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Fig. 1: Part of a SentenTree visualization of a collection of 189,450 tweets (108,702 unique) posted in a 15 minute time window
around the first goal of the opening game of the 2014 Soccer World Cup.

Abstract—We introduce SentenTree, a novel technique for visualizing the content of unstructured social media text. SentenTree
displays frequent sentence patterns abstracted from a corpus of social media posts. The technique employs design ideas from word
clouds and the Word Tree, but overcomes a number of limitations of both those visualizations. SentenTree displays a node-link diagram
where nodes are words and links indicate word co-occurrence within the same sentence. The spatial arrangement of nodes gives cues
to the syntactic ordering of words while the size of nodes gives cues to their frequency of occurrence. SentenTree can help people
gain a rapid understanding of key concepts and opinions in a large social media text collection. It is implemented as a lightweight
application that runs in the browser.
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1 INTRODUCTION

With the popularity of social media and online communities, a new type
of text document is growing explosively. Examples of these documents
include Tweets, Facebook posts, YouTube comments, and Yelp reviews
that we will collectively call social media text. Social media text
encodes rich information on the public’s interests and opinions and this
information is valuable to both professional analysts and casual users.
While we can gain valuable information from examining the social
network structure and the message volume fluctuations, making sense
of the textual content itself remains very challenging. Due to the natural
complexities of human languages, unstructured text does not lend itself
well to computational analysis. Social media text further complicates
the problem with its unique qualities—Compared to traditional text
documents (e.g. book chapters, news articles) a social media text
collection typically contains a large number of very short documents
authored by different users. For a given topic, we can accumulate a huge
document collection in a very short period of time that contains highly
repetitive and redundant information. Keeping these challenges in
mind, we focus on a simple goal in this paper: designing a visualization
technique that helps people gain a quick overview of the content of a
social media text collection.

There are typically two ways to provide a high-level summary of
a text document set. One solution is to extract a few representative
sentences from the collection. For social media messages, this can
be accomplished by showing the documents with the most shares or
“favorite” designations. This popularity-based solution works well for
some situations, but it runs a risk of lacking coverage. Research shows
that the most popular messages on social media are usually produced by
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a small population of elite users or opinion leaders [19, 42]. Therefore,
selecting the most popular messages usually means overlooking the
voices of “ordinary” users of social media. In many scenarios, the
opinions of ordinary people are precisely what the analyst wants to
hear.

A second solution that takes coverage into consideration is to ex-
tract some common information from the entire document collection.
Numerous research efforts in the text mining community employ ad-
vanced rule-based and statistical methods (e.g., entity identification,
topic modeling) to produce representative word lists or distributions
and document clusters. The presentation of these outputs is almost
inevitably some variation of a word cloud. While it makes sense to
present topics using words, we argue that word clouds only give a
sense of concepts, not more developed thoughts or opinions. Longer,
connected phrases and sentences provide people with more complete
ideas, thoughts, and sentiments of the document authors.

A number of attempts to add more context or structure to word-
based visualizations exist. One general approach is the use of semantic-
preserving word clouds [11, 31, 38, 44]. Another is to connect words
through visual structures such as lines [9,22,26]. Yet another approach,
including systems such as Word Tree [39], Phrase Net [35], and Word-
graph [32], positions and links words spatially following their natural
occurrences in sentences, thus better encoding thoughts and opinions.
These projects inspire our design of a novel visualization technique for
summarizing text.

We introduce the SentenTree, a novel technique for visualizing the
content of unstructured social media text. SentenTree seeks a balance
between showing the most frequent words and preserving sentence
structure. SentenTree gives people a high-level overview of the most
common expressions in a document collection, and allows drilling
down to details through interactions.

2 RELATED WORK

Visualization has been applied to text documents of varying sizes for
many different tasks [25]. Some projects facilitate the understanding of
very large document sets by focusing on extracting the key themes and
concepts and clustering documents according to these themes and con-
cepts. Visualizations often map concepts and documents to a 2D/2.5D
space and utilize spatial proximity to imply relationships between con-
cepts and documents. Examples of this type of visualizations include



SPIRE/IN-SPIRE [41], the Stanford Dissertation Browser [7], and
many knowledge mapping visualizations [3]. Complex clustering and
language modeling techniques are often used to extract concepts and
relationships, and the goal of these types of visualizations is under-
standing the landscape of documents beyond just learning about the
content of the documents.

Another type of text visualization facilitates understanding of docu-
ments and insight generation by linking named entities. Jigsaw [16] is
a system for investigative analysis that focuses on entity co-occurrence
within the same document, while FacetAtlas [5] looks for complex
multifaceted entity relationships.

Many text visualizations attempt to portray temporal changes of
topics. The STREAMIT system [1] shows an evolving document col-
lection as small circles that are clustered together to denote similarity.
A popular visual metaphor used for portraying tempral changes is the
streamgraph, as exemplified by ThemeRiver [17] that uses this tech-
nique to encode topic volume changes over time. MemeTracker [27],
TIARA [40], TextFlow [10], and OpinionFlow [43] are just a few of the
many visualizations using some variation of the ThemeRiver technique.
Some of these systems overlay a word cloud on the ThemeRiver to dis-
play textual content. EventRiver [29], Leadline [14], Cloudlines [23],
and Xu’s system [45] use bubble-like visual elements to show event
bursts detected from text streams. Another technique, employed by
Story Tracker [24], clusters news stories and displays a set of keywords
for each news story at a different time point. The keywords are linked
over time by edges.

Other text visualizations map topics/concepts to physical locations.
Scatterblogs [4] is an example system that generates keywords from
social media text and overlays them on a map to show the origins of
the text. Another system [28] combines a map view with word cloud
and time series views to show how specific events have framed topic
changes in document collections.

All of these visualizations seek to highlight concept relationships,
topical changes, or physical locations in the visualization, and the
textual content is either hidden or displayed primarily by a word cloud
variation. Visualizations of the actual textual content are less common.
In the next two sections we review two major classes of visualizations
of textual content: word cloud-related visualizations and text structure
visualizations.

