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ABSTRACT

Radio frequency (RF) fingerprinting-based techniques for localiza-
tion are a promising approach for ubiquitous positioning systems,
particularly indoors. By finding unique fingerprints of RF signals
received at different locations within a predefined area beforehand,
whenever a similar fingerprint is subsequently seen again, the lo-
calization system will be able to infer a user’s current location.
However, developers of these systems face the problem of finding
reliable RF fingerprints that are unique enough and adequately sta-
ble over time. We present a visual analytics system that enables
developers of these localization systems to visually gain insight
on whether their collected datasets and chosen fingerprint features
have the necessary properties to enable a reliable RF fingerprinting-
based localization system. The system was evaluated by testing and
debugging an existing localization system.

Index Terms: H.5.2 [User Interfaces]: Graphical user interfaces
(GUI)—; D.2.5 [Testing and Debugging]: Debugging aids—

1 INTRODUCTION

Tracking the location of people and objects inside of buildings has
been an active area of research for some years. The traditional
means of accomplishing this outdoors - GPS satellites - is unavail-
able indoors since buildings block the satellite signals. One ap-
proach researchers have taken in solving this problem is generating
their own indoor radio frequency (RF) signal(s) as a type of local
GPS signal. Small tags, which can be thought of as ”indoor GPS
receivers” track some aspect of these locally generated RF signals
and use this information to locate themselves within the building.

Outdoor GPS receivers operate by triangulating their position
based on the time of arrival of signals from multiple GPS satel-
lites. There is typically line-of-sight between the GPS satellites and
the receivers, allowing predictable RF signal propagation. Indoors,
RF signal propagation is very difficult to predict due to phenomena
such as multi-path propagation, wherein the signal can propagate
from transmitter to receiver via multiple paths by bouncing off walls
and furniture. Small movements in physical space can produce
large differences in the signal since the multiple paths may con-
structively or destructively interfere at any given position. These
phenomena are nearly impossible to predict a priori.

To address this problem, researchers have developed the method
of Radio frequency location fingerprinting. RF fingerprinting relies
on measurements of relevant features of the signals at various dis-
cretized locations. These measurements are taken when the system
is initially deployed. Later, when the system is in use, live mea-
surements taken by the mobile tags are matched to the fingerprinted
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Figure 1: Generation of a location fingerprint. (a) An RF receiver
receives the RF signal at a location block. (b) the received signal
data are parsed and preprocessed. (c) The sampled signal data are
the potential features. (d) The location fingerprint is a subset of these
collected features that is unique to this location block.

measurements to calculate the location of the tags. Since the year
2000, there have been over thirty fingerprinting-based localization
systems proposed by researchers around the world [10, 12, 13].

An RF fingerprint consists of a set of features of the available
RF signals at a particular location. A commonly used feature is the
received signal strength of a signal at a particular frequency, illus-
trated in Figure 1. RF fingerprinting requires that the chosen fea-
tures vary in space so as to be able to differentiate the locations, but
remain constant in time, so that the off-line fingerprint measure-
ment phase does not need to be continually repeated. A location
fingerprint is normally built from multiple sets of samples in order
to tolerate some degree of noise in the features. Each set of samples
collected from all the surveyed locations that constitutes a dataset
is called a site survey. Site surveys can be gathered with some time
in between to observe how temporally stable the fingerprints are.

One of the most important challenges for RF fingerprinting,
therefore, is to select features of the RF signal for the fingerprint
that will produce reliable location estimates of the tags. Too few
features selected for the fingerprint may not give sufficient infor-
mation to differentiate the various locations of interest, while too
many features may include bad features that are unstable in time,
causing the system to produce poor results.

To aid with the process of RF fingerprinting-based localization
system development, we present a visual analytics system for view-
ing the quality of the fingerprinting data collected during a site sur-
vey. By utilizing heat maps to display different perspectives of the
features used in the location fingerprints, developers of these sys-
tems can not only visually inspect the geospatial feedback for the
location classification results, but also be able to select the features



to use by visually finding those that are temporally stable and spa-
tially differentiable in a high dimensional feature space. When nec-
essary, developers can even explore lower level details of any indi-
vidual feature to see raw values and relationships to others through
a multivariate visualization. Using our system, developers of local-
ization systems can tell whether their datasets collected are capable
of building good RF location fingerprints that can enable accurate
location estimates over time.

The contribution of this work is to show how visual ana-
lytics can support the development and practical deployment of
fingerprinting-based localization systems. We feel that this tool is
a particularly good example of visual analytics because the most
effective way to find a good location fingerprint is to combine the
computational data analysis with an interactive geospatial visual-
ization interface.

