
To appear in an IEEE VGTC sponsored conference proceedings

Interactive Visual Co-Cluster Analysis of Bipartite Graphs

Panpan Xu∗

Bosch Research North America
Nan Cao†

NYU Shanghai
Huamin Qu‡

HKUST
John Stasko§

Georgia Tech

Fig. 1. The interface of our system showing the bipartite relation of U.S. senators’ support of bills and amendments based on roll
call vote records. The main view (A) displays clusters of senators in the bottom half and bills in the top half, based on whether the
senators support common sets of bills and whether the bills are supported by the same group of senators. The clusters are determined
automatically with co-clustering algorithms and displayed via adjacency matrices showing the cohesiveness of the clusters, or a
treemap-like space filling layout of the nodes. Using color coded party affiliations, an immediate observation is that the senators
mostly vote in accordance with their parties.

Abstract—A bipartite graph models the relation between two different types of entities. It is applicable, for example, to describe
persons’ affiliations to different social groups or their association with subjects such as topics of interest. In these applications, it is
important to understand the connectivity patterns among the entities in the bipartite graph. For the example of a bipartite relation
between persons and their topics of interest, people may form groups based on their common interests, and the topics also can be
grouped or categorized based on the interested audiences. Co-clustering methods can identify such connectivity patterns and find
clusters within the two types of entities simultaneously. In this paper, we propose an interactive visualization design that incorporates
co-clustering methods to facilitate the identification of node clusters formed by their common connections in a bipartite graph. Besides
highlighting the automatically detected node clusters and the connections among them, the visual interface also provides visual cues for
evaluating the homogeneity of the bipartite connections in a cluster, identifying potential outliers, and analyzing the correlation of node
attributes with the cluster structure. The interactive visual interface allows users to flexibly adjust the node grouping to incorporate their
prior knowledge of the domain, either by direct manipulation (i.e., splitting and merging the clusters), or by providing explicit feedback
on the cluster quality, based on which the system will learn a parametrization of the co-clustering algorithm to better align with the users’
notion of node similarity. To demonstrate the utility of the system, we present two example usage scenarios on real world datasets.

1 INTRODUCTION

∗e-mail: panpan.xu@us.bosch.com
†e-mail: nan.cao@nyu.edu
‡e-mail:huamin@cse.ust.hk
§e-mail:stasko@cc.gatech.edu

Bipartite relations, the connections between two different types of
entities, play a key role in gaining insight from data in many application
domains. Examples of bipartite relations include the votes from
legislators for the passage of bills and amendments, the involvement
of researchers in various topics, and the affiliation of individuals with
different social groups [46].

In bipartite relation data, frequently a person not only wants to know
the neighbors and links of individual nodes, but also the commonality
in their connections. For example, to what extent do two or more

1

researchers investigate similar topics, or how much do senators agree
in their votes? Analyzing the commonality of the connections results
in clusters of researchers working on the same topics, or groups of
legislators supporting similar sets of bills. Moreover, the analysis
of similarity in connections can be applied to both types of nodes in
the same manner, which is the notion of duality in bipartite relation
analysis [3]. For instance, it is possible to identify not only the senators
who have voted for a similar set of bills, but also the group of bills
that are supported (or not) by similar groups of senators.

Computational approaches including various clustering and co-
clustering algorithms [7, 8, 9, 13, 20] can be applied to identify cohesive
node groups with similar bipartite connections. Visually denoting the
clusters found by the algorithms in a bipartite graph visualization facili-
tates the process of understanding and cluster identification by relieving
the analysts of the burden of identifying and comparing the links indi-
vidually for each node. By aggregating the nodes, the visual complexity
is also reduced, and an overview of the connectivity is possible.

However, we argue that the clusters obtained by running such
algorithms should serve as a starting point, rather than the end of
analysis, for several reasons. First, the clustering results generated by
these algorithms may not be very helpful due to suboptimal parameter
settings (e.g., number of clusters [7, 8, 9]). Some clusters might not be
very cohesive because nodes that differ significantly in their bipartite
connections were grouped together. Second, the ability to explore
subspace clusters is desirable in many application scenarios. For
example, in clustering the bills, an analyst may consider grouping
them based on the support from a particular political party, instead of
all the legislators. In this case, the bill clusters are identified within a
subspace, if we consider each bill as a data item and each legislator as
a dimension [20]. Third, in bipartite relation data, the nodes are often
associated with domain specific features. These features are important
for integrating analysts’ prior knowledge, and for generating insight
about the correlation of node attributes with node groups.

To address these shortcomings, we advocate for a visual analytics
approach. It fits well here because of the need for both automated
cluster analysis and the active engagement of analysts to evaluate and
refine the clusters, drill down to a subspace, and explore the correlation
between node attributes and their bipartite connectivities [29, 44].Often,
these visual analysis tasks (e.g., refining the cluster) require taking
into account analysts’ notions of node similarities, which might differ
from a straightforward comparison of all the bipartite connections for
a pair of nodes. Thus, we introduce a prototype visual analytics system
that incorporates a semi-supervised clustering approach, which learns
similarity metrics for nodes based on user specified constraints. In this
way, analysts’ judgments can be included in the automatic clustering
procedure. The major contributions of this work are:

• The task analysis and design of a visual analytics system for the
explorative analysis of connectivity patterns in bipartite graphs
through flexible node grouping. Our system employs automatic
analysis algorithms, novel visual representations, and advanced
interactions to help analysts identify, interpret, compare, and
refine co-cluster patterns in bipartite graphs.

• A novel algorithm that applies Laplacian Regularized Metric
Learning (LRML) [26], an efficient metric learning method, for
semi-supervised co-clustering analysis of bipartite graphs.

• A flexible visualization designed for representing clusters
in bipartite graphs that illustrates both relational and feature
patterns of nodes in clusters via an adjacency matrix and treemap
respectively.

• The demonstration of the utility of the system through example
use scenarios on two datasets: the roll call vote records of US
Senators on the passage of bills and amendments, and the topic
interest of researchers.