2.1 Word cloud related visualizations
Tag clouds or word clouds are arguably the most widely used visual-
ization method to display the content of text documents. Popularized
by numerous websites, the original tag clouds visualizations show
frequently used tags and vary font size according to tag usage fre-
quency [36]. As people started to apply the visualization technique
to other text documents, the name “word cloud” and sometimes “text
cloud” grew in popularity. We will use “word cloud” to refer to this
visualization technique hereafter.

A major variation on word clouds, the Wordle technique [37], au-
tomatically generates compact and aesthetically pleasing layouts with
words at varying orientations. Chuang et al. [6] applied natural lan-
guage processing techniques to improve word selection. Word clouds
are also often added to other visual metaphors, as we discussed above,
to provide some context to the textual content.

Despite their popularity, word clouds have been found to be lacking
for analytical tasks [36]. Hearst and Rosner [18] pointed out three
major problems with word clouds: 1) the size encoding is not accurate
due to different word length, which makes it hard to compare words,
2) the physical layout is not meaningful, therefore words appear in
discrete form and there’s no context next to them, and 3) there is no
natural “flow” for reading, the viewer just looks at random words in
the visualization. Supporting the final two points, Yatani et al. found
that humans tend to verbalize opinions in short expressions rather than
discrete words [46].

One collection of projects, semantic-preserving word clouds, pri-
marily address the second problem above by positioning words/terms
closely to other related ones. Context-preserving word clouds [11],
Seam-carving word clouds [44], ProjCloud [31], and ReCloud [38]

all pursue this approach in different ways. In general, they focus on
clustering related words together and providing compact visual rep-
resentations of the word collections. Barth et al. [2] introduce three
additional semantic word cloud algorithms and compare them to some
of the other existing algorithms along various quantitative metrics.
WordWanderer [13] allows a viewer to select or compare words in a
cloud and then the position and appearance of other words changes
to reflect the selection. All these techniques position words based on
some measure of similarity or relatedness. SentenTree, conversely, uses
actual sentence structures from the document collection to position
words and terms, thus making it more like the systems discussed in the
next section than the above techniques.

Another collection of projects extends word clouds by introducing
graphical structures onto the word collections. Parallel Tag Clouds [9]
shows connections between words in multiple tag clouds using a paral-
lel coordinates style visualization. SparkClouds [26] does something
similar, but uses sparklines as the organizing visual metaphor. Word-
Bridge [22] shows clusters of words connected by lines and other
“bridging” words that connect terms in different clusters. Our Senten-
Tree technique similarly seeks to position and connect words using link
structures, but they are derived from word positions in sentences.

2.2 Visualizations of text structures
Researchers have suggested other visualization techniques for textual
content that preserve some of the original text and sentence structures.
A notable example is the Word Tree [39], which allows a person to
select a word of interest and displays the sentence segments next to that
word by building and visualizing a prefix tree with the selected word
at the root. The viewer thus learns about the word in the context of
sentences. Double Tree [12] extends this technique by building Word
Trees on both sides of the word of interest. Wordgraph [32] allows query
by wildcard and displays not only Word Trees on both sides of the query
pattern but also branches in between query terms. These techniques
were a major source of inspiration to the design of SentenTree because
we also seek to show words in the context of sentences. However, we
do not want to require a person to select specific words to act as the
foci of the visualization. Instead, we want the initial visualization to
appear simply given a collection of documents.

The PhraseNet [35] visualization technique identifies word pair
relationships (e.g., X and Y, X of Y, X’s Y) in a document and displays
those pairs in a node-link network. Although applied for a different
purpose, showing uncertainty in statistically-derived lattice structures,
the layout algorithm by Collins et al. [8] attempts to position words
to reflect sentence structures with a goal similar to ours. It positions
words from a sentence horizontally with potential replacement words
drawn above others.

We also have been inspired by several infographics found online.
One “genre” of these use flowchart-style graphs to show the sequential
order and repetitions of words in items such as song lyrics and stories,
as exemplified by a comic from xkcd [30].

3 SENTENTREE DESIGN

Figure 1 shows an example of the SentenTree visualization for a Twitter
dataset of 189,450 tweets commenting on the opening game of the 2014
Soccer World Cup, posted during a 15 minute time window around
the first goal. A person looking at this visualization will immediately
notice some prominent words like first, goal, world cup, watching, etc.
Similar to a text cloud, the large font size of these words indicates their
high frequency of occurrence in the dataset. These words are good
indications that people were discussing the game between Brazil and
Croatia. An edge between two words indicates their occurrence in the
same tweet. By interacting with the visualization and following the
linked words from left to right, the viewer can further identify patterns
such as first goal world cup own goal. Hovering the cursor over the
word own (Figure 2a), highlights the expression first goal world cup
own goal, fades other words, and displays example tweets containing
these words in that order. Hovering over the word score (Figure 2b),
highlights another expression: brazil marcelo score first goal world cup
brazil. These actions should help the viewer learn that the first goal of



the World Cup was an accidental own goal by Brazilian player Marcelo
against his own team.

3.1 Design Goals
In this section we discuss four goals that drove the design of SentenTree.
The first design goal was to leverage the positive qualities of word
clouds, namely their ability to facilitate fast impressions by utilizing
size. Since the most frequent words are encoded in the largest font
sizes, they jump out to the viewer. In the SentenTree visualization, we
also wanted the frequent words and expressions to be displayed more
prominently so they can be easily spotted by the viewer.

The second goal was to bring in more sentence structure from the
items in the text collection. As researchers have repeatedly found, a
bag of discrete words is limited in its expressiveness. Other approaches,
such as the Word Tree [39], give context to a word through display-
ing sentence fragments next to that word. Review Spotlight [46] uses
adjective-noun pairs to summarize opinions, which turned out to be
much more informative than text clouds for the same data. For Sen-
tenTree, we use fragments extracted from sentences to represent those
sentences. For example, a person should be able to reasonably guess
the meaning of first goal world cup own goal without reading the
full sentence the first goal of the World Cup is an own goal. These
fragments are called frequent sequential patterns, and we will more
formally define them in the next section.