2 RELATED WORK

The RADAR system proposed by Bahl and Padmanabhan in 2000
was the earliest RF fingerprinting-based localization system [3].
The researchers were able to achieve a median of 2-3 meters ac-
curacy indoors using Wi-Fi signals. Since then, researchers have
reported over thirty systems using different RF signals or classifica-
tion algorithms [10]. However, although these localization systems
are easy to deploy, the initial setup and calibration process for gen-
erating the fingerprints is tedious and time consuming [11]. They
can also be less reliable when the features used for the fingerprints
are not spatially differentiable and stable over time. Kaemarungsi
and Padmanabhan studied the properties of Wi-Fi location finger-
prints using received signal strength and learned that even the pres-
ence of a human body can make a significant difference on the fin-
gerprints [9]. Therefore, it is crucial to identify and remove unstable
features in the generated fingerprints to maintain the reliability of
the localization system over time.

Visualizing RF signals on a geospatial map using heat maps is
prevalent in 802.11 WLAN site survey tools for optimizing Wi-Fi
network coverage. Ekahau Site Survey took a step forward to not
only visualize the propagation of Wi-Fi signals but also integrate
the output to power their Real-Time Location Tracking System [5].
Nevertheless, this consumer-facing site survey tool cannot support
more advanced visual debugging functions on feature selection and
location fingerprint classification.

Spectrum analyzers for identifying physical locations of signal
sources also require visualizing signals on a geospatial map and
classifying them. Tektronix’s RFHawk Signal Hunter identifies
potential malicious RF signals by singling them out from known
signals [14]. The malicious signal will then be documented on a
geospatial map with a color-coded wave form or signal strength
icon for later reference. However, as the tool did not aim to sup-
port location fingerprinting, the wave form icons on the map have
little power to show the individual feature differences for building
spatially differentiable location fingerprints.

Andrienko and Andrienko used interactive cartographic visual-
ization to output results of the C4.5 classification learning algorithm
for knowledge discovery [1]. Their work suggested that interac-
tive visual facilities that allow an analyst to manipulate variables
and immediately observe the resulting changes in a map is effec-
tive for geospatial data analysis. Our visual analytics system took
a step further for the K-nearest neighbor classification algorithm as
to even visualize the intermediate steps of the algorithm for indoor
localization.

Our system was developed with data from the PowerLine Posi-
tioning localization system (PLP) [12]. PLP injects an RF signal
into the power lines of a residential building and uses the power
lines as a giant antenna for propagating the signals. The mobile
wireless tag can then use this signal’s characteristics as the feature
set to fingerprint locations within the area where the power lines can

reach. The latest revision of this system utilizes a feature set that
samples 44 different frequencies of the amplitudes of the signal for
location fingerprinting [13]. All the illustrations shown in this pa-
per are either using the original data of this system or a modified
version of it. The data of the system was gathered in a residential
laboratory on a university campus. This lab has a similar layout and
electrical infrastructure as a common residential house. We marked
out one meter by one meter blocks on the floor, producing 66 dif-
ferent locations for our site survey.

In the next section, we will discuss the current problems in build-
ing a good location fingerprint with the existing, analytic text-based
machine learning approaches. In Section 4, we will briefly provide
an overview of the visualization interface. We will present a sce-
nario that demonstrates how our visual analytics system works in
Section 5. More details and example uses of the visualization will
be discussed in Section 6.

3 RADIO FREQUENCY FINGERPRINTING-BASED LOCALIZA-
TION

3.1 System Development Procedure
The procedure to build a location fingerprinting system can be
roughly decomposed into three steps. The system presented here
is focused on supporting the last two steps.

1. The first step is to gather the datasets and feature sets that can
be potentially used to generate a location fingerprint database.
This requires a tedious site survey that maps where the RF
signals are gathered in the real world.

2. The second step is to find the right set of RF signal character-
istics for the fingerprints. This step involves feature selection
and building the fingerprints with the selected features.

3. The last step is to test the collected fingerprints with RF sig-
nals received at random locations in the surveyed area (ran-
dom fingerprints). The signal data will be input to the local-
ization system to see if it can accurately find the true loca-
tions of these random fingerprints through classification algo-
rithms.

3.2 Problems and Challenges for Building Location Fin-
gerprints

The generation of the location fingerprint database on a radio map
requires a site survey in advance. This survey normally requires
a user to manually tell the system where they are so that the sys-
tem can learn the RF signal pattern at that specific location. This
process can be very tedious and time-consuming. For example, in
the PowerLine Positioning system, the time to survey each location
with the full 44 features can take around 2 minutes. It takes about 2
hours to survey 66 locations in practice. If the location fingerprints
are unstable over time, users might need to conduct the site survey
again later to calibrate the system.