2 BACKGROUND

Given a bipartite graph as described in the Introduction, various cluster-
ing algorithms can be employed to detect groups of nodes that are in
some sense similar in their bipartite connections. For example, given
the bipartite graph describing how scientists jointly publish papers, we

can derive a co-authorship graph and apply community detection algo-
rithms to identify groups of researchers working closely together. For
clustering algorithms in general, a good result has high inner-cluster
similarity (i.e., the data items within the same cluster are similar) and
low inter-cluster similarity (i.e., the data items in different clusters are
dissimilar).

Co-clustering is another category of clustering algorithms which
is able to detect node groupings on the two modes in a bipartite
graph simultaneously. Examples of co-clustering algorithms include
[8, 9, 7, 13]. The co-clustering algorithms have been applied in differ-
ent contexts such as analyzing gene expression data to find the relations
between genes and conditions, grouping documents and words to iden-
tify topic groups, and so forth. Most of the co-clustering algorithms
can generate row and column clusters (hence clusters in the two modes)
given the biadjacency matrix, create a “checkerboard” structure which
reflects the common bipartite connections from the nodes within the
same row / column clusters. In the prototype, we apply a spectral
co-clustering algorithm [8], although it should be noted that other
algorithms can also be integrated in the framework.

3 RELATED WORK

3.1 Graph Visualization
Node-link diagrams and adjacency matrices are the two major
visualization techniques for graphs [25, 45]. Adjacency matrices
generally introduce less visual clutter for denser graphs, but node-link
diagrams are more familiar for general users and are arguably more
intuitive for understanding a graph’s structure [17, 24]. Hybrid designs
combine a node-link diagram and an adjacency matrix by showing the
two views simutaneously and synchronizing the interactions on the
views [23], or showing the graph structure at global and community
level with varying visual representations [24, 36]. We also adopt a
hybrid visual design in the system introduced in this paper, to represent
both the bipartite connections and the projected one-mode graph.

3.2 Bipartite and Multimodal Graph Visualization
A common approach for visualizing bipartite graphs, or more generally,
multimodal graphs, is to allocate separate panes/lists for the different
types of nodes. Graphical links connect nodes on different panes, and
are displayed selectively based on the user’s current focus. Variations
of this approach can be found in semantic substrates [40], in the List
View in Jigsaw [41], in linked tabular views [38], and more recently, in
PivotPath [10] and MMGraph [15]. Using color, shape or other visual
channels to denote the node type instead of spatially separating the
different types of nodes, and drawing the graph in a unimodal style is
also a possible choice. OntoVis [39] and FacetAtlas[6] are examples.

Ploceus [30] and Orion [21] focus on interactive graph modeling and
transformation. One important transformative operation supported by
the two systems is projection, which derives, for example, the co-vote
relations among legislators given their voting records. For attributed
multimodal graphs, GraphTrail [11] and NetLens [28] aggregate along
the nodes’ attributes and display views of summary statistics.

3.3 Co-clustering Visualization
Co-clustering (or biclustering, subspace clustering) has been widely
adopted for analyzing gene expression data in bioinformatics [31],
where the genes and the conditions (which correspond to the two types
of entities in bipartite graphs) are clustered simultaneously based on the
expression levels. Various visualization systems have been developed
to help review and analyze the resulting clusters [1, 18, 22, 37].
Recently, the approach is applied to intelligence analysis, where
coordinated relations between sets of entities of different types (people,
locations, etc.) are identified and visualized [14, 43]. The entities
analyzed can be extracted from textual datasets, connected by their
co-occurence in documents. Other work visualizing multimode graphs
such as FacetAtlas [6] and SolarMap [4] focuses on one-mode clusters
and their interconnections through indirect links.

In this article, we propose an interactive visualization for analyzing
bipartite graph data. Our method combines clustering algorithms
and visualization, which facilitates the identification of connectivity

2

To appear in an IEEE VGTC sponsored conference proceedings

patterns in bipartite graph data while providing users with enough
flexibility to explore based on their domain knowledge and other
criteria, thus differentiating it from the previous work.

4 SYSTEM DESIGN AND IMPLEMENTATION

In this section, we explain the design and implementation of our system
for co-cluster analysis of bipartite graphs. It is based on a set of design
requirements that we formulated by reviewing representative analysis
tasks on bipartite graphs from a number of different domains. We begin
below by listing the requirements. We focus primarily on tasks related
to the understanding of connectivity patterns of a bipartite graph.
R1 Determine node connections across the two groups. Connections

between nodes across the two groups should be evident. For
example, which bills did a senator vote in favor of?

R2 Determine specific attribute values of each type of node. The
different attributes of multivariate nodes should be evident. For
example, from which political party and state is a particular sena-
tor?

R3 Identify similar nodes of each of the two types. The system should
determine and present clusters of similar nodes based on the
bipartite connection. For example, which senators voted similarly
toward all the bills?

R4 Analyze correlation of the connectivity pattern with domain spe-
cific node attributes. Mechanisms for selecting and visualizing
relevant node attributes should be provided in the system, so that
the analysts can inspect their correlation with the bipartite connec-
tions to draw insights. For example, which bills did Democratic
senators vote for consistently?

R5 Interpret the node clusters through bipartite relations. Given
a node cluster, it is important to be able to understand which
common neighbors made the nodes similar to each other. Thus,
besides the clusters of nodes, the bipartite relation also should
be viewable. For example, for a cluster of senators, which votes
made them be grouped together?

R6 Explore subspace clusters. The system should provide means for
selecting subsets of nodes to manually identify subspace clusters.
The visualization should be updated upon selection to reflect the
cohesiveness of node clusters within the subspace. For example,
the user should be able to select a subset of senators and observe
how similar they are in different ways.

R7 Evaluate and refine node clusters. To assist the search for high
quality node groupings, the system needs to provide effective vi-
sual cues to communicate the cohesiveness of the clusters, and the
degree of separation among them. Moreover, if nodes in a cluster
are dissimilar, the visual design should enable the identification
of subsets that are more coherent than the others in their bipar-
tite connections to suggest potential ways to regroup the nodes.
Analysts should be able to merge and split the existing node
clusters by directly interacting with the visual representations.
The system should give immediate feedback on the cohesiveness
of updated clusters to effectively guide the exploration process.
Besides providing the visual cues and the interactive tools for
the user to regroup the nodes, the system also should ingest the
user’s notion of similarity and learn a proper metric to compare
the connectivity of two nodes. For example, if the user feels a
system-determined cluster of senators is not appropriate, it should
be possible to change the clustering and have the system interpret
and learn from that.

