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           Fig. 1. User interface of OnSet. The list of sets is on the right (the orange bar indicates the number of elements in the set). Each set 

is represented as a rectangular region with the set elements being smaller interior rectangles. This view shows two individual sets 
(one is dimmed) on the left and two compositions of individual sets on the right. 

Abstract—Visualizing sets to reveal relationships between constituent elements is a complex representational problem. Recent 
research presents several automated placement and grouping techniques to highlight connections between set elements. 
However, these techniques do not scale well for sets with cardinality greater than one hundred elements. We present OnSet, an 
interactive, scalable visualization technique for representing large-scale binary set data. The visualization technique defines a 
single, combined domain of elements for all sets, and models each set by the elements that it both contains and does not 
contain. OnSet employs direct manipulation interaction and visual highlighting to support easy identification of commonalities 
and differences as well as membership patterns across different sets of elements. We present case studies to illustrate how the 
technique can be successfully applied across different domains such as bio-chemical metabolomics and task and event 
scheduling.   

Index Terms—Set visualization, information visualization, direct manipulation, Euler diagrams, interaction, logical operations. 

 

1 INTRODUCTION 
A set of elements is one of the simplest organizational structures for 
data. The presence of multiple sets and large numbers of set elements 
adds to the complexity. When particular elements are contained in 
multiple sets, understanding the commonalities, differences, and 
relationships among the sets becomes more challenging.  

Consider a situation where samples of a substance are taken from 
different locations at different points in time. The substance is made 
up of a set of constituent components, but only a subset of all 
possible components is ever present in a sample, and those subsets 
vary widely in make-up and size. An investigator who has gathered a 
collection of samples may seek to identify common component 
patterns across the samples, may look for the presence or absence of 
key components, and may need to understand how the subsets of 
components are distributed across the samples. 

Membership, difference, intersections, and other metrics on the 
samples can be characterized formally and calculated precisely, but 
an investigator may not be seeking the answers to specific questions. 
Instead, they may be exploring the collection of samples to learn 
about its characteristics and to discover new information. 

The visualization of sets and their elements has been a helpful 
tool for assisting situations such as this. A Venn diagram [12] is a 
valuable representation tool for showing shared and unique elements 
among two or three sets. An Euler diagram [9] generalizes the notion 
of a Venn diagram and can be used to represent larger numbers of 
sets. As the number of elements and sets rises, however, the 
complexity of an Euler diagram rises as well. It can be difficult to 
create a comprehensible, aesthetically pleasing view of set-element 
relations even for very modest numbers of sets and elements. 

The visualization research community recently has developed a 
number of techniques to represent flexible collections of set elements 
[1, 7, 10, 14, 17, 20]. Increasing quantities, both of elements and 
sets, remains a challenge though, and these techniques quickly 
become complex and difficult to visually interpret and understand as 
the sets contain larger numbers of elements. More recent techniques 
explicitly address scalability [2] but they sometimes come at the cost 
of showing individual elements and the views become more difficult 
to interpret. 

We have created a new visualization technique to portray 
collections of sets whose cardinality (number of elements) may be in 
the hundreds. Our technique is called OnSet and it combines a grid 
style representation with a suite of interactive operations that help to 
compare and contrast different sets. The technique differs from most 
other set visualizations in that it does not follow the constraint that 
an element in the collection can have only one visual representation 
or glyph. Instead, OnSet uses a consistent position within all set 
representations to indicate a particular element. Clever application of 
highlighting and brushing then assists in the identification of 
commonalities and differences. Additionally, the use of direct 
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manipulation interaction to stack (compose) flexible combinations of 
sets is fundamental and crucial to the technique. 

The primary contribution of this research is the OnSet interactive 
visualization technique. We begin the article by describing set-
relevant concepts and defining the terminology we use throughout. 
Next, we review related work and describe the types of analytic 
inquiries that are common when working with sets. After explaining 
the OnSet technique in detail, we conclude by describing two 
applications of it. The first comes from the domain of bio-chemical 
metabolomics and the second involves calendar scheduling. We 
implemented visualization applications to embody the OnSet 
technique in both domains. 

2 BACKGROUND  
A set is an unordered collection of items (elements) with no repeated 
values. Two well-known methods for visualizing sets, Venn and 
Euler diagrams, have been widely used since the 18th century to 
show properties and relationships within collections of sets. Using 
these techniques, it is possible to view the results of several 
important operations. For example, the intersection of two sets, A 
and B, is defined as the set of elements that are found in both A and 
B, or in other words, it answers the question “What are the common 
elements of these two sets?” In an Euler diagram, the intersection 
can be found by locating the items within nested boundaries. Other 
operations include union (“What are all of the elements in any of 
these sets?”), and complement or subtraction (“What elements are in 
this set but not in the other?”). 

An interest in visualizing set data has continued to the present 
day. Below we review a number of set visualization techniques and 
systems. Throughout all these projects, a number of challenges and 
limitations persist. One concerns the size of sets being displayed. 
Because of the representation methods chosen and the need to show 
set intersections, displaying sets with large cardinality often results 
in highly complex views that are difficult to understand. Even for 
sets with fewer elements, complex views can result if many sets 
share a high number of common elements. In such situations, set 
visualization techniques often employ visual properties such as color 
and opacity to depict set membership. However, identifying the 
correct set or sets that an element resides in becomes fairly difficult. 
Finally, for complex sets, creating these visual representations can be 
a computationally hard process.  

Various datasets exist that encounter these limitations. Consider 
the data depicting the code repositories of a large organization, such 
as found on Github. Each project can be thought of as one set, with 
the elements of the set being the libraries that the project requires. A 
large-sized project could link to anywhere from 20 to 100 different 
libraries. A company could have five or more of these projects, 
where some or all of the projects share many of the libraries with 
each other. The visualization would then attempt to portray all of the 
distinct libraries in a single view, with boundaries drawn to show set 
membership among the different projects. Since the number of 
libraries could easily be more than 200, each would be represented as 
a very small glyph. In addition, the boundaries of the project sets 
form a complex and convoluted web. Interaction becomes crucial, as 
there is not much the user is able to understand about the data right at 
the outset. 