One major challenge is how to find the best features that can
be used for building a set of good location fingerprints. In prac-
tice, we would like to use as few features as possible to build the
fingerprints. There are two reasons for this. First, the fewer the
features means that the training time and classification time for the
machine learning algorithm can be shorter. For real-time localiza-
tion, this can be very crucial. Second, fewer numbers of features for
a fingerprint can result in a shorter time required for the site survey
data collection process. Half the number of features needed means
half the time for this tedious preprocessing procedure. However,
the fewer the features used, the less likely individual fingerprints
will be unique, resulting in higher overall classification error. So
the technical challenge is how to find a balancing point where a
smaller set of features can be used while the system is still capable
to accurately classify a certain area of interest.



3.3 Problems with the Current Approach
The current approach used by localization developers to prove these
required properties of the location fingerprints are achieved is by
running machine learning algorithms with the fingerprints gathered
at different times. The outputs of this approach are the text-based
classification accuracy and misclassified locations when they test
the fingerprints. There are several problems with this approach:

First of all, it is not easy to tell how each feature composed in a
fingerprint is contributing to the overall classification results. For
practical applications, one might have a few locations that are more
important to be always classified with high accuracy while other
locations are fine to be occasionally incorrect. There are many fea-
ture selection algorithms to analyze how each feature can build up
the overall accuracy. However, different features may improve the
classification accuracies of different areas on the radio map while
they all improved the same overall accuracy.

Additionally, if there are a few locations that are always misclas-
sified by the algorithm, it is very difficult to dig down into the multi-
dimensional raw feature sets to identify the problem. Is it caused
by a problematic training data set gathered or is the current finger-
print just not unique enough to correctly classify this location? If
this kind of debugging cannot be performed, it is very hard for a
location fingerprinting system to be practically deployed with the
desired accuracy for any specified area of interest. Moreover, dur-
ing the site survey process, sometimes there are RF interferences.
These interference events can jeopardize the reliability of the pro-
duced fingerprints that should be mostly accurate for the most com-
mon cases. Moreover, it is not easy to find extreme cases when
dealing with multidimensional data.

The requirements can be summed up in two major questions that
need to be answered:

1. How do we effectively find a set of location fingerprints that
are good enough for certain areas of interest?

2. If there are some locations that consistently receive inaccurate
classifications, how do we find the problem?

To answer these two questions, several capabilities are required.

1. Test new unknown fingerprints with a preview of classifica-
tion results on a map.

2. Test different subsets of features that can be used to compose
the location fingerprints.

3. Examine the raw data of each individual feature for the fin-
gerprints at different locations and its temporal stability.

4. Examine the spatial variance between locations in the high
dimensional feature space of the fingerprints.

The design of the visual analytics system directly addresses these
questions and targets these tasks. However, in subsequent use of the
system, several unexpected interesting insights of the datasets and
features were also discovered.

4 VISUAL ANALYTICS SYSTEM OVERVIEW

4.1 Interface Overview
The interface of the system contains four main panels as shown in
Figure 2.

1. Dataset selection This panel allows developers to select the
datasets to be viewed or used. Datasets can be selected in-
dividually or with others according to the operation context.
For example, multiple datasets should be selected when one
attempts to calculate the standard deviation between them

Figure 2: The four panels of our visual analytics system interface.

whereas only a single selection is needed when one attempts
to view the raw feature value of a specific dataset. To the right
of the dataset selection combo box is a timeline that shows
when the datasets selected were collected. When a dataset is
selected, the oval symbol representing it will be highlighted in
blue. Each oval symbol on the top or bottom of the timeline
represents a data set gathered.

2. Feature selection This panel allows developers to select the
features to use to compose the fingerprints. It supports single
or multiple selections according to the context of use.

3. Main map The main map panel is the display area for the
geospatial visualization. A preloaded map is displayed in the
background to provide the geospatial context for the visual-
ization. By selecting different viewing perspectives, datasets
and feature sets, this panel shows a grid-based heat map for
the selected parameters. The heat map representation is very
useful in showing the relative query results between different
locations on the map. This visualization technique is partic-
ularly effective for examining a fingerprinting-based localiza-
tion system because we are most interested in the spatial dif-
ferentiability of the location fingerprints. At the bottom of
this perspective is the status bar. It shows the current selected
feature set, the mouse interaction mode and information about
the heat map being presented.

4. Perspective control This panel is used to control the view-
ing perspectives. The system provides three different viewing
perspectives, each showing a different type of information of
the datasets, features and complementing each other when the
developer intends to drill down to a specific problem.

• Data Variance Perspective (Figure 3) shows the raw data of
all the datasets with their corresponding feature sets.

• Spatial Variance Perspective (Figure 8) shows the spatial
variance of between fingerprints in the high dimensional fea-
ture space using the selected features.