4.1 System Overview
With the above tasks and requirements as a basis, we designed
and implemented a system for flexible exploration of bipartitie
graphs. Our visual analysis system follows the architectural design
illustrated in Fig. 2. Once a dataset is loaded into the system, the
analysis module will detect the co-clusters and send the results to
be visualized. Analysts navigate through the visual representations
of co-clustering results, and refine the clusters based on their prior
knowledge, preferences, and judgments by directly interacting with
the visualizations. The analysts’ beliefs will be fed back into a metric

learning model, and captured in a distance metric that will be later
used for the next round of co-clustering analysis.

Fig. 2. System overview.

The visualization module consists of multiple visualization regions
which are coordinated in the user interface shown in Fig. 1. The UI
consists of four major components. The first region (A) contains the
bipartite graph representation that shows the co-clustering results. It al-
lows users to directly interact with and refine the node clusters through
splitting and merging, or specify the groups of nodes they consider
as similar to each other. This region provides two alternative visual
displays of each node cluster: an adjacency matrix of the projected
graph and a treemap-like compact packing of the nodes. The second
region (B) contains a Table Lens display [34] for visualizing the node
attributes. The categorical and numerical attribute values are encoded
graphically via the colors and lengths of the rectangles within the table
cells. The third region (C) provides a data manipulation panel including
tools for users to load different datasets and query the nodes by labels.
The final region (D) contains a control panel for selecting alternative
metrics for measuring the similarity of bipartite connections for a pair
of nodes, considering either a subspace or the full set of dimensions.

4.2 Analytic Support
Before describing details of the system interface and interactions, we
explain the metric learning approach applied for co-cluster refinement.
Here, we formally denote a bipartite graph as G = (U,V,E), where
U and V are non-overlapping sets corresponding to the two types of
entities. E ⊆U ×V is the bipartite relation between the two sets of
entities. The edges in E are undirected and can be weighted.

4.2.1 Semi-Supervised Co-Cluster Analysis
We introduce a semi-supervised co-clustering method for analyzing
bipartite graphs as summarized in Alg. 1, which learns distance metrics
between the nodes based on analysts’ input and uses it for co-clustering
analysis. It is a combination of two techniques: (1) the co-cluster
analysis of bipartite graphs with the learned distance metrics in the
form of weightings on the nodes U and V in the bipartite graph, and
(2) the semi-supervised metric learning for finding the distance metrics
based on the similarity constraints specified by the users.

4.2.2 Metric Learning
In cluster analysis, determining a proper distance metric to estimate the
similarities among data items is the most important task that directly
determines the quality of the cluster results. In most cases, distance
metrics are predefined and remain unchanged during the clustering
procedure, and the most familiar one is Euclidean distance. However,
the metric learning technique [2] suggests an adaptive procedure in
which the distance metric is learned based on several examples of
the similarities between data items that are manually labeled by the
analyzer, thus capturing their prior knowledge and intuition, and
making it a good match for interactive visual analysis. Particularly,
with information on pairs of nodes that are labeled as ‘similar’ to each
other, the metric learning algorithms can find a parametrization of a
family of distance functions (e.g., Mahalanobis distances) such that
the computed distances between ‘similar’ pairs are small.

3

A bipartite graph G = (U,V,E), can be represented as a biadjacency
matrix B‖U‖×‖V‖. The row vectors Bi· and the column vectors B· j
correspond to the bipartite connections of node ui ∈U and node v j ∈V .
We employ a semi-supervised metric learning method, Laplacian
Regularized Metric Learning (LRML) [26], to find the distance metrics
between two row vectors or two column vectors given a set of similarity
constraints on the nodes in either partition specified by the analysts.

In particular, LRML finds a parameterization of the Mahalanobis
distance for measuring the distance between a pair of nodes. For
example, for two nodes ui0 and ui1 in U , the distance function is:

d(ui0 ,ui1)A =
√

(Bi0·−Bi1·)
T A(Bi0·−Bi1·) (1)

where A is a semi-positive definite matrix of size |V |× |V |. When
A is the identity matrix, the metric reduces to the Euclidean distance.
When A is a diagonal matrix, the value of the diagonal entry A j j would
reflect the relative importance of the node v j in V for measuring the
similarity of the nodes ui0 and ui1 in U . When applying LRML to
semi-supervised co-clustering analysis, instead of a full matrix A, we
seek for a diagonal matrix as a solution to the optimization problem.
This is due to considerations on both the time complexity for solving
the optimization problem and the interpretability of the results. As
discussed above, the entries on the diagonal of A correspond to nodes
in V and the value of the entries is the importance of the node when
comparing the bipartite connection of a pair of nodes in U . In the
following discussion, we will simply denote the diagonal of A as Wv.

In the LRML algorithm, given the similarity constraint S for pairs
of nodes in U , LRML seeks the matrix A that minimizes the sum of
distances for the pairs of nodes in S. A Laplacian regularization term
is also included in the optimization goal.

min
A�0

∑
(ui0 ,ui1)∈S

d(ui0 ,ui1)A

+λ ∑
ui0∈U

∑
ui1∈U

w(ui0 ,ui1)d(ui0 ,ui1)A

− εlog(det(A))

w(ui0 ,ui1) =

{
1, if ui0 ∈ N(ui1)

0,otherwise

N(ui1) is the nearest neighbor list of ui1 , which includes the nodes
in U with the most similar bipartite connections to ui1 in terms of
Euclidean distance. The term containing log(det(A)) is introduced to
avoid trivial solutions where all the entries of A are zero.

We respectively apply the above metric learning algorithms for
nodes in U and V based on the specified similarity constraints Su for
nodes in U and Sv for nodes in V (line 2,3 in Alg. 1), obtaining weights
Wu and Wv. These weights indicate how important a node and its cor-
responding relationships should be considered during the co-clustering
procedure in terms of the given set of similarity constraints.