2.1 Related Work 
Techniques for visualizing sets have a long history. For a 
comprehensive review of set visualization techniques, see [3]. Below 
we review some of the techniques most germane to our research. 

Venn diagrams are among the most well-known. Conceived in 
the 1880s by John Venn, they have been adopted as a common 
means of teaching set theory and logical relations in classrooms [12]. 
A Venn diagram consists of a group of closed curves, most often 
circles, with overlapping boundaries used to display all logical 
relations for the sets represented by the closed regions. A Venn 
diagram is a special form of Euler diagram, a technique for 

visualizing sets that dates back to the 1700s and earlier [16]. An 
Euler diagram also uses enclosed contours to denote set boundaries. 
However, unlike a Venn diagram, an Euler diagram does not need to 
contain all 2n possible relations for n sets. These relaxed constraints 
help reduce the complexity of the visual representation compared to 
Venn diagrams, but the complexity still rises quickly as the number 
of elements and sets increases. 

Many visualization techniques deal with the contours and layout 
of Euler diagrams. The BubbleSet technique overlays set boundaries 
on existing visualizations without interfering with the original layout 
[7]. The technique draws isocontours around set elements at 
interactive speeds without using layout techniques to disturb them. 
Simonetto, Auber, and Archambault [20] present an algorithm that is 
able to automatically draw an Euler diagram for any input. They use 
Bézier curves and transparent colored textures in order to make the 
diagrams more comprehensible. Riche and Dwyer [17] also seek to 
reduce the visual complexity of Euler diagrams by using hierarchical 
data structures to construct two possible layouts. They created the 
Compact Rectangular Euler Diagrams (ComED) technique that uses 
compact rectangular areas to draw the sets in order to improve 
readability and the Euler Diagrams with Duplications (DupED) 
technique that allows the duplication of elements in the drawn sets to 
remove overlapping set boundaries. 

Euler and Venn diagrams are not the only ways to visualize sets, 
however. The LineSet technique [1] uses colored curves to “connect 
the dots” between elements of a set. This allows set membership to 
be overlaid on existing visualizations, like the BubbleSet technique, 
but with a simpler marking system. The ConSet technique uses a 
matrix representation to display set data [14]. Columns in the matrix 
represent individual elements, while sets that contain the elements 
are represented by the rows. The presence of an element in a set is 
indicated by filling in the cell corresponding to the element/set pair. 
In addition to the matrix representation, ConSet also provides an 
alternative to a Venn diagram called a Fan diagram. A Fan diagram 
displays set data by partitioning areas of a circle much like a pie 
chart. Each area represents a set. However, the areas are allowed to 
overlap to show elements that are shared between sets. This 
representation has the advantage of directly mapping the number of 
elements in each set to the size of each partitioned area. 

Several items of previous work focus on features leveraged by the 
OnSet technique described in this paper. The Set’o’grams technique 
[10] relies heavily on brushing to show how elements occur across 
several sets. In this representation, element groups are distributed 
across several histogram-like blocks representing different 
categories/sets. Each element group may belong to multiple 
categories. As the mouse hovers over an element group, the same 
group is highlighted in the other blocks where they are found. The 
Radial Sets visualization [2] seeks to address issues of scale that 
arise with several of the techniques discussed so far. They extend 
several ideas, such as frequency aggregation from the Set’o’grams, 
to produce a tool that can analyse sets with large numbers of 
elements. However, this technique does not scale well to a large 
number of sets due to visual complexity. 

The PIWI system [22] uses a matrix representation to depict 
graphs, where each position denotes a vertex. The matrices 
effectively represent different subsets of the graph, and the user can 
perform different Boolean operations on the subsets. Flexible direct 
manipulation of the matrix subsets is not provided, however. 

One approach to dealing with issues of scale is to leverage “dense 
pixel displays” [13]. In such displays, data items or datasets are 
represented by visual objects or glyphs in which each pixel in the 
glyph corresponds to a data case or attribute. These visualizations 
leverage the human visual perception system to quickly spot outliers 
and trends among data items scaled down to the size of pixels on the 
screen. They also support the display of many items due to the 
relatively small size of each item. One example of such a technique 
is the VaR system [21] that scales data items down to dense pixel 
displays based on dimensions of the data. These dimension “glyphs” 
are positioned on a canvas such that similar data cases are near each 



other. Our OnSet technique takes a similar approach and scales down 
sets with large cardinalities and places them on a canvas. However, 
direct manipulation of the representations is fundamental for the 
exploration of relationships between the pixel displays. In this 
respect, OnSet incorporates ideas from the Dust & Magnet system 
[23] that portrays data cases as iron dust and data variables as 
magnets that attract or repel the dust.  In this technique, direct 
manipulation of the data is vital to exploration and sensemaking. 

Many of the above-mentioned techniques can be classified as 
being element-driven. The focus of the view is on individual 
elements and an element is present just once in the visualization. A 
set, then, is defined by a boundary that encompasses one or more of 
these elements. Repositioning an element with interaction morphs 
the structure or design of the set. However, a different way to view 
set data is possible. Taking a set-driven approach makes the basic 
unit of representation a set. These sets are made up of the elements 
they can contain, rather than what they do contain. Because of this 
focus, an element can be duplicated across the visualization. And 
although the position of a set can be modified, the underlying 
structure of the set remains consistent. This consistent structure is a 
necessary requirement for locating elements in the set, particularly 
when they are contained by multiple sets. We have adopted this latter 
methodology for the OnSet technique. 

2.2 Analytic Tasks on Sets 
A wide variety of analytic inquiries are possible about set 
collections. Alsallakh et al [3] provide a list of common tasks with 
set-typed data. The list is divided into three main categories: tasks 
related to elements (e.g., Find sets containing a specific element), 
tasks related to sets and set relations (e.g., Identify intersections 
between k sets), and tasks related to element attributes (e.g., Analyze 
the set memberships for elements having certain attribute values). 
Beyond these relatively concrete tasks, we envision analysts 
engaging in more open-ended sensemaking sessions where they 
explore set collections simply to learn more about the set data and to 
gather insights about it. In all likelihood, the particular domain of the 
data will dictate the specific types of questions and tasks that arise. 