• Test Classification Perspective (Figure 4) provides a geospa-
tial representation to show the results of the location classifi-
cation using the generated fingerprints.

We use a green-gray-red color scheme for the heat maps dis-
played in the main map panel. Green indicates better results and
red indicates worse. As for other colors used in the system, we
avoid using green or red to avoid any semantic confusion.



Feature Value Rank
antenna amp 447 -56.7354796 2
antenna amp 448 -56.9711881 1
antenna amp 500 -55.5012413 5
antenna amp 600 -56.3032417 4
antenna amp 601 -56.3032471 3

Table 1: Feature transformation for ranking version of PLP

5 SCENARIO

5.1 PLP Ranking Dataset

To illustrate use of this visual analytics system, we present an actual
analysis scenario we conducted using the PLP data. From our pre-
vious research, we knew the original feature values (the raw signal
data) from the power line is useful for localization. However, since
the original data was real valued, it is sometimes more clustered in
the high dimensional feature space. As a result, when the location
fingerprints contains certain amount of noise in the signal, the clas-
sification would be incorrect. Therefore, one of the researchers pro-
posed to transform the features of the datasets from raw amplitude
values into the relative ranks of raw amplitude values as illustrated
in Table 1. Using the ranking of the original feature values will cre-
ate a unified spacing in between the them for each block. In theory,
this approach can be more robust to noise because the real values
are dynamically ranged and rounded up into a ranking form. Our
task is to see if the PLP ranking version is better than the original
PLP system.

One major evaluation criteria for PLP ranking version is to com-
pare an optimal set of fingerprints built for an area of interest of it
to the original PLP. The following scenario will show how to use
the system to rapidly build a good location fingerprint database that
is capable of maximizing the classification accuracy of an area of
interest for the PLP ranking version. The same procedure is con-
ducted on the original PLP for comparison. For the scenario, we
assume that the kitchen area in the residential lab (lower left area)
is our area of interest as shown in Figure 3.

5.2 Scenario: Building an optimized fingerprint for an
area of interest

5.2.1 Temporal stability feature selection

After importing all the datasets, ranked feature sets and the resi-
dential lab map into the system, the system will begin with the Data
Variance Perspective (Figure 3). It shows the raw feature values as
a heat map on the main map view. The greener blocks represents
higher raw values (stronger signal). The first thing we would like
to determine for feature selection is whether the datasets we gath-
ered at different times are consistent enough to build reliable finger-
prints. Therefore, we check the ”Calculate STD between datasets”
checkbox and select all the datasets to calculate the standard de-
viation of each feature throughout all the datasets. Previous re-
search found that the smaller this standard deviation is, the higher
the overall system accuracy will be [8]. Because our focus is to
compare the consistency of different features, we then check the
”Global color over all features” checkbox to dynamically range the
colors properly for inter-feature comparison. The main map now
shows a mostly green heat map. This means that most of the loca-
tions on the map for the selected feature are roughly consistent. By
cycling through the features, we find that 9 features are exhibiting
less consistent values (red blocks) at our area of interest such as
the one shown in Figure 3. Therefore, they are eliminated from our
potential feature set for the target fingerprints.

Figure 3: Standard deviation view of a selected feature in the Data
Variance Perspective that shows several temporally unstable blocks.
One is in the kitchen area and two are in the rooms at the back of the
house.

5.2.2 Preview classification result
We now switch to the Test Classification Perspective to preview lo-
cation classification results on the map (Figure 4). By default, it
will use all the features to perform a leave-one-out cross valida-
tion on the datasets. As explained earlier in Section 3.2, we gen-
erally prefer a smaller fingerprint with fewer features. As a result,
we first eliminate the 9 features identified in the last section from
the full 44 features. Then, we click the Auto Selection button to
use a correlation-based feature selection algorithm to automatically
filter out some irrelevant features from the remaining 35 features.
This results in an elimination of 14 more features. The classifica-
tion results are shown in Figure 4. However, by cycling through
different test datasets to use for cross validation, we notice that al-
though some of them have all the kitchen’s blocks correctly clas-
sified, some test datasets like N2-1, still have a couple of blocks
misclassified.

5.2.3 Debugging problematic blocks by finding spatial vari-
ance problems

In order to find the problem of the two misclassified blocks, we
switch into the Spatial Variance Perspective (Figure 5). In this
perspective, we click on the problematic block a1.0n located at
the lower left corner of the map in the kitchen area. From the
heat map shown in Figure 5, we can see the reddest block on the
map is b2.0n, the block where a1.0n was misclassified to. In this
case, a1.0n was probably misclassified because of the closeness
of the fingerprints in the high dimensional feature space of these
two blocks. Therefore, if we can find a few features to change this
closeness, the classification could potentially be corrected. So by
the clicking on the block, we can pull up the parallel coordinates
view that shows the differences of all the raw feature values from
other blocks to further inspect the data.