We “modulate” the biadjacency matrix B by these weight vectors
(line 4,5 in Alg. 1), making the entry B′i, j (i.e., the bipartite link
connecting nodes ui and v j) weighted, for example, comparatively
less if both ui and v j’s weights found by the metric learning algorithm
are small. When compared to links connecting nodes with higher
weights, those links will have less effect on the co-clustering results.
The parameter α (line 5 in Alg. 1) controls the extent to which the
user specified constraints should affect the clustering results. The co-
clustering algorithm used in the prototype is the spectral co-clustering
algorithm implemented in python scikit-learn package [8]. It requires
the input of a pre-specified number of clusters. After the user input
similarity constraints, the co-clustering algorithm is carried out again,
with the same specified number of clusters prior to taking any user
constraints into account. In this process, the weightings on the nodes
learned by the LRML algorithm are used to modulate the weights of
the bipartite connections, and this is how the user input is incorporated

Input :
Bipartite Graph G = (U,V,E),
Similarity constraints Su and Sv for nodes in U and V ,
a k-nearest neighbor graph Gu and Gv for nodes in U and V

Output :
Grouping of nodes in U and V

1 begin
2 Wu = LRML(Su, G, Gu);
3 Wv = LRML(Sv, G, Gv);
4 B = bijaceny matrix(G);
5 B′ = B+αW T

u ×B×Wv;
6 co-clustering(B′);
7 end

Algorithm 1: Metric learning for co-cluster refinement

in the co-clustering algorithm. Finally, the nodes are clustered by
running the co-clustering algorithms on B′ (line 6 in Alg. 1).

There are a number of reasons of choosing LRML instead of other
metric learning methods: (1) it is a semi-supervised algorithm which
requires only partial labeling of the similar node pairs, thus it imposes
lower demand on the users; (2) updating the parametrization of the
distance function can be done efficiently without iterative solvers, and
the efficiency is desirable for user-facing systems; (3) when the matrix
A that parametrizes the Mahalanobis distance function is required to
be diagonal, the value of corresponding entries on the diagonal can
be interpreted as the weight of the features in the modulated distance
metric. By graphically showing the computed weights in the data table
(Fig. 1), analysts can reason about which features are more relevant for
the specified pairs of nodes to be considered as similar to each other.

4.3 Visual Representation
The tasks and requirements described earlier guided our visualization
design. We employ two iconic visual representations of clusters, adja-
cency matrices and treemaps, inspired by NodeTrix [24], and Dicon [5]
respectively. The representations are switchable for revealing relational
(R3, R5, R6, R7) and attribute (R2, R4) patterns of the nodes within
the clusters. The main view is divided horizontally with the nodes
and clusters of one set on top and the other on the bottom. They are
connected by aggregated bipartite links (R5). We also provide a set of
interactions for exploring and refining the co-clusters (R6, R7). The
details of these designs are explained in this section.

4.3.1 Visualizing Node Clusters as Adjacency Matrices

A

(a) (b) (c)

B

C

D

A

B C

D

3

3

3
1

1
1

A

B

C

D

A B C D

Fig. 3. Projection of the bipartite relation onto a group of nodes: (a)
the bipartite graph with a cluster consists of node A, B, C and D; (b) a
one-mode graph formed by projecting the bipartite relation on the cluster,
the weight of the edges is the number of common neighbors of two
nodes (i.e., concordance); (c) the adjacency matrix displays the weighted
one-mode graph. Nodes A, B, and C have similar bipartite connections.

The process of visualizing node clusters as adjacency matrices con-
sists of two major steps: (1) transforming the bipartite relations into
weighted one-mode graphs through projection; (2) visualizing the pro-
jected graphs in the form of adjacency matrices.

Bipartite graph projection. For the nodes within a cluster in U , key
questions are how to visually encode the consistency of their bipartite
connections, and how to help analysts identify subsets of nodes with
comparatively similar bipartite affiliations (R7). Here, we transform the
bipartite relations into a weighted one-mode graph through projection,

4

To appear in an IEEE VGTC sponsored conference proceedings

a common operation for bipartite graph analysis. As illustrated in
Fig. 3(a) and (b), every two nodes that are affiliated with common
neighbors are connected in the projection, and the edge weights reflect
the resemblance of the bipartite relations for the pairs.

Either concordance, which is the number of common neighbors of
two nodes (Fig. 3(b)), or Jaccard Index, or the Mahalanobis distance
found by the aforementioned metric learning algorithm can be used to
measure the similarity of the neighborhoods of two nodes. The metric
learning procedure obtains weightings on U and V for computing the
Mahalanobis distance between any two nodes. The distance obtained
reflects the user’s notion of similarities.

Using concordance shows the number of common connections,
the viewer can easily read, for example, the number of bills that two
senators both voted for, or the number of papers two researchers have
co-authored. Using Mahalanobis distance shows the similarity of
nodes pairs which are adjusted based on user’s input.

Visualizing the projected one-mode graphs. The projected one-
mode graphs are visually represented as adjacency matrices (Fig. 3(c)).
In these matrices, the color intensities of the matrix cells are mapped
to the edge weights in the projected graph. With a proper permutation
of the rows and columns, blocks in the matrix with higher and more
consistent intensity, which signify subsets with more coherent bipartite
connections, can be identified. For example, Fig. 3(b) may show a clus-
ter of four senators where the first three are more similar to each other
than the fourth. In the prototype, a spectral node sequencing algorithm
[27] is utilized. It obtains an ordering of the nodes based on the Fielder
vector of the Laplacian matrix of the weighted one-mode graph.

Here, we leverage a matrix visualization design for two reasons.
First, with the encoding scheme described above, the matrix view
will facilitate the evaluation of cluster qualities (R7). A homogeneous
color distribution among matrix cells indicates a cohesive cluster with
high intra-group similarity, while a heterogeneous color distribution
indicates low cluster quality. Second, the projected one-mode graphs
are usually dense, and can be visualized with much less visual clutter
with adjacency matrices compared to node-link diagrams [16].

In the matrix representation, a categorical or numerical attribute of
the nodes can be encoded with a colored circle beside each row of the
corresponding matrix, as shown in Fig. 1 (A.2). In this example, the
party affiliation of the senators is displayed, illustrating its correlation
with the votes the senators cast for bills (R4). Other node attributes are
displayed in a data table (Fig. 1 (B)), showing additional details (R2).