We chose to use patterns instead of full sentences because of a third
design goal: the visualization should be concise but yet cover as much
of the dataset as possible. A concise pattern may summarize many
sentences that are similar to each other but have slight differences. For
example, in the previous example, the pattern first goal world cup own
goal is shared by 14,935 tweets (Figure 2a) and the pattern score first
goal world cup is shared by 13,330 tweets (Figure 2b). Frequent se-
quential patterns are especially well suited to social media text because
social media text collections on a given topic typically contain many
sentences that share similar structures with small wording differences.
The conciseness goal also suggests that we cannot show all frequent
sequential patterns. Thus, the SentenTree technique collapses common
parts of patterns to both save space and highlight their commonality.
A reader familiar with the Word Tree might have noticed the similar-
ity between Figure 1 and a Word Tree in that some large words have
several branches extending from them on one or both sides. This is an
indication that these big words are shared by several different sequential
patterns.

Since our objective is to provide a high-level overview of the textual
content, SentenTree follows the Shneiderman Mantra to provide an
“overview first”, then allow “zoom and filter” to get to “details on
demand” [34]. By starting with the most common patterns, SentenTree
addresses the entry point problem of the Word Tree [39]: instead
of relying on people to identify their own entry point, the technique
provides them with an overview of the most frequent patterns and
allows them to select patterns of interest and drill down to see more
details. This implies a fourth design goal on the technique: the pattern
generation algorithm needs to be incremental.

3.2 Frequent Sequential Patterns
As discussed in the previous section, the central idea behind SentenTree
is to take a large social media dataset, find the most frequent sequences
of words, and build a visualization out from them. The sequences are
called frequent sequential patterns. Below, we define the concept and
then describe the sequence generation algorithm in detail. Because
of the complexity of the algorithm, the following section provides an
example to help explain its operations.

First, we formally define frequent sequential patterns for so-
cial media text based on a more general concept from data min-
ing [33]. We consider a sentence a sequence of words. Suppose we
have two sequences α =< a1a2 . . .an >, β =< b1b2 . . .bm > where
a1,a2, . . . ,an,b1,b2, . . . ,bm are words. We say that α is a subse-
quence of β , and β is a super-sequence of α , if there exist integers
1≤ j1 < j2 < .. . < jn ≤ m such that a1 = b j1 ,a2 = b j2 , . . . ,an = b jn .
This is denoted as α ⊆ β .

The set of sentences containing the sequence α form the support
database Dα . The support of α is the number of sentences in D. A
sequence α is called a frequent sequential pattern when support of α

exceeds some predefined lower threshold. In data mining, the threshold
is called a minimum support threshold and is generally fixed for each
mining task. In our case, the minimum support threshold is not fixed
because we want to build frequent sequential patterns incrementally.

For example, suppose we have a database consisting of three sen-
tences (sequences) s1: The first goal of the World Cup is an own goal,
s2: Someone somewhere has made a lot of money on first goal of World
Cup being an own goal and s3: Brazil’s Marcelo scored the first goal
of the World Cup. The support of the sequence first goal world cup is
3 as it is a subsequence of all three sequences in the database, while
the support of the sequence first goal world cup own goal is 2 because
it is a subsequence of s1 and s2 but not s3. If the minimum support
threshold is 3, then only first goal world cup is considered a frequent
sequential pattern. But if the minimum support threshold is 2, then both
sequences are considered frequent sequential patterns.

Data: raw sentences
Result: graph
tokenized sentences = initialization(raw sentences);
create a pattern s without any word and make Ds = {all tokenized
sentences};
list of leaf sequential patterns = patternGeneration(s, s, default
word count on screen);
construct graph out of leaf sequential patterns;

Algorithm 1: graphCreation()

Data: root node of tree of sequential patterns, start pattern,
number of visible words needed

Result: list of leaf sequential patterns
if start pattern does not contain any word then

number of visible words needed -= number of words in start
pattern;

end
leaf sequential patterns = empty list;
push start pattern to leaf sequential patterns;
while leaf sequential patterns contains at least a word and visible
word needed > 0 do

s = pop pattern with the largest support from leaf sequential
patterns;
if s has no child sequences then

find the most frequent super-sequence s′ of s that is
exactly one word longer than s;
split Ds into the support database for s′ and a new
Ds = Ds−Ds′ ;
add s′ as the left child of s, and the s with new Ds as right
child of the old s;

else
s′ = the left child of s;
s = the right child of s;

end
number of visible words needed -= 1;
push s′ and s to leaf sequential patterns;

end
return leaf sequential patterns;

Algorithm 2: patternGeneration()

3.2.1 Sequential pattern generation and graph building algo-
rithm

Algorithm 1 shows the process for constructing the graph data struc-
ture for the first time. The system first takes in raw sentences and
goes through an initialization process (initialization()). This process
normalizes sentences to lower case, performs tokenization to segment



(a) Hovering over own in the World Cup visualization. (b) Hovering over score in the World Cup visualization.

Fig. 2: Interacting with the World Cup visualization.

sentences into words (including numbers, hashtags, urls, etc.), and fil-
ters out stop words. Then an initial pattern is created without any words,
and all tokenized sentences are put into its support database. This initial
pattern serves as the root node of a tree of sequential patterns, which
we use to store intermediate states of the sequential pattern generation
process. This tree is important because we can reuse these intermediate
states when zooming in and out on the visualization. Then the algo-
rithm calls the patternGeneration() function to grow new sequential
patterns from the root one.