In the parallel coordinates view, we can visualize all the raw fea-



Figure 4: Features selected using automatic correlation-based fea-
ture selection in the Test Classification Perspective. 21 features are
selected in this view. N2-1 have misclassified two blocks in the lower
left corner of the kitchen when used as the test dataset.

ture values for a selected block to directly identify its degree of spa-
tial differentiability and temporal stability. The default view shows
the difference of raw feature values between a1.0n, the block se-
lected, and the block on the y-axis. A higher value shown in the
x-axis indicates there is more spatial variance between the blocks
in the high dimensional feature space. Moreover, if we only select
one feature to investigate and plot all the datasets’ values together,
we will be able to identify the degree of temporal stability too
by visually observing the pattern overlapping amount in the plot.
Therefore, the ideal form of parallel coordinates for a good feature
should have a pattern like the one shown in Figure 6 (a). How-
ever, due to RF interference and multi-path propagation, in many
cases we will see patterns like Figure 6 (b) or (c) which either do
not have sufficient spatial differentiability or temporal stability. As
a result, we could identify features like antenna amp 500 (b) and
antenna amp 10000 (c) in Figure 6 to be potential removal candi-
dates.

Now with these removal candidate features identified, we can go
back to the Test Classification Perspective and conduct some trial
and error with these features included or excluded to see the effect
on the overall classification results. It turns out that removing an-
tenna amp 9500 will give us the distinction needed for the lower
left block (Figure 7(a)). We can continue this procedure several
times to optimize all the classifications of the blocks in the area of
interest.

5.2.4 Result comparison

Within a few minutes of experimenting with the feature selection,
we managed to find 15 features for the fingerprints that can best
classify locations in the kitchen (97.44 percent accuracy) as shown
in Figure 7 (a). For comparison, we also used this method to find
the best fingerprints in the original PLP datasets. Five features
were initially filtered from the temporal stability test and 12 features

Figure 5: Selected block a1.0n is clearly closest to block b1.0n as
shown in the Spatial Variance Perspective.

Figure 6: Parallel Coordinates of three different features plotted from
block a1.0n. Each of the lines represents a different dataset. (a)
An ideal feature with difference of feature values consistent across
datasets and have sufficient spatial variance to most of the blocks (b)
Problematic feature with high temporal stability but low spatial differ-
entiability (c) Problematic feature with high spatial differentiability but
low temporal stability.



Figure 7: (a) PLP ranking version classification results with selected
features using N2-1 as test dataset. The overall classification accu-
racy for the kitchen area is 97.44 percent. (b) PLP original real valued
data classification results with selected features using N2-1 as test
dataset. The overall classification accuracy for the kitchen area is
94.87 percent. However, the misclassified locations outside of the
kitchen is far worse than the ranking version.

were further eliminated through the automatic feature selection al-
gorithm. After trial and error selection of features, the resulting
fingerprints contains 11 features with good accuracy in the kitchen
(94.87 percent accuracy) as illustrated in Figure 7 (b). To sum up,
the PLP ranking version was not obviously better than the original
version on the numbers. However, the misclassified blocks for the
PLP ranking version were misclassified to closer blocks than the
original PLP. These geospatial differences on the classification re-
sults are not easy to spot when using text-based machine learning
programs. In conclusion, the PLP ranking version does seem to do
better overall for this scenario.

6 VISUALIZATION DESIGN

This section will give more details on the design of the three main
viewing perspectives and their specific use case in the PLP system.

6.1 Data Variance Perspective

6.1.1 Raw feature value view

This perspective provides a spatial view for the raw data collected
for location fingerprinting. In this perspective, developers can
choose which type of feature set to use for fingerprinting and be
able to see the relative raw feature values on a heat map. In PLP,
the coloring of this perspective is based on the raw signal strength
values. The higher the value is, the greener the block is. The heat
map can give us a view of the data variance between the blocks for
each feature selected. The coloring can be dynamically ranged ei-
ther over one specific feature or over all the features. Developers
can compare the colors of the blocks directly between different fea-
tures when the colors are dynamically ranged over all the features.

In the PLP system, we discovered from the coloring patterns that
the received signal strength (feature values) at the multiples of 3500
Hz are in general much stronger than the others. As stronger signals
are easier to pickup and less susceptible to noise, they could poten-
tially be better candidates for building the fingerprints. We also
noticed that by placing two instances of the heat map visualization

Figure 8: Minimal Euclidean distance view in the Spatial Variance
Perspective that shows spatial variance. This set of features should
not be selected for the location fingerprints if the two red blocks at
the doorway is our area of interest.

side by side, the color patterns of the blocks for several specific fea-
tures of the first two datasets are closer to each other while the other
four datasets are closer to each other. Since the first two datasets are
gathered earlier than the others, we learned that these features are
less temporally stable.