4.3.2 Visualizing Node Clusters as Treemaps

The treemaps consume less space than adjacency matrices (O(N)
and O(N2)), and display the distribution of attribute values more
effectively (Fig. 1 A.4). In the treemaps, each rectangle corresponds
to a node within the cluster. The color intensity or hue of the rectangles
encode a selected categorical or numerical attribute of the nodes.
The nodes(/rectangles) are organized with two levels of nesting: the
children of the root correspond to all the possible categorical attribute
values or intervals of numerical values for the nodes in the cluster, and
the nodes are attached to the children by the respective attribute values.
Such nesting structure results in a layout where the distribution of
the attribute values can be easily identified (R2). The treemap display
also helps analyze the correlation between the bipartite relation to the
nodes’ attributes – We can compare if nodes in different clusters have
different attribute values more easily with treemaps (R4).

4.3.3 Visualizing Node Attributes

A TableLens [34] style visualization displays the details of each data
record (node), illustrating their textual, categorical, or numerical
attributes (R2). The attribute values are graphically displayed as color
coded blocks or bars with varying lengths based on the data attribute
types. The Table Lens supports a generalized table row selection
scheme: when the user hovers over an entry in the table, the other rows
with similar attribute values will be highlighted and they can be selected
by simply clicking on the entry. All selections and highlights on the
entries in the table lens are linked with the bipartite graph display.

4.3.4 Cluster Layout
In the main view of our system, as shown in Fig. 1 (A), we place the
two types of node clusters produced by co-clustering algorithms in two
horizontally separated regions. The layout of the node clusters works
in two steps. First, an initial horizontal ordering of the node clusters
on the two display regions is obtained with the barycentric heuristic
[42]. Second, we adjust the layout to remove overlap of the clusters by
applying a force-directed layout algorithm. In the force directed layout
phase, the relative horizontal positions of the nodes are contrained to
be the same as from the barycentric algorithm, therefore no more edge
crossing should be introduced.

4.3.5 Visualizing Bipartite Connections
It is important to show the bipartite connections (R1, R5), but to do so
on a one-to-one basis will introduce severe edge clutter. Hence, we de-
cided to aggregate the edges for overview and show individual bipartite
links through detail-on-demand interaction. The aggregations (bundles)
of the bipartite connections are derived based on the node clusters.

The total number of individual edges between two clusters cu and cv
is normalized by the maximum number (|cu|× |cv|) of possible edges
between the pair of node clusters. The weight of each bundle are then
mapped to the width of the links connecting node clusters. Displaying
aggregated edges reduces the large amount of crossings and the visual
clutter that may result from drawing individual ones.

As the node clusters are vertically spreaded, the node clusters may
overlap with the bundled edges and introduce ambiguities. To solve this
issue, edge routing techniques can be applied here. Examples of edge
routing techniques include [12] and [33]. These techniques can be incor-
porated into the current system to improve the readability of the edges.

4.4 User Interaction

Fig. 4. The buttons affiliated with each cluster visualization that support
cluster representation and refinement.

Based on the design requirements, we implemented the following
interactions in the system:

Details-on-demand (R1). Besides analyzing the bipartite relations
at the level of node clusters, we also design interactions for viewing
the details of the interested nodes. For example, as the user hovers on a
node in the matrix or treemap, its neighbors will be highlighted and the
highlighted state persists after click.

Subspace selection (R6). The analyst can brush on a subset of
nodes in one mode, which will be regarded as a subspace in which the
similarities among the nodes and the corresponding subspace clusters
in the other mode are derived. Here we consider two approaches for
specifying a subset of nodes (i.e., the dimensions in the subspace) for
analysis. In the first approach, the user directly selects related nodes
from the adjacency matrices. In the second approach, the user specifies
the value of an attribute and all the nodes with attribute value equal
to that will be selected as a subspace. This can be done easily with
the generalized selection scheme supported in the Table Lens display.

Cluster refinement (R7). The user can refine the clusters by
directly manipulating the visual data items, and explicitly specify the
grouping, or mark their confidence in the cluster quality to specify
similarity constraints for the metric learning algorithm. Specifically,
users can directly interact with the matrices or treemaps to split
selected nodes from an existing cluster, or merge two node clusters
into one. Two node clusters are merged when the user drags one matrix
or treemap and drops it onto another. Users can split a subset of nodes
from node clusters by first selecting the nodes to be separated and

5

then click the scissor button shown in Fig. 4. Analysts can specify
similarity constraints by identifying a group of nodes which are similar
to each other via clicking on the similarity button shown on top of the
corresponding node cluster visualization (Fig. 4).

4.5 Alternative Designs
Besides the designs presented above, alternative approaches exist for
visually representing a bipartite graph and embedding node group
information. One example is a biadjacency matrix with the rows
and columns aggregated based on the node cluster they belong to
or serialized with matrix reordering algorithms [32]. However, it
is relatively difficult with this visualization to compare and access
the similarity of the connections for a group of nodes, as the analyst
needs to scan over all the rows/column and compare the entries, which
can be mentally demanding. It is also possible to use a node-link
diagram to represent the bipartite graph and place nodes with similar
connections in close proximity, however, it is also hard to compare
the connectivities of the nodes directly with it. In our system, we made
the decision to visually represent the projected one-mode graph for a
node cluster as an adjacency matrix to make these tasks easier. Another
possibility is to visualize the entire one-mode projection with node-link
diagrams or adjacency matrices, e.g., the co-author graph derived from
a bipartite relation between authors and papers. However, the bipartite
relation can be important in terms of interpreting how the links and
clusters in the projected graphs are formed.

5 SAMPLE USAGE SCENARIOS

5.1 Scenario 1: US Senate Votes
We applied the proposed system to analyze the voting behaviours of
legislators. We collected the roll-call voting records on the passage
of bills and amendments in the U.S. Senate in 2012 from Govtrack.us
[19]. These data include information about whether the senators
voted ‘yea’ or ‘nay’ on the bills and amendments. There were 22
bills and 117 amendments voted on by 100 senators, among which
43 bills or amendments were passed or enacted. The bills are further
categorized by their subject matter, including economics and public
finance, education, and armed forces and national security. A bipartite
connection is established if a senator votes for the passage of a bill,
in total there are 6962 edges.