Our work does not focus on tasks involving set elements with 
multiple quantitative and categorical attributes. Rather, the elements 
have a single attribute – such as a unique name or numerical value – 
that is used to distinguish them from one another and to determine 
their membership in the sets. We do, however, include the notion of 
related groups of set elements when those elements can be 
considered to come from the same category. At the end of the article 
we address a possible extension to our work that would incorporate 
additional attributes of the set elements. 

3 DESIGN EXPLORATIONS  
At the onset of our research we considered a variety of visual designs 
to represent large cardinality set data. Our initial explorations were 
motivated by the need to maximize the amount of data the user could 
see in an initial view. This aligned with presenting an overview first, 

per Shneiderman's oft-repeated InfoVis mantra [19]. To pack as 
much data as possible on the screen, we used a fisheye lens [11] 
approach. We employed a matrix representation for the data, with 
each row corresponding to an element in the data and each column 
corresponding to a set. A particular position (x, y) could take one of 
two states: present if the set y contained the element x, and absent 
otherwise. The present and absent states were depicted in blue and 
black color respectively, while red indicates the currently selected 
element. Figure 2 presents the resulting visualization, which looks 
similar to the technique used in the TableLens [15]. However, in our 
case, each element only presents a boolean state (present or absent) 
and not a quantitative or categorical value.  

In the default state, the height of each row was two pixels, with a 
gap of two pixels between pairs of rows. Hovering over a row 
expands that row of pixels and highlights the name of the element. 
Tracking an element horizontally across a row gives information on 
how frequently the element occurs in different sets. Similarly, 
tracking vertically along a column highlights the number of elements 
a set contains. This value can also be used to sort the sets so that the 
sets with largest number of elements are placed in column 1 and so 
on. Finally, we wanted to support the comparison of two different 
rows. Such a comparison helps in highlighting how often the two 
elements appear across sets. Since row comparisons can best be 
performed between adjacent rows, we provided the option to drag a 
row vertically to place it between any other pair of rows. Alternately, 
a row could be highlighted or bookmarked by double clicking on the 
name of the element. This would color the row blue, which makes it 
easy to spot and zoom to later. Finally, the visualization also 
supported search. The user could type a search query in the search 
box at the top to highlight and expand all the rows that contained the 
search term. 

Unfortunately, the design suffered from a few limitations. First, 
only a limited number of elements could be shown vertically. Since 
each element took a total of 4 pixels to represent, only about 200 
elements could be placed vertically. For any set that contained more 
than 200 elements, the user would need to scroll, which added 
substantial complexity to other aspects of the interaction. A similar 
limitation existed on the number of sets that could be shown, in 
which case the user would need to resort to a horizontal scroll. 
Another issue was the comparison of different sets. Although the 
visualization was fairly useful for comparing elements across 
different sets, such comparisons were not feasible for the different 
sets. The visualization also did not easily communicate information 
about either the total number of elements or the number of sets in the 
data.  

To address these concerns, we designed another version of the 
visualization, as shown in Figure 3. In this iteration, we primarily 
wanted to support the easy comparison of sets. We removed the 
matrix representation and switched the position of the sets from the 
columns to the rows. Each row now showed the elements contained 
in a set. The elements wrapped over to multiple rows, which made it 
easier to immediately identify the sets that contained the most 

 
Fig. 2. Initial design using a fisheye approach with elements in rows and sets in columns. 

 
Fig. 3. Second design with sets in rows and elements as blocks pushed left. 

 



 

number of elements. Hovering over an element highlighted all other 
sets that contained it. This design clearly showed the total number of 
elements present in a set. 

One downside of this design was that it was difficult to ascertain 
if a particular element existed in a set without hovering over each 
element. Another shortcoming was that this representation only 
showed a limited number of sets on the screen at any time. 
Additionally, it did not support easy set comparison due to elements 
being in different positions in different sets and, thus, being hard to 
locate. Also, our trial use of the visualization revealed that 
automatically loading all the sets at start-up was not needed. Instead, 
sets could be loaded on demand. 

We followed this design cue to remove the loading of all sets at 
the initialization of the interface. In OnSet, the user decides which 
sets to load onto the canvas for exploration. All comparative analysis 
such as similarity metrics are calculated only for those sets that are 
currently on the canvas. Another modification from the original 
designs was to fix the position of all elements across sets. This 
characteristic was present in the first, matrix style representation but 
was removed in the second design. We realized that it was vital for 
the user to locate an element across all the sets; the presence or 
absence of a set was one of the chief questions that this visualization 
helped to answer. 

4 ONSET VISUALIZATION TECHNIQUE 
After reflecting on the lessons learned from the earlier designs, we 
created OnSet and its constituent visual representations and 
interactive operations. One key property of OnSet is its ability to 
visualize large sets, that is, sets with cardinality in the hundreds of 
elements.  

4.1 Visual Representation 
To help explain the visual representation used in OnSet, we provide 
an example. Consider 5 sets that contain 10 elements each. For 
simplicity, let us assume that each element is present in only one set. 
This generates a master set (total list) of 50 distinct elements. In the 
OnSet technique, each set is represented not just by the elements that 
it contains, but by all 50 elements. The two categories (present or 
absent) of elements are, however, visualized differently to provide a 
distinction. 

We depict each set as an m x n grid of locations. Each location 
can hold a potential element of the set. This grid is created from the 
master list of elements. Each element in this list is assigned a 
specific, unique location in the grid that is the same across all sets. In 
the visualization, each location is depicted as a square-ish rectangle. 
We call each of these locations a “pixel”, leveraging an analogy to 
the screen pixels that make up a raster or bitmap on a display. Note, 
however, that one of these pixels in OnSet is likely implemented by a 
rectangular region of multiple, actual screen pixels. From this point 

forward, when we use the term “pixel”, we are referring to the 
logical grid location within OnSet.  Each pixel can take on one of 
two states, colored or blank. The pixel is colored if the element it 
corresponds to is present in the set, and blank otherwise. We chose 
blue as the default color for each pixel. We call a complete grid of 
pixels representing a set a PixelLayer. Figure 4 presents a PixelLayer 
view.  