6.1.2 Standard Deviation
To see the data variance through time at a specific location of a
certain feature, developers can chose to calculate the standard de-
viation of the data between a set of datasets selected in this per-
spective as shown in Figure 3. By the highlights of the datasets
selected in the timeline, it is easy to tell the temporal stability of
a certain feature at different locations on the map. One can com-
pare the temporal stability between all the features when the colors
are dynamically ranged over all the features. For example, in Fig-
ure 3, because smaller temporal variance is preferred, the blocks
at the lower left corner and upper right corner showing redder col-
ors in this view exhibited more temporal instability with the feature
antenna amp 19000 over all the datasets. By simply selecting and
deselecting different sets of datasets for this specific feature, we no-
ticed that if we exclude the first two datasets gathered on the time-
line, these two blocks will have much smaller variance (greener).
Therefore, if we wish to have a more temporally stable location fin-
gerprint, we better not include this feature in our fingerprints when
the two blocks at the bottom are important areas of interest.

6.2 Spatial Variance Perspective
6.2.1 Euclidean distance
This perspective shows the spatial variance between the locations
inspected using the Euclidean distance of the selected features. The
Euclidean distance is a very commonly used function to find the
distance between two points in a high dimensional space. The func-
tion is also used by the K-nearest neighbor algorithm, the most



widely used algorithm for RF location fingerprinting techniques
[10]. Using the Euclidean distance of the features selected between
the blocks in the high dimensional feature space provides the devel-
opers a view of how spatially differentiable a potential fingerprint
is.

6.2.2 Minimal Euclidean distance view

The default heat map shows the minimal Euclidean distance from
all other blocks of the selected features as shown in Figure 8. As we
prefer to avoid sets of features that generates little spatial variance,
by showing the minimal Euclidean distance from all other blocks
on the focused block can give us a general idea of how likely this
block can be misclassified. The smaller this distance is, the redder
the block is. Since the colors overlaid are by default dynamically
ranged over the values shown in this view, it is fine for a red block
to be present as long as it can be correctly classified. However,
the redder blocks will have a relatively closer neighbor when repre-
sented in the high dimensional feature space so we certainly do not
want them to be at our area of interest. For example, in Figure 8, if
the area in front of the the doorway leading to the stairs is our area
of interest, this set of selected features is probably not optimal for
this dataset because it is more likely to cause misclassifications at
those locations.

6.2.3 Euclidean distance from others view

When hovering the mouse over a block in the minimal Euclidean
distance view, another heat map will show the Euclidean distance
of the block selected from all the other blocks as shown in Figure 5.
The closer the Euclidean distance of a block is from the block se-
lected, the redder the block is. Developers can dynamically range
the colors over all the Euclidean distances from of the blocks to
directly compare the colors of the blocks of one selected block to
other selected blocks. In this case, by hovering through different
blocks with certain selected features, the more greener blocks are
shown, the more spatially differentiable this hovered-over block is.

6.2.4 Parallel coordinates for all the datasets

For more details of the spatial differentiability for the multidimen-
sional features, one can select a block and bring up a parallel co-
ordinates plot as shown in Figure 5. Parallel coordinates can trans-
form the analysis of the relations of multidimensional data into a
two-dimensional pattern recognition problem [6]. Many works in
geovisual analytics for multivariate visualization have used parallel
coordinates for further exploration of the underlying data [2, 4, 7].
for The y-axis of the parallel coordinates lists all the blocks ordered
by their physical distance from the selected block. By default, the
value on the x-axis shows the individual feature value differences
from the selected block’s. The slider on top can highlight individual
features in the parallel coordinates.

This view is particularly useful when used to identify temporal
stability and spatial differentiability problems for a specified block
when the x-axis is showing the feature value differences, the higher
this value is for a specific feature generally means the more es-
sential this feature is for creating spatial variance between the y-
axis block and the block selected. If we choose to display multiple
datasets’ values for a specific feature, the overlapping pattern of
these lines will directly indicate how temporally stable this feature
is. An ideal visual pattern of a feature at a block should be like the
one shown in Figure 6 (a). On the contrary, features of (b) and (c)
in Figure 6 are probably not good candidates because they do not
show both the preferred properties mentioned above.

By selecting an area of interest, developers can add in features
one by one to generate the best minimalist set of features that make
this location fingerprint more spatially differentiable when used to-
gether with the heat map. Developers can also select all the features

at first and use the feature highlighting slider on the top of the paral-
lel coordinates to find out which features are more problematic and
eliminate them.

