
projection surface.

Figure 8 (top row) illustrates the three experimental conditions:
Single Projector (SP), Passive Multiple Projector (PMP), and Active
Multiple Projector (AMP). SP and PMP simply mitigate shadows on
the surface by off-center projection and redundancy. Only AMP
corrected for shadows on the board and for light falling on other
objects.

In the study, five groups of three to five people were asked to
work on a collaborative task at a large interactive display for fifteen
minutes, split into three five-minute sessions, one for each projection
technology. We recorded overhead video for each condition,
recorded camcorder video with audio for manual analysis, and

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 2, 2009 at 15:01 from IEEE Xplore. Restrictions apply.



ROMERO ET AL: VIZ-A-VIS: TOWARD VISUALIZING VIDEO THROUGH COMPUTER VISION

Single Projector Passive Multiple Projectors Active Multiple Projectors

display surface
I ————

projector

(] projector
+camera

Fig. 8. Viz-A-Vis summary visualizations for VRP. The three columns
correspond to the three testing condition of Virtual Rear Projection.
The first explains each technology. Row two visualizes aggregate
motion heat maps. The third row visualizes template matching to
ideal model. The percentages correspond to the match.

collected self report data from questionnaires and interviews.

We explored the data through the different spatial, temporal, and
semantic aggregations of Viz-A-Vis. The aggregate that revealed the
most interesting and succinct patterns was the temporal aggregate
heat map over the space in front of the projection surface. We show
this heat map for each condition across the second row of Figure 8.
The heat maps revealed trends that were not visible when watching
the groups operating live in real-time, through a camcorder
recording, or even through manual analysis of the raw overhead
video.

In the SP condition (left column), users are clearly split by the
projected light (entering diagonally from the bottom right towards
the SmartBoard located at the top center) which results in the large
(blue) area showing minimal activity near the middle of the room.
The people to the right of the projector beam are standing forward,
towards the wall and away from the projected light. The PMP and
AMP conditions also show a bi-modal distribution, but those groups
are much closer together, and when compared to the SP condition,
the right group is not pushed as far forward. Part of the functionality
of Viz-A-Vis is to be able to take individual views and extract them
from the GIS. Being able to see the aggregate motion side by side,
organized by condition, allowed us to notice that the AMP condition
appeared to be even less split than the PMP condition.

From this visualization we derived the concept of an “ideal”
model of space usage for collaboration and used this model to
quantify the space usage for numerical comparison. As we stated at
the start of the paper, our third goal for the Viz-A-Vis approach is to
find new features and patterns that can improve the computer vision.
The ideal model we describe here is an instance of a visual pattern
we discovered which can be used to advance the computational
perception.

We noted that users in all three conditions where approximating a
semicircular arc before the SmartBoard. We developed an "ideal"
space usage model, the semicircular arc shown superimposed on the
bottom row of Figure 8, because 1) the hole in the center allows all
users equal view and physical access to the board, and 2) the circular
shape also allows equal social access to other participants. This arc is
an abstraction step chosen by the analyst, a deliberate introduction of
bias to gain rapid abstraction. We used a template match by sum of
square differences (SSD) to compare the actual study data to the
semicircular arc model.

SSD is a metric of the difference between the average activity in
each condition and the ideal model. This calculation is shown
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graphically in the bottom row of Figure 8. As the conditions’ match-
to-ideal progress from SP (74.6%) to PMP (76.1%) and AMP
(79.6%), the occupancy approaches the abstract ideal. This
monotonically increasing value surprised us, since the totality of user
self report preference data ranked PMP well above the other
conditions. The ability to aggregate user motion over time allowed
us to understand how the projection conditions affected user's space
usage, develop a mental model of an "ideal" space usage pattern
based upon actual data, and discover that user behavior in the AMP
condition matched this model closer than in the PMP condition. This
analysis motivates further study of the behavioral differences
between the PMP and AMP conditions. In this application domain
Viz-A-Vis enhanced the analysis of previously clouded phenomena
of human behavior.

5 CONCLUSIONS AND FUTURE WORK

The central theme of this paper has been to introduce computer
vision and pattern recognition as an automatic augmentation to the
low level transforms that convert raw data to data tables. The activity
table is a dramatic example of this approach. In it, we segmented and
aggregated to less than 0.005% of the raw variables for the high level
abstract visualization. We demonstrated the power of automatic
abstraction through computer vision and we gave a step toward
explorative reification through information visualization. We
recognize this is just a first step. Computer vision, statistical machine
learning, and pattern recognition have a profound and diverse set of
tools that can be applied to this domain. Our key observation is that
while high level reasoning has remained elusive for computers, low
level data transformation can be achieved robustly with current
methods. Moreover, low level data integration is not an efficient task
for humans. The human analytical task supported by information
visualization is augmented by robust low level computational
perception. This is one of the most sought after paradigms of human
computer interaction. Each part of the human-computer system
performs the task that responds to its strengths.

We conclude with a discussion of future work, which we consider
to be extensive. Viz-A-Vis was born out of our work building
ubiquitous computing systems. In our deployments, we are
constantly sensing the context in which the computing systems
perform. In the process of building and testing our perceptive and
interpretive infrastructures, we are routinely building visualizations
of the low level sensor data. The activity table is an instance of a
visualization we built for designing context aware systems. The
reiterative need for contextual visualizations of sensor data was our
original motivation for building Viz-A-Vis. In this paper we have
concentrated on video data due to its complexity, acuity, extensive
volume, and the large semantic gap between the raw data and high
level understanding of events over time. Basically, it is very hard for
humans to objectively perceive in video extended spatiotemporal
patterns, such as occupancy. Even if an analyst watches the original
video it’s unlikely that the objective patterns of occupancy will
become evident. The analyst needs exterior tools, such as parsing the
image and counting locations on paper and pencil.

Although we have only visualized video data, the GIS
infrastructure of Viz-A-Vis allows multimodal sensing and
visualizing. We are working on integrating different sensing
modalities to the visualization.

In bridging the semantic gap from the bottom-up, we have just
given a first exploratory step. The natural next computer vision steps
up the semantic ladder are background subtraction and maintenance,
blob tracking, object and human detection, tracking, and recognition,
region-of-interest discovery, and activity discovery and recognition.
From machine learning and pattern recognition the next steps are k-
mean or radial basis function automatic clustering of space, principal
and independent component analysis of the raw data, interactive
feature generation, adaptive boosting, Hidden Markov Models and
dynamic time warping. While we increase the semantic abstraction at
each step, we introduce new complexity and brittleness to the
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human-computer system. Given the current state of the art in
computational perception, the analyst will eventually lose faith in the
abstractions. And even if the case were that the abstraction are
indeed perfect, because of the nature of the task and data, the analyst
should always have direct access to the original data.

As the higher level semantics from computational perception are
abstracted from the raw data, new visual structures need to take
advantage of the affordances presented. For example, what does it
mean to have blob tracking for the activity cube and table, which are
essentially space tracking representations? Finally, there are
opportunities for creating infrastructure to allow the user to defined
patterns and the machine to search for them using, for example,
dynamic time warping and template matching techniques. We need
to continue to explore these venues through an iterative design and
evaluation process. As Viz-A-Vis and its methodologies mature, we
will have an opportunity to comparatively evaluate its measurable
benefits in terms of precision, recall, and time to task completion.
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