The dimensions of PixelLayers and the order of pixels within 
each are consistent across all sets. We choose the dimensions m x n 
of the matrix based on the following rules: 

1. The product m * n is greater than or equal to the total 
number of distinct elements in the collection. 

2. The ratio m / n is close to 1. 
Using the two rules promotes a squarified grid, which improves the 
readability of the view.  It is, however, likely that the total number of 
cells exceeds the total number of elements, in which case some cells 
in the grid are empty and not associated with any element. Each 
PixelLayer is annotated with two labels: one corresponding to the 
name of the set it represents and the other to the number of elements 
present in the set.  

4.1.1 Pixel Ordering 
The default order of the pixels in a set’s PixelLayer is based on the 
sequence in which the elements appear in the original data or the 
master set. Using properties of the datasets can help to generate 
better configurations than would be created by simply appending 
elements to the sequence as they are found in the sets. For instance, 
the elements in a PixelLayer can be placed in such a way that the 
most frequently occurring elements are located on the top left and 
least occurring elements appear in bottom right. This frequency can 
be calculated based on either all the sets in the data or only those that 
are currently on the canvas. The latter has a downside, however, in 
that as each new set is introduced on the canvas, the configuration of 
elements in all sets is likely to change.  

Another heuristic that can be used for positioning the elements is 
to employ an underlying property of the elements. For instance, this 
property can be a user-assigned value for each element based on 
some attribute or characteristic of the element. These values can be 
used as input for positioning the elements, such that the highest 
valued elements are at top left. If multiple such characteristics exist, 
the user can choose the appropriate characteristic from a menu to 
update the configurations on the fly. 

4.1.2 Element Hierarchies 
The underlying data can have additional properties that also can be 
used in the OnSet representation. For instance, if all the elements in 
the collection come from a hierarchy, this information can be used to 
group and place the elements within a PixelLayer. More specifically, 
all the elements within the same branch of the hierarchy can be 
grouped together within a sub-rectangular region within a 
PixelLayer. To help with placement of these groups, we utilize the 

 
Fig. 4. A PixelLayer representation of set data. The number in the 
bottom right indicates the number of elements in the set. 

 

 
Fig. 5. Hierarchal groups are displayed by an off-white border. 

 



quantum treemap [5] technique. Similar to that done in the 
PhotoMesa system [4], we quantize the hierarchical groups within 
the PixelLayers using the number of elements in each hierarchy as 
input. We describe an example of this technique in the Use Case 
section that follows. 

Once the groups of elements are laid out, the hierarchical 
structure is shown while hovering or brushing on the PixelLayers. 
Each hierarchical group is denoted by thin, off-white rectangles 
around the pixels in that group, as shown in Figure 5. Highlighting a 
pixel by hovering also highlights the bounding rectangle that depicts 
all the elements in its group. This behavior helps to gain a sense of 
how many elements from the hierarchical group also are present in 
the set. Brushing on the hierarchy also occurs when the user hovers 
over a pixel that is empty.  

4.2 Interactive Operations 
The OnSet visualization begins with a blank canvas for the 
exploration of the sets. In this subsection, we describe the interactive 
operations that the system provides. 

4.2.1 Adding a PixelLayer 
All sets that are present in the data are available in a list menu as 
shown in Figure 1. The user can import any set from the list by 
clicking the ‘+’ button for that item. Doing this creates a new 
PixelLayer representing the set that is added to the canvas. Each 
PixelLayer that is subsequently added appears next to the previously 
added one. The PixelLayers appear in a sequential order, wrapping to 
the next row on the canvas when required. We chose to use a ‘+’ 
button instead of a checkbox in each list item because each set can be 
added multiple times to the canvas. We discuss this feature in detail 
later.  

4.2.2 Identifying Common Elements 
Identifying elements that are common across different sets is one of 
the core tasks of set exploration, as discussed earlier. With OnSet, 
once the PixelLayers are laid out next to each other, it is relatively 
easy to identify common elements in two sets by visually inspecting 
the two layers. Since the position of an element is the same in all the 
PixelLayers, the elements that are common appear as blue pixels at 
the same position in each. However, for sets that are large, locating 
positions in different sets becomes more difficult. 

To help with this problem, we utilize mouse hover to support this 
identification. Hovering over a blue pixel (element) in a PixelLayer 
makes it the active pixel, which is depicted by changing its color to 
white. Additionally, OnSet highlights the pixel in any other layer 
(set) that also contains the corresponding element. The user can then 
inspect the other layers for white pixels. To further simplify locating 
these layers, OnSet fades out all PixelLayers that do not contain the 

active pixel. Figure 6 shows the hover operation. The information 
panel at the top displays information about the element 
corresponding to the active pixel. Hovering over an empty element 
shows this information as well, but does not affect the items on the 
canvas in any way. This allows users to see information about the 
missing elements. 

The mouse hover interaction provides a quick method for 
accessing all elements of a set individually and identifying ones that 
commonly occur across different sets. However, for tasks that 
involve comparing all the elements of two sets, a series of hover 
operations is likely to be time-consuming. For more direct 
comparison of two complete sets, we use a drag-and-drop action. 

Each PixelLayer can be manipulated and positioned anywhere on 
the canvas by simply dragging it and dropping it elsewhere. 
However, if a PixelLayer is dragged and dropped directly on top of 
another layer, the two layers combine to form a composite 
PixelLayer, called a MultiLayer. (In the sections below, we 
abbreviate PixelLayer as PL and MultiLayer as ML for brevity.) A 
ML follows the same structure as an individual PL. However, instead 
of displaying the pixels (elements) of an individual set, a ML 
displays those pixels that are common to the two sets. In other 
words, a ML performs the equivalent of a logical AND operation on 
the corresponding pixels of the two PLs, where the value 1 indicates 
element presence and 0 indicates absence. OnSet draws pixels that 
are present in both PLs in green, with all other pixels appearing 
black.  

Figure 7 presents the steps that are involved in this interaction. 
As Figure 7b highlights, the user receives preview feedback of the 
common pixels in the two layers when she drags one layer over 
another. She can then choose to confirm the combination by 
releasing the mouse-press or cancel it by dragging the PL back 
outside. 