The task of patternGeneration() (Algorithm 2) is to start with a
given sequential pattern and grow its super-sequences until the total
number of words in the patterns reaches the given number of visible
words needed. These patterns will appear in the visualization and the
given number of visible words needed is determined by the screen size
(typically 100-200). The algorithm grows patterns by maintaining a list
of leaf sequential patterns. At first, the only item in the list is the given
sequential pattern. In every run, the most frequent pattern is popped
from the leaf pattern list, and the program finds its most frequent super-
sequence which is one word longer than the old pattern. This means a
new word will be added to the visualization and the number of visible
words needed is reduced by one. The new sequential pattern becomes
the left child of the old sequential pattern on the tree, and a pattern
that looks exactly like the old one is added as the right child of the
old sequential pattern. The support database of the old pattern is split
between the new patterns, and the new patterns are added to the list
of leaf patterns. Therefore, at anytime, the original database is split
between the support databases of all the leaf patterns. The program
continues growing new leaf patterns until the number of visible words
needed is reduced to zero.

Function patternGeneration() returns the list of leaf patterns to
function graphCreation(), which uses these leaf patterns to construct
a graph data structure for the visualization. In the graph data structure,
each node is a word in the sequences; a word shared by multiple leaf
patterns appears as one node. A directed edge is added between every
pair of adjacent words in a leaf pattern.

After the visualization is created, the user may wish to zoom in
on a frequent sequential pattern and bring up more children patterns.
In this case, the program calls patternGeneration() with the selected
sequential pattern as the start pattern and starts growing new patterns
from there. The algorithm is usually able to reuse some patterns from
the sequential patterns tree so it does not have to recalculate patterns
that were discovered before. When the leaf patterns are returned, the
program constructs a new graph from the leaf sequential patterns in the
same way described in the previous paragraph.

Note the goal of this algorithm is different from a typical sequential
pattern mining algorithm. Instead of trying to find all frequent sequen-
tial patterns based on a minimum support threshold, this algorithm only
grows sequential patterns from existing patterns for building the graph
visualization. Most algorithms in sequential pattern mining follow a
depth-first approach to find sequential patterns because they want to
enumerate all patterns satisfying a lower limit frequency. Our approach
is breadth-first, and will take more time to perform than the depth-first
approach if our goal is to exhaust all possible patterns. However, we
only need a limited number of patterns each time due to display lim-
its, therefore the breadth-first approach works well for its incremental
quality.

3.2.2 Example - World Cup First Goal
We use a simplified World Cup example to illustrate our approach.
Figure 3 illustrates the following steps.

We start with a dataset of 189,450 tweets. We first normalize the
tweets to lower case, perform tokenization to segment each tweet into
discrete words (including hashtags, urls, etc.) and remove stop words
and punctuation.

1. We find the most frequent single word pattern (i.e. the most
frequent word) in the dataset to be goal, and divide the dataset
into tweets containing goal (74,554) and tweets without goal
(114,896).

leaf patterns: empty pattern (114,896), goal (74,554)

2. Next we pick the most frequent leaf pattern which is the empty
pattern with 114,896 tweets. We find the most frequent single
word pattern within these tweets to be watching (11,248) and add
it to the tree, we also end up with an empty pattern with a support
of 103,648.

leaf patterns: empty pattern (103,648), goal (74,554), watching
(11,248)

3. The most frequent leaf pattern is still the empty pattern. For
illustration purpose we will ignore it from now on and pick the
pattern goal. We will grow our pattern by one by finding the next
most frequent pattern in the subset of tweets containing goal. The
new sequential pattern is first goal (41,344). Note that the new
pattern will always contain the previous pattern, as all tweets in
this subset contain the previous pattern. We also end up with a
pattern goal without a first before it and this subset has 33,210
tweets.

leaf patterns: first goal (41,344), goal (33,210), watching
(11,248)

4. The most frequent pattern is first goal. Create first goal world.

leaf patterns: first goal world (36,136), goal (33,210), watching
(11,248), first goal (5,208)

5. The most frequent pattern is first goal world. Create first goal
world cup.

leaf patterns: first goal world cup (36,081), goal (33,210), watch-
ing (11,248), first goal (5,208), first goal world (55)

6. The most frequent pattern is first goal world cup. Create first goal
world cup own.

leaf patterns: goal (33,210), first goal world up (21,220), first
goal world cup own (14,861), watching (11,248), first goal
(5,208), first goal world (55)

7. The most frequent pattern is goal (33,210). Create own goal.
Note that in this new pattern own goal we have a word own and
in a previously generated pattern first goal world cup own we
also have a word own. But these two words are not considered
common branches in the SentenTree and will be represented by
two distinct nodes in the final visualization.



leaf patterns: first goal world cup (21,220), goal (19,977), first
goal world cup own (14,861), own goal (13,233), watching
(11,248), first goal (5,208), first goal world (55)

8. The most frequent pattern is first goal world cup. Create score
first goal world cup. Note that each time we grow a new pattern,
a word is added to the existing pattern. The new word can appear
before, behind or in-between the words of the parent pattern.

leaf patterns: goal (19,977), first goal world cup own (14,861),
score first goal world cup (13,291), own goal (13,233), watching
(11,248), first goal world cup (7,929), first goal (5,208), first goal
world (55)

The leaf patterns first goal world cup own, score first goal world
cup, own goal, and watching are used to construct a graph structure
for the final visualization (Figure 4). Note that first goal world cup
own and score first goal world cup share a subsequence first goal world
cup, and this subsequence also shares the word goal with own goal.
While watching is not connected to the other words and forms its own
graph. We will discuss the layout and visual encodings of the graph in
the next section. The different sequential patterns can be highlighted
by hovering the mouse over one of the words. We will discuss the
interactions in detail in section 3.4.

Fig. 3: An example pattern generation process. The words in boldface
are new words added to the parent pattern to generate the current pattern.
The numbers in parenthesis are the support of each sequential pattern.

Fig. 4: A simple SentenTree of top sequential patterns in the World
Cup dataset.

3.2.3 Additional Considerations

“Big words”
As described in previous sections, SentenTree prioritizes the most

frequent sequential patterns and grows new patterns out of the existing
ones. This introduces a problem in some scenarios: a large pattern
may dominate the view and prevent other interesting patterns from
surfacing. This is especially likely to happen when the dataset is
retrieved based on particular keywords, therefore those keywords exist
in most entries in the dataset. Since the person using the system is
already familiar with the keywords, we suspect they are not crucial
to the view. Additionally, their large size and visual dominance may
obscure useful new information. Figure 5 shows what happens with
the World Cup dataset used in the teaser image (Figure 1) without
deprioritizing world cup. Note how world cup is huge and makes many
branches small and difficult to read. Only one graph is in the view,

so it generates significant white space, compared to Figure 1, where
multiple graphs fill up the screen.