The parallel coordinates view also provides the developers a
view of all the original feature values of all the blocks in the se-
lected dataset. This view is very useful for finding extreme values
in the raw feature data. In PLP, this view helped us find features
with higher amplitudes that may be more distinguishable and less
prone to noise. An extreme feature value might be caused by a tem-
porary RF interference that occurred during the site survey process.
Clearly, we normally do not want to include it in the location fin-
gerprints. Therefore, avoiding using features that produce extreme
peaks at our area of interest is one way to optimize the location
fingerprints generated.

6.3 Test Classification Perspective
6.3.1 Leave-one-out cross validation
This perspective shows a geospatial view of the location classifi-
cation results as shown in Figure 4. In this perspective, develop-
ers can select the training datasets, test dataset, and the machine
learning algorithm to classify fingerprints with their selected fea-
tures. All the datasets used for the classification are first selected in
the dataset selection panel. Then, by selecting one of the selected
datasets as the test dataset on the Perspective Control panel, the sys-
tem will use the rest of the selected datasets as the training datasets
to classify the instances in the test dataset, performing a step in the
leave-one-out cross validation. By default, the K-nearest neighbor
classifier using one nearest neighbor is used as it is the most fre-
quently used classifier for RF location fingerprinting systems [10].
Several other classifiers provided by Weka machine learning toolkit
[15] such as J48 decision trees, K-Star, Naive Bayes etc. are also
provided in this perspective. The result of the classification will
be shown as a heat map that is color-coded by how physically far
a location is misclassified. The further a block is misclassified, the
redder the block is. A line pointing to the misclassified location will
also be drawn on the map. To avoid confusion introduced by over-
lapping lines when many locations are misclassified, the lines will
jitter upon mouse movement. Hovering the mouse over the block
will place a highlighted circle on the misclassified block and a static
highlighted line pointing to the misclassified location. For example
in Figure 7(b), the block in the bathroom (the smaller highlighted
area) was misclassified to the block far away, therefore, it is red.

6.3.2 Feature selection
Developers can select features that are used for location classifica-
tion in the Test Classification Perspective through the feature selec-
tion panel as shown in Figure 4. They can use this panel to test the
features they selected and use a trial and error approach to select
the features that show the most promising results on the heat map.
The visual analytics system provides an automatic feature selection
function that uses Weka’s correlation-based feature subset selection
(CFS) algorithm with best-first search. The result of this feature
selection function is not optimal but provides a fast and relatively
good result as a starting point for the trial and error approach. The
automatic feature selection button uses all the currently selected
features as the full feature set to select from. Therefore, developers
can first select a subset of features that they would like to automati-
cally select from and execute the CFS algorithm on them to further
narrow down the features selected. The major advantage of this ap-
proach of feature selection is that developers can see how each fea-
ture contributes to the accuracy of the classification for each block.
We would like to select a subset of features for fingerprinting that
can better classify our area of interest with a lower overall accuracy
than a subset of features that cannot but with a higher overall accu-
racy. In PLP, from the scenario given in Section 5, with the trial and
error feature selection method, we can quickly identify 11 out of 44



features that matters most for the fingerprinting system to achieve
an over 90 percent classification accuracy in the kitchen within a
few minutes as shown in Figure 7 (b).

7 DISCUSSION AND FUTURE DIRECTIONS

Two major issues of this visual analytics system are its scalabil-
ity and generalizability. With regard to scalability, the system was
developed with the PLP data which consists only 6 datasets, 44
features, and 66 blocks surveyed. The low number of instances
allowed the system to produce almost instantaneous results when
running K-nearest neighbor classifier on it. The fast calculation of
all the Euclidean distances in the spatial variance perspective also
benefited by the small amount of instances present. If there are hun-
dreds of datasets, each dataset has hundreds of features, or a slower
classifier is used, the system will very likely be running too slow
to be usable. Moreover, developers will also have more trouble
navigating through the current implementation when hundreds of
datasets and features are shown. A more scalable design of the sys-
tem should support distributed computing for the machine learning
algorithms when dealing with large and high dimensional datasets.

The second issue is generalizability. The system design can be
generalized for different kinds of features provided by different
types of RF systems such as Wi-Fi and GSM. However, its support
for different types of machine learning algorithms is very limited,
especially on the Spatial Variance Perspective. If using a different
algorithm other than K-nearest neighbors for classification, the no-
tion of ”distance” will be different. Future work for generalizability
should explore having more distance functions built in for showing
spatial variances between different blocks and coupling them with
the classification algorithm in the Test Classification Perspective.
Systematic user evaluations on other fingerprinting-based location
systems can be further conducted to better understand the general-
izability and scalability issues of our system.