A MultiLayer is modeled in the same way as a PixelLayer. 
Hence, the interactions with a ML are similar to those on a PL. 
Mouse hover on a pixel in a ML highlights the same pixel in other 
PLs. Conversely, highlighting a pixel in a PL highlights the pixel in 
the ML if the element is contained in both the sets of a ML.  

By default, a MultiLayer uses an AND operation to compare the 
corresponding pixels in the two PLs. However, MLs also support an 

 
Fig. 7. Dragging and dropping a PixelLayer to create a new AND 
MultiLayer. 

 
Fig. 6. Hovering over a pixel with the mouse highlights the same 
element in other PixelLayers (sets). 

 



 

OR comparison operation. Switching the state to OR changes the 
color of pixels from green to yellow. Subsequently, each pixel 
assumes one of three states based on whether the corresponding 
element is present in neither of two sets, is present in one of the sets, 
or is present in both sets. These three states are depicted using a 
color gradient that goes from black to yellow. For example, if an 
element x is found in one of two sets, the pixel is given 50% yellow. 
If more PLs are added to an ML, an increasing number of different 
yellow shades are employed to denote the number of sets containing 
the element. 

We use the term OR here but this operation does not operate 
purely like a logical OR. Instead, the OR operation here displays the 
percentages of sets containing an element. We use the terms AND 
and OR, rather than “intersection” and “union”, to provide a more 
natural mapping of the operation to a user's mental model and the 
questions they may be trying to address, such as “Are there elements 
that are found in both set A and set B?” and “Which elements are 
found in set A or set B?” 

4.2.3 Comparing Sets 
The MultiLayer representation supports easy comparisons of sets and 
is scalable to higher number of sets. Two types of scalability result: 
A ML can be overlapped with other PLs to generate a higher-order 
ML. These higher-order MLs carry over the state from the original 
ML. That is, adding a PL to a ML in the AND state creates a new 
ML in the AND state. In this new ML, the pixels are formed by 
performing an AND operation on the corresponding pixels of all PLs 
that form the ML. Similarly for OR state, the pixels are formed by 
performing an OR operation and the colors assigned correspond to 
the number of PLs in which the corresponding element appears. 
Figure 8a illustrates this feature. 

A ML can also be overlapped with other MLs to generate a 
higher-order ML. However, this operation differs from the previous 
case in a few ways. First, the higher-order ML always assumes an 
AND state irrespective of the states of the individual MLs, although 
the state can be changed to OR later. Second, the AND or OR 
operation only considers the pixels of the original MLs that are 
combined and not the underlying PLs that made up the MLs. Figure 
8b illustrates this feature. 
 
Expression Tree 
For each of the two types of MLs, the value of a pixel is determined 
by evaluating an expression tree. A complex expression is generated 
between the constituting PLs depending upon the type of ML 
generated.  

1. Dragging a PL onto another PL: Creates a new expression 
containing the two sets. 

2. Dragging a PL onto a ML: appends the PL set to the 
expression at the top level of the expression tree of the 
ML. 

3. Dragging a ML onto another layer: Creates a new 
expression containing the two expressions, which in turn 
are nested as a new level in the expression tree.  

To explain the third type, we will walk through creating the 
expression (A || B || C) && (D || E) for sets A, B, C, D, and E. (The 
symbol || denotes OR and && denotes AND.) The first step is to 
create the nested expressions. Dropping set B on to set A forms the 
A && B composite ML. Dropping set C onto this ML then forms A 
&& B && C. Clicking the operation label changes the expression to 
A || B || C. The same process is used to create the D || E composite. 
Finally, the D || E composite ML is dragged onto the A || B || C 
composite ML, forming the desired operation. A pixel is shown if 
the element is found in sets A, B, or C, and found in sets D or E. 
 
Labels and Buttons 
Visual elements are used on the MLs to display information about 
their various properties. The labels on the bottom reflect the structure 
of the expression being shown. These labels appear in one or more 
levels depending on the current configuration of the ML. Labels for 
nested MLs are appended to the labels for the parent expression, 
forming an icicle plot of the hierarchy. As space quickly becomes 
limited and labels are obscured, hovering over a label displays a 
tooltip of the full set name. Dragging a label from within a ML 
removes the corresponding PL node from the composite, creating a 
new layer with the removed item. If that node is a single set, a single 
PL will be created. If that node is another expression, a ML will be 
created. Only the top-level components in the ML can be dragged to 
encourage decomposing in an orderly manner.  

The top left of the ML contains a label describing the current 
state of the expression, i.e. AND or OR. This label can be clicked to 
toggle the states. Doing so evaluates the new expression tree and 
updates the color of the pixels in the layer. A label on the right shows 
the count of the sets that currently constitute the ML. Finally, in 
addition to dragging labels to separate the individual PLs, an ML can 
be quickly disintegrated by clicking on the "X" button that is 
available on the top right corner. This splits the top-level expression 
into all of its components, forming new PixelLayers or MultiLayers, 
as required, and placing them on the canvas. 

4.2.4 Similarity 
Another capability that is relevant for set comparisons is a similarity 
calculation. Set similarity can be defined in multiple ways. In a basic 
form, the similarity of two sets can be calculated from the number of 
elements that are present in their intersection. This metric favors sets 
with more elements, however. When the master set of elements is 
known, the similarity of two sets can be defined by using the number 
of elements that match via either common presence or absence (i.e. 
they satisfy the logical equality or XNOR operator). In other words, 
the similarity is derived from the number of elements that are 
commonly present in both sets plus the number of elements similarly 
absent in both sets, given the context of the master element list. 

OnSet, by default, takes the latter approach to calculating a 
similarity metric. If an element is present in two sets, their similarity 
score is increased by one. Likewise, if an element is absent from 
both those sets, the similarity score is increased by one. The score is 
then normalized by dividing it by the number of elements in the 
master set. By taking into consideration the elements missing from 
both sets, this similarity score closely reflects the visual encoding of 
the PixelLayers, where both present and absent set elements are 
shown to the user. However, in addition to the default similarity 
metric, the Jaccard index may be used. The Jaccard index is defined 
as the cardinality of the intersection of two sets divided by the 
cardinality of the union of those two sets. It does not give as much 
weight to missing elements as the default metric does, but it is more 
sensitive to subtle differences in small sets  

 
Fig. 8a. A MultiLayer OR with three sets. 8b. A MultiLayer AND of 
nested OR layers. 