We address this problem by imposing a rule that words that appear
in a large of number entries cannot be used to generate the first pattern
of a graph. After testing a variety of values, we set the cut-off to be
one third of the database size. This rule ensures that the view never
ends up with a huge pattern that is significantly larger than the rest of
its branches. These patterns will still show up in the visualization, but
they will appear in multiple graphs so each one is smaller and does not
skew the other words.

Fig. 5: A SentenTree visualization of the same dataset as Figure 1
without deprioritizing world cup.

Tokenization and filtering
Tokenization segments sentences into words. Our implementation

employs a regular expression pattern to match not only words but also
numbers, hashtags, urls, @ handles, etc., because they are prevalent
in social media text. The current implementation of SentenTree does
not perform stemming; therefore, words like watch and watching are
considered different tokens. We are considering including a stemmer
for future versions of SentenTree.

The SentenTree algorithm does not include punctuation as tokens.
Additionally, it discards stop words such as “the”, “and”, “of”, etc 1.
These choices are opposite as done in the Word Tree, which keeps both
stop words and punctuation to best preserve the context for each word.
We decided to remove stop words and punctuation because SentenTree
is a high-level summary of the text. Stop words and punctuation are
not likely to be as informative as substantive words in the dataset.
Furthermore, common stop words and punctuation may “wash out” the
more important content words. Note that negation words like “not” are
not considered stop words because taking them out would reverse the
meaning of sentences.

Currently the algorithm does not filter out hashtags or urls, but we
have noticed that in general they are less informative than regular words
and may be a waste of screen real estate, so we plan to include options
to filter them out in the future.

3.3 Spatial layout and visual encodings

We produce a visualization from the graph structure generated in the
previous section. The graph visualization is created through a force-
directed approach. Each graph is its own SVG element so that the
layout algorithm can run in parallel for multiple disconnected graphs.
The SVG elements are ordered by the frequency of the largest word in
the graph and packed as tightly as possible on the screen.

We developed alignment constraints for the force-directed layout
and enforce them using the CoLa package [15]. The most basic con-
straint is the word order constraint: if two words appear in the same
sequential pattern, the relative horizontal placement of words must
follow their natural order in the pattern. This promotes that a person
can read a pattern from left to right and understand its meaning. By
experimenting with initial layouts, we further developed vertical and
horizontal constraints that increase the legibility of the graph:

vertical: If two words always appear as a bigram, then we shorten
the link between the two words and make sure they always appear on

1SentenTree uses a modified list based on the English stop words corpus
from the Natural Language Toolkit (NLTK).



the same vertical level. An example is the words world and cup in
Figure 1.

horizontal: If two patterns share some a common subpattern, then
the words of the same distance from the common subpattern should
center horizontally. An example is Figure 6b where the words way,
buys, picks, etc. are centered horizontally because they all appear next
to yelp.

These constraints not only make the graph layout less cluttered,
but they also impose structure on the layout so that words in similar
syntactic positions align vertically and can be compared against each
other. The power of these layout constraints is demonstrated in Figure 6.
This dataset consists of tweets mentioning the food ordering service
Eat24 shortly after it was acquired by Yelp. (Only part of the visual-
ization is shown in Figure 6.) Figure 6a shows the result of running
the force-directed layout without the horizontal and vertical constraints,
and Figure 6b shows the result with the constraints. Note that align-
ment yields useful information: the observer can see that when people
discuss the acquisition, they use many sentences that are similar in
form and meaning but vary slightly in wording. For example, they use
picks and gobbles in place of buys, and describe Eat24 as food ordering
service or delivery network.

(a) Force-directed layout using only the left-to-right constraint.

(b) Force-directed layout with horizontal and vertical constraints added.

Fig. 6: Part of a SentenTree visualizations of tweets discussing Yelp’s
acquisition of Eat24.

We use font size and color shading to double-encode the frequency
of occurrence. We make the font size of a word proportional to the
square root of the number of text documents containing the sequential
pattern where the word first arises. Using the simplified World Cup
example from the previous section, the size of goal is proportional to
the square root of the number of tweets containing the pattern goal,
while the size of cup is determined by the square root of the number
of tweets containing the pattern first goal world cup. More frequent
words are in a darker shade of blue than less frequent words. We also
made it optional to turn the first and last word in a pattern to purple in
order to distinguish the beginning and ending of patterns. Some of the
use cases in this paper have that option turned on. We are considering
other options for word color, such as encoding the sentiment of words,
but the benefit provided by such a change must be weighed carefully
against the visual variation and inconsistency it introduces. We also
experimented with varying the width and shade of the edges but found
that this introduces more visual clutter than useful information, so we
decided to render the edges as thin light-gray curves.

3.4 Interactions
Since we are placing sequential patterns in a graph, a problem arises in
that people viewing the visualization often cannot tell where a sequence
starts and where it ends. As shown in Figure 4, someone viewing this
visualization might assume a pattern score first goal world cup own
exists, but in reality the dataset only contains score first goal world cup
and first goal world cup own which are connected by the common part
in-between. This problem is also present in Double Tree (Word Tree
on both sides) [12] and Wordgraph [32].

We address this problem by using interaction. A person can hover
the mouse over a word and all other words besides those that appear in
its sequential pattern will become semi-transparent. The highlighted
sequential pattern is the most frequent “leaf pattern” containing the
selected word. (A “leaf” pattern is a pattern without a longer super-
sequence on the screen.) Most words in the leaf pattern are colored in
light blue but the words that appear as many or more times than the
selected word are colored in dark blue. These words form the most
frequent pattern containing the selected word, and a tooltip pops up
showing the frequency of this pattern.