The visual analytics system presented in this paper can be fur-
ther improved by delegating more currently required manual work
to the computational system. For example, in the Data Variance
Perspective, a color-coded feature list that can show the ”reddest”
block color or the average color presented in its individual view
can save developers the manual work of going through all the fea-
tures in the list to find the temporally unstable features. In the Test
Classification Perspective, instead of requiring developers to cycle
through the more detailed leave-one-out cross validation, providing
one meta 3-fold cross-validation view should be sufficient for them
to learn whether the selected features are good enough.

8 CONCLUSION

The visual analytics system presented in this paper aids in the devel-
opment of RF fingerprinting-based localization systems by helping
developers select appropriate features for a good location finger-
print. The geospatial visualization in the Test Classification Per-
spective gives developers not only the accuracy results of the lo-
cation classification, but also the exact location of misclassified
blocks. The Data Variance Perspective with the standard devia-
tion heat map can give the developers an idea of which features
are better with respect to temporal stability. For more detailed spa-
tial differentiability information, the Spatial Variance Perspective
allows users to go down level by level into the raw feature value
differences. This system supports many visual aids for location fin-
gerprint feature selection and a clear geospatial output representa-
tion that text-based analytic machine learning algorithms can not
deliver.

The system was able to effectively identify good location finger-
prints on the PLP system as shown in this paper. By combining the
power of interactive visualization and computational data analysis,
we think this system is a great example of how visual analytics can

support the development of technologies that will potentially shape
our lives in the future.

ACKNOWLEDGEMENTS

The authors would like to thank Mario Romero, Shwetak Patel, Jef-
frey Hightower and the Georgia Tech Ubicomp group for their valu-
able input to the development of this system.

REFERENCES

[1] G. Andrienko and N. Andrienko. Data mining with c4.5 and interac-
tive cartographic visualization. In User Interfaces to Data Intensive
Systems, 1999. Proceedings, pages 162–165, 1999.

[2] G. L. Andrienko and N. V. Andrienko. Interactive visual tools to sup-
port spatial multicriteria decision making. In UIDIS ’01: Proceedings
of the Second International Workshop on User Interfaces to Data In-
tensive Systems (UIDIS’01), page 127, Washington, DC, USA, 2001.
IEEE Computer Society.

[3] P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based
user location and tracking system. In INFOCOM (2), pages 775–784,
2000.

[4] R. M. Edsall. The parallel coordinate plot in action: design and use for
geographic visualization. Comput. Stat. Data Anal., 43(4):605–619,
2003.

[5] Ekahau. http://www.ekahau.com/.
[6] A. Inselberg. Multidimensional detective. In INFOVIS ’97: Proceed-

ings of the 1997 IEEE Symposium on Information Visualization (In-
foVis ’97), page 100, Washington, DC, USA, 1997. IEEE Computer
Society.

[7] S. Johansson and M. Jern. Geoanalytics visual inquiry and filtering
tools in parallel coordinates plots. In GIS ’07: Proceedings of the 15th
annual ACM international symposium on Advances in geographic in-
formation systems, pages 1–8, New York, NY, USA, 2007. ACM.

[8] K. Kaemarungsi and P. Krishnamurthy. Modeling of indoor position-
ing systems based on location fingerprinting. In IEEE Infocom, Hong
Kong, pages 1012–1022, 2004.

[9] K. Kaemarungsi and P. Krishnamurthy. Properties of indoor received
signal strength for wlan location fingerprinting. Mobile and Ubiqui-
tous Systems, Annual International Conference on, 0:14–23, 2004.

[10] M. B. Kjærgaard. A taxonomy for radio location fingerprinting. In
LoCA, pages 139–156, 2007.

[11] B. Li, J. Salter, A. G. Dempster, and C. Rizos. Modeling of indoor
positioning systems based on location fingerprinting. In First IEEE
International Conference on Wireless Broadband and Ultra Wideband
Communications, Sydney, Australia, 2006.

[12] S. N. Patel, K. N. Truong, and G. D. Abowd. Powerline positioning:
A practical sub-room-level indoor location system for domestic use.
In Ubicomp, pages 441–458, 2006.

[13] E. P. Stuntebeck, S. N. Patel, T. Robertson, M. S. Reynolds, and G. D.
Abowd. Wideband powerline positioning for indoor localization. In
UbiComp ’08: Proceedings of the 10th international conference on
Ubiquitous computing, pages 94–103, New York, NY, USA, 2008.
ACM.

[14] Tektronix. http://www.tek.com/.
[15] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning

Tools and Techniques. Morgan Kaufmann, 2 edition, 2005.