The similarity score is calculated for every pair of PixelLayers on 
the canvas, including MultiLayer pairs and PixelLayer/MultiLayer 
pairs. Because every layer, regardless of type, represents a set, the 
calculation is performed in the same way between all pairs. The 
similarity is then represented by a band that connects the two layers. 
The thickness of the band is directly proportional to the similarity 
metric. The normalized score is easily scaled to the maximum and 
minimum thickness. OnSet’s default start state does not show the 
bands, but the user can display them by selecting the “Similarity” 
checkbox on the right of the user interface.  In addition, a dropdown 
menu allows the user to select the similarity metric to employ. 

When many PLs are shown on the canvas, the similarity bands 
can help users find interesting set relationships to focus on and 
explore. The bands also are interactive. Hovering over a band 
displays details about the similarity between the connected PLs in 
the information bar at the top of the interface. In addition, all the 
elements that are present in both PLs connected by the band are 
highlighted, while the PLs that are not connected to the band fade 
out. This feature is shown in Figure 9. Finally, clicking on the band 
“selects” the pair, keeping their common elements highlighted while 
the user interacts with other parts of the interface. Clicking elsewhere 
on the canvas clears the selection. 

4.2.5 Brushing and Locating Sets and Elements 
The list of sets in the right of the interface (see Figure 1) provides 
information about the sets loaded into the system. Each item in the 
list contains the set label as well as a horizontal bar indicating the 
cardinality of the set. The cardinality is constrained by the elements 
found in the master list of elements used to render the PixelLayer 
grids. It is possible that the true “universal” set of all elements found 
in the data is larger than the master list. However, elements that are 
not found in the master list are ignored. The set list supports sorting 
sets by labels alphabetically and by cardinality. A search box can be 
used to search for sets with a certain label, as well. The number of 
sets found for the current search (or total number of sets if no search 
filter is in place) is displayed at the bottom of the list. Brushing an 
item with the mouse in the set list fades out any PLs on the canvas 
that do not correspond to that set. This allows users to quickly locate 
any instances of the set on the canvas.  

In addition to the set list, OnSet provides a list of all the set 
elements. This list also supports searching and brushing. If an 
element is brushed in the list, all of that element’s present pixels in 
PLs on the canvas are highlighted, turning white. Any layers that do 
not contain a pixel corresponding to the element fade. This allows 
users to search for specific elements and see what sets contain them. 

4.2.6 Zoom and Pan 
The canvas supports zooming and panning to allow better 
arrangements of the visible layers. This is especially important as the 
number of layers increases. Clicking and dragging on an empty space 
in the canvas will move the contents in the direction of the drag. The 
mouse wheel may be used to increase or decrease the magnification 
scale. An indicator in the top right of the interface shows the current 
zoom level, with buttons to zoom in and out, as well.   

4.3 Implementation 
The prototype OnSet system runs in a web browser and is written 
entirely in JavaScript, using the D3 visualization toolkit [6]. The 
right-side interface controls were coded using the jQueryUI widget 
library. The system can be accessed at the following link: 
http://www.cc.gatech.edu/gvu/ii/setvis. 

4.4 Task Support and Scalability 
Earlier we noted the different types of tasks on set-typed data 
identified by Alsallakh et al [3]. With respect to these tasks, OnSet 
supports element-related tasks such as finding the elements 
belonging to a specific set or finding the sets containing a specific 
element, but not operations such as finding elements in sets A and B 

but not C (without the NOT operator), finding elements exclusive to 
a set, or filtering out elements. For tasks related to sets and set 
relations, OnSet supports different combinations of intersection and 
union operations, as well as estimations of these cardinalities, along 
with comparison of set similarities. Of course, interaction is required 
to perform these operations. It is difficult to perform set relations 
tasks such as finding the specific set intersections resulting in some 
other set of elements. As discussed earlier, OnSet does not support 
attribute-related tasks on elements, but in Section 6 we discuss how 
such tasks could be addressed within the OnSet framework. 

Scalability can present challenges for a system such as OnSet in 
multiple ways. First, as the number of elements increases, the 
representation of a set may need to be so large that not many sets can 
be shown and/or the size of each element becomes too small to 
adequately differentiate and employ. Alternately, the interactive 
behavior of the application may degrade as more elements and/or 
sets are added. Via trial use, we believe that the current technique 
can well represent PixelLayers with a cardinality of roughly 2000 
(45x45), still giving each element adequate size (pixels) and without 
losing significant interaction ability. Further, for even larger sets and 
numbers of elements, a user can employ the system’s zooming and 
panning capabilities to condense the size of PixelLayers in order to 
accommodate more per canvas. 

For situations when the individual sets are large but sparsely 
populated, however, the technique may be less effective because so 
much space is devoted to the sets and not the data elements. Again, 
through trial use, we have found the technique to work better for sets 
having more than about 20% of the elements present.  

5 CASE STUDIES  
To help the reader understand the utility of the OnSet technique, we 
describe two case studies employing OnSet to understand set data. 
The case studies help in identifying the interactions that support 
effective exploration of data with the visualization technique. In the 
first case study, we examine the domain of biochemical data. In the 
second, we explore calendar and event data. 

5.1 Whale Sharks and Blood Samples 
Whale sharks are the largest species of fish, growing to a length of 
up to 13 meters. They are on the list of vulnerable species and, as a 
result, marine biologists closely monitor their population and 
wellbeing. A recent study [8] used NMR and mass spectrometric 
methods (“metabolomics”) to analyze whale shark blood as part of 
this health monitoring effort. It generated large tables of chemical 
data that were difficult to analyze and understand. We have been 
able to procure data for whale sharks that were or are currently 
resident at the Georgia Aquarium in Atlanta, GA. 

 
Fig. 9. OnSet shows the similarity of two sets via the thickness of a 
band between them. Hovering over a similarity band highlights the 
common elements between two sets. 
 