When a person hovers the mouse over a word, the system also
displays the most common example sentences (e.g., Tweets) containing
it in the lower left of the window, as shown in Figure 2. This helps the
viewer learn more about precise thoughts and opinions in the text.

We also enable drilling down to an existing sequential pattern to see
more details. When a person clicks on a word, SentenTree zooms in
to the most frequent pattern containing the selected work (the pattern
is colored in dark blue) and filters out all other sequential patterns.
SentenTree also grows the current sequential pattern to include new
words. An example is Figure 8a. The viewer clicks on penalty and all
other branches disappear. The branch with penalty in the center grows
out to fill the screen. The viewer can click on a RESET button in the
interface (not shown in the figure) to go back to the full view.

3.5 Implementation and performance

We have implemented the SentenTree algorithm in Javascript for the
web. In this implementation, a person provides raw text (e.g., tweets)
to the application. All following computations are performed in the
browser on the client side. We use d3.js2 for the visualization and
cola.js3 for the constraint-based force-directed layout.

The pipeline of SentenTree can be broken into three steps: 1) load
and preprocess (e.g. tokenize) the input data, 2) extract frequent se-
quential patterns and construct the graph data structure, 3) visualize the
graphs on the screen. When a user interacts with the view by drilling
down to show more details, we repeat steps 2 and 3, though the patterns
generated from a prior step 2 can be reused.

The runtime of step 1 is linear to the total number of words in the
dataset. Because the number of words in a sentence (or other social
media text unit such as a Tweet) is limited, the runtime of step 1 is
roughly linear to the number of sentences in the dataset. The runtime of
step 2 is linear to the product of the number of sentences and the number
of words in the final visualization. Because we limit the number of
words shown due to available screen space, the runtime of step 2 is also
roughly linear to the number of sentences in the dataset. The runtime
of step 3 is more difficult to estimate, because the constraint-based
force-directed layout is influenced both by the number of words and
edges in the graph as well as the complexity of the graph. The layout
algorithm runs in parallel for multiple disconnected graphs, so the time
consumed is dependent on the largest, most complicated graph.

We tested the technique on datasets with 10,000 (10K), 100,000
(100K), and 1,000,000 (1M) unique sentences in a Google Chrome
Browser on a MacBook Air laptop. The number of words shown in the
visualization was fixed at 150. For the 10k datasets, step 1 took 0.25 to
0.45 seconds, and step 2 took 0.8 to 2 seconds. For the 100k datasets,
step 1 took under 3.1 seconds, and step 2 took 11 to 17.5 seconds. For
the 1M datasets, step 1 took under 30 seconds, and step 2 took under 1
minute. The runtime for step 3 is not related to the input data size, but
is dependent on the most complicated graph in the visualization. For all
of the datasets we tested, the most time-consuming graph layout took
under 6 seconds, though we observed that layout started to stabilize
after the first half second and only made minor movements afterwards.
Thus, the effective total duration to display each of the three sizes of
data was about 2 seconds, 20 seconds, and 2 minutes.



Fig. 7: A SentenTree visualization of tweets commenting on the second goal of the opening game of the World Cup. This dataset contains 135,841
tweets (81,253 unique tweets).

(a) The full view of the dataset.

(b) A zoomed-in view focused on penalty after the viewer has clicked on that word.

Fig. 8: A SentenTree visualization of tweets commenting on the third goal of the opening game of the World Cup. This dataset contains 132,599
tweets (75,930 unique tweets).

4 EXAMPLE USE CASES

4.1 A typical exploration scenario - World Cup

In this section, we describe a use case of exploring comments on an
event through SentenTree visualizations. Suppose a person wishes to
learn about Twitter users’ reactions to the opening game of the 2014
Soccer World Cup between Brazil and Croatia. The person already
knows that multiple goals were scored during the game, each creating a
huge spike in tweet volume. For each goal, the person is able to obtain
15 minutes of relevant tweets using keywords and hashtags like “world
cup”, “#worldcup2014”, “#bravscro”, “#bra”, “#cro”, etc. We describe
how she explores the tweets for the first three goals of the game.
First Goal
The SentenTree visualization for the first goal is presented in Figure 1.
As previously discussed, the person immediately notices a large pattern
first goal world cup. Hovering her mouse over cup tells her that this
pattern appears 36,081 times. In other words, close to 40% of tweets
about the World Cup posted in this 15 minutes time window include
the pattern first goal world cup. As she hovers the mouse over a few
other branches, she notices patterns like brazil marcelo score first
goal world cup and first own goal world cup history. After exploring
more branches and reading some example tweets, she concludes that
most Tweets were either describing what happened on the soccer field
or expressing excitement over the goal and surprise at Marcelo’s big
blunder.
Second Goal
The person moves on to the second goal of the game (Figure 7). She
immediately notices that the biggest branch is centered around ney-
mar. Hovering over the branches she notices people mentioning that
Brazilian player Neymar had scored the second goal of the game, which
brings the score to 1-1. She also notices branches like yellow Neymar

2http://d3js.org/
3http://marvl.infotech.monash.edu/webcola/

and Neymar card. She clicks on them to bring up example tweets
explaining that Neymar had drawn a yellow card minutes before he
scored the goal. The person clicks on Neymar to bring up a detailed
view. This view directs her to longer patterns about Neymar which she
explores for a while, learning that at age 22 Neymar was considered a
“boy wonder” and this was the 32nd goal he scored for Brazil, making
him the third highest Brazilian goalscorer.

Zooming back to the full view, she also notices a branch centered
around goal. Hover her mouse over the branches, she finds patterns
such as own goal, score own goal, and marcelo goal which indicates
that people were still discussing the first goal of the game being an own
goal. She also saw a big branch under game which reads first game
world cup tonight wait par coma majooooorr. Intrigued, she clicks
on the branch to bring up an example tweet and discovers that people
were retweeting an earlier tweet by Niall Horan which says “First game
of the World Cup tonight! Can’t wait! PRA CIMA MAJOOOOORR!
CMON BRAZIIIILLLLL!”. Niall Horan is a member of the popular
boy band One Direction and one of the most followed celebrities on
Twitter. Therefore it is not surprising that his tweet was retweeted so
many times.