Enzi
Barrasso

Vitter

Crapo
Risch

Shelby
Cornyn

state

hr4310-112

s3254-112

samdt3262-112
samdt3232-112
samdt3158-112

(a)

(b)

M2’

M3

LA
AL
TX
ID
ID
WY
WY

Fig. 5. Investigating the correlation between similarity of bipartite connec-
tions and node attributes: (a) a group of bills related to the subject armed
forces and national security are supported by a similar set of senators,
(b) republicans from the same state vote similarly.

Interpretation of co-clustering results. After running the
co-clustering algorithm on the data and initializing the visualization
(Fig. 1), we immediately observed that the clusters of senators (bottom)
and bills (top) are reasonably cohesive. In this figure, the color intensity
of the matrix cells encodes the measure of concordance, i.e., the
number of common voters of two bills/amendments, and the number
of bills/amendments supported by both senators. It can be observed
that the color is relatively even over most of the matrices, indicating
a consensus of opinion for each cluster of senators, and conversely,

the bills within each cluster have a common set of supporters. A few
senators and bills do not seem to align well with the computed clusters,
which can be split out via the supported interactions.

The overall layout of the aggregated bipartite graph shows two
distinctive groups of senator clusters (bottom) as well as bill clusters
(top). Not surprisingly, the senators are generally grouped by their
party affiliations, as indicated by the colored circles on the sides of
the matrix showing the party affiliation of each senator, or the colors
of the rectangles within the treemaps. In the layout, clusters of bills
that lie off the center are those that have received party-line votes, i.e.,
a majority of a party vote for the bills in the same way in opposition
to the other party. We can also identify some clusters of bills that lie
in the middle, receiving votes from both parties. Amongst the clusters
of senators there were some outliers with senators from both parties
(Fig. 1). For example, the cluster M1 in Fig. 1 was composed of
one Republican (Scott Brown) and many Democrats. Hovering over
the node highlights the bills he supported. We found that his voting
preference aligns with the Democrats to some extent.

(a)

(b)(c)

Fig. 6. A user marked all the Republicans as similar to each other (a), and
the cluster of senators (b) found by the semi-supervised co-clustering
algorithm, the clustering algorithm found Democrats with relatively neutral
political standings (c).

In general, there was no clear correlation between the subject matter
of the bills and the degree of overlap of their supporters. Though
we can still identify in cluster M2, many of the bills were related to
armed forces and national security (Fig. 1). The bills can be separated
and form a more coherent cluster (M2’ in Fig. 5(a)). The bipartite
links showed that the cluster received support from most senators in
both parties. In another cluster (M5) (Fig. 1) supported mostly by
Democrats three bills were related to crime and law enforcement. Two
of them were about the Foreign Intelligence Surveillance Act.

In cluster M3 (Fig. 5 (b)), we found several pairs of Republicans
align better with each other in their voting preferences than others in
the cluster. In a further investigation of the reasons by brushing the
nodes, and highlight them in the data tables, we found the Republicans
were actually paired by their home states.

Semi-supervised co-cluster analysis. When we applied the
semi-supervised co-clustering analysis based on metric learning in
the above data, there were more interesting findings. Specifically,
we grouped all the Republicans in the dataset into the same cluster
(Fig. 6(a)) as a set of similarity constraint fed back into the proposed
semi-supervised co-clustering algorithm and ran the algorithm again.
The resulting cluster consisted of all the Republicans and, interestingly,
three Democrats, Claire McCaskill, Jay Rockefeller, and Ben Nelson,
as shown in Fig. 6(b). After searching on the related news reports
and profiles of these senators, we found Jay Rockefeller is the only
Democrat in the Rockefeller family dynasty (which was supported by
Republicans); Ben Nelson is regarded as ’the least likely Democrat to
stand with his party on legislative initiative’ [47]; Claire McCaskill also
had a moderate political standing [35]. These findings demonstrate
the power of the proposed algorithm.

6

To appear in an IEEE VGTC sponsored conference proceedings

Table 1. Guiding questions for domain expert interviews.

Aim Question

Q1 Visual Design Are the matrix/treemap representations of clusters informative to you? and Why?
Q2 Visual Design Does the current layout of bipartite graphs provide a clear view of different types of nodes? and Why?
Q3 Interaction Design Are the current interactions useful and easy to use? and Why?
Q4 Visual Analysis Can you identify different patterns in the matrix/treemap based on different node similarity metrics?
Q5 Visual Analysis Can you interpret the co-clustering results in contexts of different data?
Q6 Visual Analysis Do you think the semi-supervised co-clustering is useful and can help better analysis the bipartite graph?
Q7 General How do you like the system overall in exploring bipartite graphs and identifying insights?

5.2 Scenario 2: Publication Data
Our system has also been used for analyzing the publication records
in DBLP, a bibliographic database for Computer Science. We
collected the bipartite relation of the authors’ affiliation with different
conferences. In the analysis, we analyze the authors who have
published in more than 12 conferences/journals. The filtered bipartite
graph extracted from this dataset consists of 146 authors and 77
conferences/journals. In total there are 2010 edges.

Fig. 7. A group of researchers (a) working on algorithms for massive data
processing. They publish mostly in the theoretical computer science and
data mining conferences (b) as shown by the thick bundles connecting
the author cluster and the conference clusters (d). The user marked (a)
as a meaningful cluster. The group expanded and new authors who work
in similar area are included (c) after running the co-clustering again.

We applied the semi-supervised co-cluster analysis on this dataset.
From the initial clustering result, we identified a group of researchers
(Fig. 7(a)) working on algorithms for massive data processing and have
publications mostly in the areas of theoretical computer science and
data mining (Fig. 7(b)), as indicated by the thick bipartite link bundles
connecting the cluster of authors to the two clusters of conferences
(Fig. 7(d)). We mark the cluster of researchers as a meaningful one and
after using this cluster as the similarity constraint in the semi-supervised
co-clustering algorithm, we successfully found more researchers in
these research areas who published in similar conferences, and the
original group of authors is expanded (Fig. 7(c)).