 

Biologists primarily use this data to gauge the health of the 
sharks by analyzing and comparing the samples across days or 
weeks, or by comparing healthy and unhealthy individuals. Profiling 
the samples helps in identifying any toxicity assessment as well as 
tracking any environmental effects caused as a result of individual’s 
interactions with their surroundings. Their intention is to find 
anomalies or trends in the chemical composition and relate that to the 
diet and health status of the sharks. Doing this based on chemical 
names, rather than quantitative measures such as concentration, 
presents a unique analysis challenge. In many cases, biologists 
approach this data without specific questions but seeking to explore 
and discover insights. Additionally, they want to detect trends in the 
blood samples and identify characteristics that may predict health 
issues.  

We can model these requirements into specific questions of the 
following type: 

1. Does a blood sample contain the toxic compound Ciguatoxin? 
2. Has the compound been present in the shark’s blood during 

previous periods as well? 
3. Is the compound present in any other shark’s blood? If so, 

what other common compounds also are present? 
4. Are there patterns of chemicals that are consistent in shark X 

but only recently appear in shark Y? 
Each blood sample is described in terms of all the biochemical 

compounds that are detected by spectrometry. These compounds 
only appear as names without their corresponding concentrations. 
Our data included samples for ten whale sharks, with an average of 
about 5 samples per shark, each taken on different days. Every 
sample contains between 150 and 300 compounds, with a total of 
about 1100 distinct compounds across all the samples. We can model 
each blood sample as a multi-variable set of binary-state data. A 
sample can be modeled to have 1100 distinct possible compounds, 
with each sample being defined by both the compounds that are 
present in it and those that are absent.  In addition to detecting the 
presence of particular compounds in the samples, it is important to 
clearly observe the absence of specific compounds as well. 

With the help of an Aquarium biologist, we analyzed the 1100 
distinct compounds and identified a set of the 225 most frequently 
occurring compound and used them as the master set. We thus used a 
15 x 15 grid for representing a sample as a PixelLayer. The 
compounds also belong to certain chemical classes, such as 
Aldehydes or Amino Acids. This information was used to group the 
pixels in the PixelLayer in a quantum treemap [5] approach, though 
the layout was manually tweaked to avoid empty spaces that can be 
produced by the technique. Blood samples were imported into the 
application (Figure 1) with a label containing the shark’s name and a 
sequential number. A higher number indicated a more recent sample. 
The data associated with the sample was a large list of compound 
names. All of the operations described earlier for OnSet are available 
in this application we called AquaViz. An early version of the 
system was described in [18]. 

Consider the following scenario. One of the whale sharks, Ralph, 
has been ill. Both Ralph and another shark, Norton, have recently 
been put on a new diet. Biologists want to identify any chemical 
compound(s) related to Ralph’s illness and determine if the illness 
may spread to Norton through their shared diet and eliminate any 
items that are known to introduce the compound(s). To do so, they 
run AquaViz. 

Using the samples list, they are able to locate the three most 
recent samples for both Norton and Ralph and are surprised to see 
that Ralph’s blood contains fewer compounds in it than Norton’s, as 
indicated by the horizontal bars below the sample names. This 
interesting discovery helps motivate them to dig deeper into the data. 
They add the six samples to the canvas. Looking at the PixelLayers, 
it is clear that Norton’s samples have a higher number of compounds 
than Ralph’s. The biologists drag each shark’s samples together to 
form two MultiLayer representations, one containing Ralph’s 
samples and one containing Norton’s. In the AND state, the MLs 
seem to be very similar. Switching the operation to OR, however, 

reveals a large cluster of slightly faded compounds in Norton’s layer 
that are missing from Ralph’s. Hovering over the elements, the 
biologists are able to see that Norton’s blood contains important 
amino acids that Ralph’s does not. 

The biologists add the most recent samples for the other sharks 
and turn on the bands showing the similarity metric for each layer 
pair. The bands connected to the Ralph ML are all similar in weight 
but smaller than the bands connected to the Norton ML. Most bands 
connected to the Norton ML are similar to each other, too. However, 
the band connecting Alice’s layer to the Norton layer is quite large. 
Hovering over the band confirms that the two layers share a large 
number of compounds. Interested in this relationship, the biologists 
remove all other layers from the canvas, then break apart the Norton 
ML back into the individual sample PLs. The similarity bands update 
to show that only the two most recent samples share much in 
common with Alice’s data. Using this information, the biologists 
review camera footage of the past two days and discover that Norton 
was accidentally fed Alice’s food. They conclude, however, that this 
mistake was a good one. The new diet for Ralph and Norton has 
been ineffective and Norton may have fallen ill, as well. The 
biologists determine that both shark’s diets should be switched to 
one similar to Alice’s. 

As seen in this scenario, the interactive, direct manipulation of 
the samples and compounds provides the user with a “hands on”, 
flexible environment for investigating different combinations of 
samples and making sense of the data found in them. The user can 
explore similarities and differences across samples, as well as 
patterns and peculiarities across multiple samples simply by 
dragging them around the canvas.  

5.2 Calendar Visualization 
We also utilized the OnSet technique for the purpose of task and 
event scheduling. Consider the following scenario: Jonathan, who is 
in HR at a web-development company, wants to discuss the recent 
changes to the hiring process introduced by the company 
management with the teams he overlooks. Accordingly, he decides to 
schedule a meeting with all the team leads as well as at least one 
program manager from each ongoing project. He sends a meeting 
request to all the people for a particular day and time. He 
immediately receives feedback from a team lead stating that the time 
does not work for her and that he should create a Doodle poll. 

The above scenario describes a situation that we often face in our 
daily lives. We frequently use polls in such situations to find an 
optimum time slot. However, these polls have a few limitations. 
First, the host needs to specify an exhaustive list of options at the 
start. Additionally, each participant is also required to individually 
answer the poll. Finally, the application does not provide a method to 
create meta-configurations. For instance, in the above scenario, the 
host cannot configure the poll so that the presence of all team leads is 
mandatory, but only one of the program managers needs to be 
present.  

We observed that by modeling the calendar data of each 
participant in a specific manner, we could utilize our set visualization 
technique for the above-mentioned scheduling task. The data would 
be modeled so that each person corresponds to a set, with the 
elements within the set being the time slots, both available and 
unavailable. Comparing the corresponding sets could highlight time 
slots that are available across participants. 