Third Goal
The person moves on to the third goal of the game (Figure 8a). She
sees that a large branch is centered around the word penalty and another
branch is centered around neymar. Hovering the mouse over a few
branches she learns that Neymar scored a penalty kick for Brazil making
the score 2-1. She is interested in learning more about people’s reaction
to the penalty goal, so she zooms in on penalty. Figure 8b shows a
detailed view with penalty at the root. The person notices some new
words connected to penalty, such as bad, soft, never to its left and
unbelievable and bad to its right. She hovers the mouse over these
words to see the branches and also brings up a few example tweets. She
learns that the penalty decision was controversial, as Twitter users call
it “wasn’t a penalty” ,“never a penalty”, “soft penalty”, “bad penalty”,



“worst penalty decision”, and even “unbelievable”.
Zooming out and looking at the full view, the person notices that

Niall Horan’s tweet was still being retweeted by many followers. She
also notices a tweet by @garylineker with many retweets. Clicking
on the branch she brings up the original tweet. It appears to be a
rather unflattering joke towards FIFA president Sepp Blatter which
was echoed by over 3,000 Twitter users. (@GaryLineker: “I like this
vanishing spray FIFA are using for the World Cup. Would it work on
Sepp Blatter?”)

By going through the three goal visualizations, the person was able
to form a coherent narrative of not only what happened on the field, but
also how people reacted to each goal. She discovered that people were
shocked by the first own goal, applauded the second goal by Neymar,
and were unhappy with the penalty goal which gave Brazil a lead in the
game. They were excited by the dramatic opening game and expectant
of the rest of the World Cup.

This is a typical use case of the SentenTree visualization for explor-
ing a large dataset (or datasets). In the initial stage, SentenTree supports
impression-forming just as a word cloud. In addition, it provides con-
text for each word by placing the words within sequential patterns and
allows easy highlighting of patterns through hovering. When interested
in a sequential pattern the viewer can click on it to drill down to see
more details. The viewer also can click on sequential patterns to bring
up example sentences. Because Tweet-reading typically happens after
the viewer has formed initial expressions of the dataset, the person only
needs to bring up sentences that look relevant instead of drowning in a
sea of text.

4.2 Natural content clustering
In the previous section, we illustrated the use of the SentenTree visual-
ization to explore social media reactions to a high-profile event. Based
on our experiences applying SentenTree to different datasets, we have
observed that for datasets with somewhat diverse content, SentenTree
often results in natural clustering of texts. In this section, we give three
examples of natural clustering and discuss how SentenTree can be used
to explore these datasets.

4.2.1 Communicating multiple word meanings
We obtained a dataset of tweets posted on Aug 1, 2014 with the keyword
“yosemite”. As yosemite is present in every tweet in the dataset, it is not
allowed in the first step of sequential pattern generation. The resulting
visualization is shown in Figure 9. Yosemite is a word with ambiguous
usage, and this is reflected in the visualization. We observe that the
biggest branch is about OS X Yosemite (a version of the Mac operation
system). Another smaller branch is also about the Mac OS with Apple
as the most prominent word in the branch. Another usage of the word
“yosemite” is the name of a national park in California. We find one
branch with yosemite national park california and another branch about
a wildfire in the park. SentenTree is able to separate tweets on the Mac
OS and the national park without any semantic analysis.

4.2.2 Communicating multiple concepts
A SentenTree visualization of tweets about the startup Eat24 retrieved
shortly after Yelp’s announcement to acquire the company resulted in
three clusters. (Please refer to the supplement material for the image.)
The first is a branch focused around the sequential pattern yelp eat24
about the news of the acquisition worded in slightly different ways. The
second is a branch with @eat24 at the center that appears to be Eat24’s
official Twitter account which interacts with its customers frequently.
From the visualization we learn that customers communicate with
@eat24 to talk about the mobile app, coupons, their order, etc. A
final small branch has eat24 without yelp. Expanding the branch, we
discover that tweets in this branch are focused on Eat24’s Super Bowl
commercial with rapper Snoop Dogg.

4.2.3 Communicating multiple facets
So far, all examples we have shown are tweets. We include a final
dataset of consumer reviews to illustrate another application of the
technique. We include this case to demonstrate SentenTree’s power

to highlight different facets in a dataset. The dataset includes reviews
crawled from Amazon.com about a Samsung TV model. As the unit
of analysis is a single sentence, we segment the reviews into sentences
before feeding them to SentenTree. We also specify a rule that samsung
and tv should not be used in the first round when generating sequential
patterns as we do not want these words to dominate the view.

Figure 10 is the SentenTree visualization of the dataset. The visual-
ization consists of several branches each having a bigger word in the
center and a set of smaller words on both sides. These branches are
reminiscent of a double-sided Word Tree (e.g. the Double Tree). This
indicates that the data set does not have longer frequent sequential pat-
terns. The likely reasons are 1) the dataset is considerably smaller than
the previous tweet datasets and there simply are not enough sentences
to form similar long sentences, and 2) in consumer reviews people tend
to write longer paragraphs with more variations in their expressions
than what people tend to write on Twitter.

Although there are no long patterns, the branches give indications to
different facets people frequently mention. There are picture, sound,
amazon, lcd which are all product/services facets of the TV. By brows-
ing the words used together with each facet word, the viewer is able to
learn what people like and/or dislike about each facet. Major branches
with great and with good at the center are evident. By looking at these
branches the viewer is able to figure out that reviewers report positive
feelings about the picture, the price, Amazon, and the TV in general.

Consumer reviews research suggests representing facets as nouns
and using adjectives or phrases close to the nouns to describe each
facet [20, 21, 46]. Although SentenTree does not perform parts-of-
speech analysis, facets (such as “picture”, “sound”, etc.) naturally
emerge because the words are used frequently by reviewers. Addition-
ally the words that frequently co-occur with facet words are shown
on either side of the facet words. We argue that SentenTree serves
well as a generic tool for someone casually exploring a review dataset,
especially considering it does not perform complex natural language
processing.