6 EXPERT REVIEW

To evaluate the system’s usability and potential utility, we conducted
interviews with expert users (denoted as E1 and E2) who were senior
researchers in the area of machine learning and specialized in active
learning techniques, and nonexpert users (denoted as E3 and E4) who

are graduate students with domain knowledge in the area of social and
political science. In each interview, we first demonstrated all the key
features of the system to the expert in a tutorial and encouraged the
person to use the system on their own based on a preloaded dataset.
They were also encouraged to ask questions whenever they met prob-
lems. After they fully explored the tool’s functionality, we conducted
a semi-structured interview guided by a set of questions summarized
in Table 1. The interviews took about one hour each. We deliberately
asked the experts not to be constrained by the questions listed, but to
use them as a guide and elaborate their thoughts when using the tool
based on their domain knowledge. We recorded the interviews and
took notes of the experts’ comments during the interview.

Results. The experts were impressed by the system regardless of
their domain expertise area. They believed the system was “efficient
for exploring clusters [in bipartite graphs]”. Experts with machine
learning background also think the system is a “very useful tool for
co-cluster analysis”. We summarize their comments as follows.

Visual and interaction designs. The experts believed the visu-
alization generates “informative” and “aesthetic” results and were
impressed by the rich interactions. E2 particularly liked the idea of
visualizing clusters in both treemaps and matrices and said: “this
[design] is very intuitive ... and now I can find both relational patterns
of cluster member and patterns of their feature [inside each cluster]”.
E3 liked the matrix design and said: “with this I can immediately
see and compare the senators”, although E3 felt the Treemap is less
intuitive. E3 and E4 also commented that the connections between
bills and senators are depicted in a clear way with the bundled links.

Visual analysis. Both E1 and E2 confirmed the novelty of the system
in terms of its visual analysis functions. In particular, E1 said: “this
is a very interesting idea and little work has been done for analyzing
bipartite graphs in a semi-supervised approach”. E2 also commented
that “this interactive visualization is much better than those active
learning systems [developed based on traditional UIs] that I know”
and “Interactively editing on those clusters is very interesting [when
compared with traditional data labeling procedures.]”. E1 and E2
also believed that the semi-supervised co-clustering algorithm we
proposed, although still with room to improve, was a promising idea
and generated correct and meaningful results.

Discussion. In addition to the above positive feedback, the experts
also identified some limitations of the current system. First, the system
may not be scalable enough. However, they mentioned that the query-
ing and filtering functions in the system were helpful for navigating
through larger datasets. E1 and E2 also commented that all active learn-
ing techniques had a common goal of training the underlying analysis
module based only on a small set of high quality samples that are pre-
cisely labeled by the analyst, instead of based on a large set of imprecise
samples. Therefore, the scalability may not be a problem for the system
in this case. The second issue they mentioned was that the visualization
designs, although very informative, encoded large amounts of infor-
mation which took effort to learn. But they both agreed that this issue
was primarily due to the complexity of the analysis problem itself and
indeed many data properties need to be represented in the visualization.

7 CONCLUSION

We introduce an interactive visual analysis system for analyzing clus-
ters in a bipartite graph. We employ adjacency matrices and treemaps
to visually encode the clusters. We illustrate the proposed techniques

7

via two case studies on real world datasets. Our investigations identify
many interesting findings that help to illustrate the usefulness of the
system. In the future, we plan to apply the system to analyze bipartite
graphs in other application domains, conduct user studies, and extend
the functionality of the system for analyzing not only bipartite graphs,
but also multimode graphs.

ACKNOWLEDGMENTS

This work is partially supported by RGC GRF 618313, HKUST Over-
sea Research Grant, and HKUST Postdoctoral Matching Fund.

REFERENCES

[1] S. Barkow, S. Bleuler, A. Preli, P. Zimmermann, and E. Zitzler. Bicat: a
biclustering analysis toolbox. Bioinformatics, 22(10):1282–1283, 2006.

[2] A. Bellet, A. Habrard, and M. Sebban. A survey on metric learning for
feature vectors and structured data. arXiv preprint arXiv:1306.6709, 2013.

[3] R. L. Breiger. The duality of persons and groups. Social Forces, 53(2):181–
190, 1974.

[4] N. Cao, D. Gotz, J. Sun, Y.-R. Lin, and H. Qu. Solarmap: Multifaceted
visual analytics for topic exploration. In IEEE International Conference
on Data Mining, pages 101–110, 2011.

[5] N. Cao, D. Gotz, J. Sun, and H. Qu. Dicon: Interactive visual analysis
of multidimensional clusters. IEEE Transaction on Visualization and
Computer Graphics, 17(12):2581–2590, 2011.

[6] N. Cao, J. Sun, Y.-R. Lin, D. Gotz, S. Liu, and H. Qu. Facetatlas: Multi-
faceted visualization for rich text corpora. IEEE Transactions on Visual-
ization and Computer Graphics, 16(6):1172 –1181, 2010.

[7] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully au-
tomatic cross-associations. In Proceedings of the International Conference
on Knowledge Discovery and Data Mining, pages 79–88, 2004.

[8] I. S. Dhillon. Co-clustering documents and words using bipartite spectral
graph partitioning. In Proceedings of the International Conference on
Knowledge Discovery and Data Mining, pages 269–274, 2001.

[9] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-
clustering. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining, pages 89–98, 2003.

[10] M. Dörk, N. H. Riche, G. Ramos, and S. T. Dumais. Pivotpaths: Strolling
through faceted information spaces. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2709–2718, 2012.

[11] C. Dunne, N. Henry Riche, B. Lee, R. Metoyer, and G. Robertson. Graph-
trail: analyzing large multivariate, heterogeneous networks while support-
ing exploration history. In Proceedings of the International Conference
on Human Factors in Computing Systems, pages 1663–1672, 2012.

[12] T. Dwyer and L. Nachmanson. Fast edge-routing for large graphs. In
Graph Drawing, pages 147–158. Springer, 2010.

[13] J. Feng, X. He, B. Konte, C. Böhm, and C. Plant. Summarization-based
mining bipartite graphs. In Proceedings of the International Conference
on Knowledge Discovery and Data Mining, pages 1249–1257, 2012.

[14] P. Fiaux, M. Sun, L. Bradel, C. North, N. Ramakrishnan, and A. Endert.
Bixplorer: Visual analytics with biclusters. Computer, 46(8):90–94, 2013.

[15] S. Ghani, B. C. Kwon, S. Lee, J. S. Yi, and N. Elmqvist. Visual analyt-
ics for multimodal social network analysis: A design study with social
scientists. IEEE Transaction on Visualization and Computer Graphics,
19(12):2032–2041, 2013.