Various schemas can be used to present the calendar data, since 
the structure of a PixelLayer is modular. A set could be structured to 
present the data for a week, a month, or a year. For each, further 
possible configurations exist. For instance, data for a year can be 
represented as ‘number of weeks in a year’ x ‘number of days in a 
week’, i.e. a 52 x 7 matrix. Alternately, a year also can be 
represented as ‘number of months in a year’ x ‘(max) number of 
days in a month’, i.e. a 12 x 31 matrix. Which scheme is appropriate 
depends on the intended task. In our scenario, the task relates to 
scheduling a meeting in a particular week. As a result, we use one 
week as the unit of representation. We model a business work-week 



as 5 days of work with 8 hours of work each day. Accordingly, the 
layer consists of 5 columns and 16 rows, with each column 
representing a day and each row representing a half-hour slot.  

We developed an application called CalViz that implements the 
OnSet visualization paradigm. Figure 10 shows a view of 
PixelLayers in the system. Here, the data encoded as elements is the 
inverse of the events retrieved from a calendar. Events are those slots 
in which a person is busy. However, we show the inverse, or all slots 
in which the person is available, in the PixelLayer. 

The CalViz interface is similar to the AquaViz interface with the 
list of sets now revealing the names of the people whose calendar 
information is accessible. In our scenario described earlier, Jonathan 
imports a person’s calendar information for a week onto the canvas 
and the PixelLayer shows up as a 16 x 5 matrix. However, the 
present (blue) pixels represent those time periods in which the person 
is available. This is different from the schema of highlighting 
elements that are present in the set, as we used in all the earlier 
examples in the article. The main reason for doing so is that the task 
driving the interface, namely identifying slots of time when multiple 
people are available, is paramount. Once multiple people are added, 
the available free time is found by locating the colored pixels. 

The CalViz visualization shows data for one week at a time. The 
selected dates are highlighted at the top of the interface. A different 
week can be selected by using the left and right buttons or by 
opening a calendar input menu that permits selecting a week at a 
time. Changing the selected week affects all the samples that are 
thereafter loaded on the canvas. Changing the selected week, 
however, does not update the data for the samples that already have 
been added. The purpose behind this design decision was to support 
a particular type of task. Consider the situation where a user wants to 
schedule a weekly meeting with a person for the 4 upcoming weeks. 
To do so, the user would need to find a slot that works for the person 
in all the 4 weeks. CalViz allows a user to import the same person 
multiple times. Changing the selected week before each import, and 
then comparing the four layers by overlaying them on each other, the 
user would be able to see only those time slots that are available in 
all the four weeks. 

6 CONCLUSION 
In this article, we introduce OnSet, a technique for visualizing large-
scale binary set data. OnSet is a pixel-matrix based representation 
technique that models each set by the elements that it both contains 
and does not contain. The technique employs direct manipulation 
interaction and visual highlighting to support identification of 
commonalities and differences as well as membership patterns across 
different sets of elements. The technique is scalable and easily 
supports sets with cardinality in the hundreds. We discuss the 
applicability of the technique across different domains with the help 
of two use cases. In the first use case, we utilize spectrometry data 
from blood samples of whale sharks and identify the common 
compounds that occur across samples. In the second use case, we 

discuss a task-scheduling scenario where participants’ calendar data 
is used to find available time slots. 

The OnSet technique differs from existing set visualization 
techniques in a number of key ways. First, the technique does not use 
only one visual representation of each data element. Instead, a 
particular element occupies a specific position within each set’s 
representation. This obviates the need for irregular shapes and 
contours for set boundaries. It also provides visual evidence showing 
the absence of an element in a set as well as presence. The OnSet 
technique also does not encode subset relationships, similarities, and 
differences solely through visual imagery. OnSet instead utilizes 
direct manipulation stacking of set representations to perform 
different set operations. Complex composite operations can be 
iteratively constructed and de-constructed. 

In terms of future work to be addressed, one main shortcoming of 
the OnSet technique is its limitation to binary set data, that is, its 
inability to also show attributes of the data set elements. For 
instance, consider a data set of people. Each has a hair color, eye 
color, height, weight, and so on. OnSet is able to show large sets of 
these people and communicate individual’s presence or absence in 
these sets, but it currently cannot portray information about the 
people’s attributes. To address this issue, each categorical value, e.g., 
blonde hair, could become its own set in OnSet. People with that 
attribute value then would have their pixel positions colored in the 
“blonde hair” PixelLayer. Attributes could even be combined via 
OnSet’s composition so that, for instance, a set showing blonde-
haired, green-eyed people could be created. Of course, quantitative 
attributes would still be problematic. Still, this approach would seem 
to be more beneficial than other techniques that use color to indicate 
different element attributes and quickly run out of colors. 

Additional future work involves adding new capabilities to the 
system. Creating logical NOT and “minus” operations would be 
helpful as would allowing other sorting orders of elements, such as 
by frequency. Showing “empty” (where no element resides) cells at 
the end of a PixelLayer differently, improving the labeling, and 
showing counts of MultiLayer elements all would be beneficial.  

Ultimately, creating coherent, comprehensible visualizations of 
large sets that share multiple elements is simply a very complex task! 
Researchers have developed a wide variety of visual representations 
to do so, and many become complex very quickly, making visual 
interpretation a challenge. In OnSet, we address this problem by 
using interaction to show many set operations that other techniques 
try to illustrate statically. OnSet’s use of interaction in this way 
provides both advantages and disadvantages. Focusing first on the 
disadvantages, the technique requires the user to interact, thus the 
burden of performing meaningful, enlightening operations is on the 
user. Key set relationships are not laid out in front of the user for 
browsing. Conversely, we feel that the key advantage of OnSet’s 
visual representation and use of interaction is that it provides a 
visualization that is more simple and comprehensible than most other 
techniques while still providing a great deal of power and utility. The 
rectangular PixelLayer model with specific element positions and the 
direct manipulation stacking of layers are concepts that can be easily 
learned and interpreted on the screen. We have demonstrated the 
technique to many other researchers and they grasp its basic 
methodology and operations very quickly. OnSet supports a diverse 
set of analytic tasks on large sets of elements and it does so in a 
manner that can be quickly understood and interpreted. 
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Fig. 10. PixelLayers from the CalViz application. 
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