5 INITIAL USER FEEDBACK

We showed SentenTree to three people to gain initial feedback about the
system. All three are research scientists or data scientists at technology
companies who regularly work with social media text. We gave each a
short demo of SentenTree and asked them to use the system to analyze
a few Twitter datasets. We observed how they interacted with the
visualization and asked for feedback at the end of the session.

All three people immediately understood the correspondence be-
tween font size/color and frequency, and all of them spent significant
time hovering the cursor over different words in the view to read exam-
ple tweets. The participants had to be reminded of the less discoverable
functionalities (such as clicking to drill into a pattern, searching, and
zooming). It also initially surprised them when they saw the same
word multiple times in the visualization, but once they were given an
explanation and used hover to check that the word appeared in different
patterns, they became comfortable with the concept.

All three people found SentenTree enjoyable to use and commented
that it added fun to reading text. They also found SentenTree effective
for helping to explore text datasets.

The aspects of the technique receiving most positive comments
include:

• The most frequent words and patterns “pop out” in the visualiza-
tion because they are larger and darker, and the frequency count
can be read in a tooltip.

• The context to a word or pattern is immediately available by
cursor hover.

• Similar content is grouped into a graph or branch that makes it
easy to form an impression of the major topics.

• The visualization can serve as a filtering tool and greatly saves
time in finding interesting content to read.

• Less frequent content is not eliminated; instead it is put into small
but discoverable branches.

• One can keep drilling down into interesting branches and search
for words on the screen.



Fig. 9: A partial SentenTree visualization of an entire day’s (August 1st, 2014) tweets on the subject “yosemite”. The dataset contains 6,712
tweets (4,963 unique tweets).

Fig. 10: A SentenTree visualization of Amazon.com Reviews on a Samsung TV model. The dataset contains 109 reviews with 941 sentences in
total. The unit of analysis is a sentence.

The participants also pointed out a few items to improve on or to
add to SentenTree:

• A common request was to perform stemming and spell checks,
and to merge different forms of the same word into a single item.

• Improvements to the UI such as packing the graphs tightly to
reduce white space and sorting vertically parallel branches by
frequency or alphabetic order.

• Perform sentiment analysis and color-code words by sentiment.
• Render the example text in its original form. Some of the tweets

they saw contained images that provide important context and it
may be helpful to render them inline.

• Reduce the noise in the visualization, e.g., provide an option to
filter out certain words such as hashtags.

• Provide the ability to filter on meta-information. For example,
one of the people works with geographic information regularly
and asked for the ability to filter text based on author location.

6 DISCUSSION

We designed the SentenTree technique to provide a number of the key
benefits evident in both word clouds and the Word Tree, while also
overcoming some of the limitations of each. SentenTree highlights
the important (most frequent) words as do word clouds, but it fills in
the connections between words to communicate sentence structure and
underlying concepts, themes, and ideas more fully. A Word Tree shows
the most frequent prior and following words and sentence fragments
clearly, but a person must select a word to serve as the focus for the
visualization. SentenTree, conversely, constructs a network of sentence
fragments and automatically extracts and shows different words that
effectively serve as foci within the visualization.

Additionally, the interactive capabilities of SentenTree allow a per-
son to see specific connected sets of words just as they would appear, in
order, in social media posts. A person can use interaction to effectively
“drill-down” and display the individual postings from which words are
taken. We envision SentenTree as a helpful component in many other
text and document visualization systems. SentenTree is designed in a
modular way so it may be customized or integrated into a multi-view
system. Multiple people to whom we have demoed the system have
commented that they would like to incorporate SentenTree as a view in
their systems.

Like many research techniques, SentenTree has limitations. It is
arguably less intuitive to interpret than word clouds and the Word Tree
in its raw static form. Viewers may infer patterns or sequences of words
that do not occur within the collection unless they use the interactive
capabilities of the system. That reliance on interaction, which in general
provides power to a visualization, is also a potential shortcoming.

The technique also does not pack visual elements (i.e., words) in a
dense and efficient manner into a rectangular region.4 Often, visualiza-
tions produced with the system exhibit quite a bit of whitespace. For
tools where screen real estate is at a premium, this can be a problem.

Another limitation of the current technique is that it does not ex-
plicitly communicate any information about the temporal ordering of
the social media messages it is portraying. As we demonstrated with
the World Cup dataset, each SentenTree visualization is a snapshot of
text between a period of time, and the viewer has to create multiple
visualizations to see how content changes through time.

Finally, as discussed in Section 3.5, the algorithm for generating a
SentenTree does not run in interactive real time. For collections around
100,000 social media messages, the system takes about 20 seconds to
produce a final visualization that is ready for viewing and interaction.
Ideally, SentenTree could be integrated into a surrounding system in
a way that would lessen the impact of waiting. However, the time to
run the algorithm means the visualization is not dynamic and cannot be
changed on the fly. For example, SentenTree does not support merging
or removing of words in the view because removing a frequent word
would cause all patterns containing that world to be re-created. In that
case, the final graphs might look completely different.

7 CONCLUSION

We have presented SentenTree, a novel visualization technique for
social media text. By visualizing frequent sequential patterns, we have
sought to find a sweet spot between displaying discrete words and
showing full sentences. We described an algorithm for incrementally
generating these frequent sequential patterns and visualizing them.
Through a number of examples, we also illustrated how SentenTree can
help people gain a rapid understanding of key concepts and opinions in
a large text collection.

For future work, we plan to adopt some of the useful feedback gath-
ered from our initial user trials such as encoding sentiment, showing
temporality, or providing dynamic controls. We also plan to evaluate
the technique with more people, in particular, have people try the tech-
nique on data of interest to them. Eventually we plan to host SentenTree
online and provide an interface for anyone to upload their own datasets.
We want to learn how people explore their own data with SentenTree
and test the application with very large datasets.
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