[16] M. Ghoniem, J. Fekete, and P. Castagliola. A comparison of the readability
of graphs using node-link and matrix-based representations. In IEEE
Symposium on Information Visualization, pages 17–24, 2004.

[17] M. Ghoniem, J.-D. Fekete, and P. Castagliola. On the readability of graphs
using node-link and matrix-based representations: A controlled experiment
and statistical analysis. Information Visualization, 4(2):114–135, 2005.

[18] J. Goncalves, S. Madeira, and A. Oliveira. BMC Research Notes, 2(1):124,
2009.

[19] GovTrack.us. https://www.govtrack.us/, 2014.
[20] J. A. Hartigan. Direct Clustering of a Data Matrix. Journal of the American

Statistical Association, 67(337):123–129, 1972.
[21] J. Heer and A. Perer. Orion: A system for modeling, transformation

and visualization of multidimensional heterogeneous networks. In IEEE
Conference on Visual Analytics Science and Technology, pages 51–60,
2011.

[22] J. Heinrich, R. Seifert, M. Burch, and D. Weiskopf. Bicluster viewer:
A visualization tool for analyzing gene expression data. In Advances in
Visual Computing, volume 6938, pages 641–652. 2011.

[23] N. Henry and J. Fekete. Matrixexplorer: a dual-representation system
to explore social networks. IEEE Transactions on Visualization and
Computer Graphics, 12(5):677–684, 2006.

[24] N. Henry, J. Fekete, and M. McGuffin. Nodetrix: a hybrid visualization
of social networks. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1302–1309, 2007.

[25] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE Transactions on
Visualization and Computer Graphics, 6:24–43, 2000.

[26] S. C. Hoi, W. Liu, and S.-F. Chang. Semi-supervised distance metric
learning for collaborative image retrieval and clustering. ACM Trans.
Multimedia Comput. Commun. Appl., 6(3):18:1–18:26, Aug. 2010.

[27] M. Juvan and B. Mohar. Optimal linear labelings and eigenvalues of
graphs. Discrete Applied Mathematics, 36(2):153 – 168, 1992.

[28] H. Kang, C. Plaisant, B. Lee, and B. B. Bederson. Netlens: iterative
exploration of content-actor network data. Information Visualization,
6:18–31, 2007.

[29] D. A. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann, editors. Mas-
tering The Information Age - Solving Problems with Visual Analytics.
Eurographics, 2010.

[30] Z. Liu, S. Navathe, and J. Stasko. Network-based visual analysis of tabular
data. In IEEE Conference on Visual Analytics Science and Technology,
pages 41–50, 2011.

[31] S. Madeira and A. Oliveira. Biclustering algorithms for biological data
analysis: a survey. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 1(1):24–45, 2004.

[32] C. Perin, P. Dragicevic, and J.-D. Fekete. Revisiting bertin matrices: New
interactions for crafting tabular visualizations. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2082–2091, 2014.

[33] S. Pupyrev, L. Nachmanson, S. Bereg, and A. E. Holroyd. Edge routing
with ordered bundles. In Graph Drawing, pages 136–147. Springer, 2012.

[34] R. Rao and S. K. Card. The table lens: merging graphical and symbolic
representations in an interactive focus+ context visualization for tabular
information. In Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 318–322. ACM, 1994.

[35] D. Reese. Is sen. claire mccaskill a moderate? The Washington Post.
[36] S. Rufiange, M. . McGuffin, and C. . Fuhrman. Treematrix: A hybrid

visualization of compound graphs. Computer Graphics Forum, 31(1):89–
101, 2012.

[37] R. Santamarı́a, R. Therón, and L. Quintales. Bicoverlapper: a tool for
bicluster visualization. Bioinformatics, 24(9):1212–1213, 2008.

[38] H.-J. Schulz, M. John, A. Unger, and H. Schumann. Visual analysis
of bipartite biological networks. In Proceedings of the Eurographics
Conference on Visual Computing for Biomedicine, pages 135–142, 2008.

[39] Z. Shen, K.-L. Ma, and T. Eliassi-Rad. Visual Analysis of Large Hetero-
geneous Social Networks by Semantic and Structural Abstraction. IEEE
Transactions on Visualization and Computer Graphics, 12(6):1427–39,
2006.

[40] B. Shneiderman and A. Aris. Network visualization by semantic substrates.
IEEE Transactions on Visualization and Computer Graphics, 12(5):733–
740, 2006.

[41] J. Stasko, C. Görg, and Z. Liu. Jigsaw: Supporting investigative analysis
through interactive visualization. Information Visualization, 7(2):118–132,
2008.

[42] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man
and Cybernetics, 11(2):109–125, 1981.

[43] M. Sun, C. North, and N. Ramakrishnan. A five-level design framework for
bicluster visualizations. IEEE Transactions on Visualization and Computer
Graphics, 20(12):1713–1722, 2014.

[44] J. J. Thomas and K. A. Cook. Illuminating the Path: The Research and
Development Agenda for Visual Analytics. National Visualization and
Analytics Ctr, 2005.

[45] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. van
Wijk, J.-D. Fekete, and D. Fellner. Visual analysis of large graphs: State-
of-the-art and future research challenges. Computer Graphics Forum,
30(6):1719–1749, 2011.

[46] S. Wasserman and K. Faust. Social Network Analysis: Methods and
Applications. Structural Analysis in the Social Sciences. Cambridge
University Press, 1994.

[47] N. Wing. Ben nelson is senate democrat most likely to vote against his
party: Analysis. The Huffington Post.

8

	Introduction
	Background
	Related Work
	Graph Visualization
	Bipartite and Multimodal Graph Visualization
	Co-clustering Visualization

	System Design and Implementation
	System Overview
	Analytic Support
	Semi-Supervised Co-Cluster Analysis
	Metric Learning

	Visual Representation
	Visualizing Node Clusters as Adjacency Matrices
	Visualizing Node Clusters as Treemaps
	Visualizing Node Attributes
	Cluster Layout
	Visualizing Bipartite Connections

	User Interaction
	Alternative Designs

	Sample Usage Scenarios
	Scenario 1: US Senate Votes
	Scenario 2: Publication Data

	Expert Review
	Conclusion

