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Abstract— Data visualization has the power to revolutionize sports. For example, the rise of shot maps has changed basketball
strategy by visually illustrating where “good/bad” shots are taken from. As a result, professional basketball teams today take shots from
very different positions on the court than they did 20 years ago. Although the shot map has transformed many facets of the game, there
is still much room for improvement to support richer and more complex analytical tasks. More specifically, we believe that the lack
of sufficient interactivity to support various analytical queries and the inability to visually compare differences across situations are
significant limitations of current shot maps. To address these limitations and showcase new possibilities, we designed and developed
HooplInSight, an interactive visualization system that centers around a novel spatial comparison visual technique, enhancing the
capabilities of shot maps in basketball analytics. This article presents the system, with a focus on our proposed visual technique and its
accompanying interactions, all designed to promote comparison of two different scenarios. Furthermore, we provide reflections on and
a discussion of relevant issues, including considerations for designing spatial comparison techniques, the scalability and transferability
of this approach, and the benefits and pitfalls of designing as domain experts.

Index Terms—sports data visualization, sports analytics, visual comparison, basketball

1 INTRODUCTION

With the increasing prevalence of sports data collection and analysis,
sports visualization has become a powerful tool for accessing, ana-
lyzing, and communicating sports data and analytics [11,38]. Only a
handful of existing sports visualizations can be considered as having
fundamentally altered the trajectory of a sport, however. In the realm of
basketball, shot maps (or shot charts) [18,19] are such an example — the
locations where teams take shots have changed dramatically, driven in
part by the insights available through shot maps [43]. Basketball teams
have modified their game plans, aiming to create more opportunities for
players to take shots from their “hot spots.” Such shifts in professional
leagues (e.g., the NBA - National Basketball Association in the U.S.)
have rippled out to millions of fans and players worldwide, affecting
their appreciation of and engagement in the sport of basketball.

Although the use of data, visualization, and analytics in basketball
has grown significantly over the past decade, one form of analysis that
has not seen an accompanying focus is in-depth comparison of data
and information. Comparison is one of the most important analytical
activities in sports [11]. For example, how does one player compare to
another, or how has a particular player’s performance improved or fallen
over time? Media outlets rely on comparisons to assemble a wide range
of compelling stories. Fans engage in casual or fierce arguments with
friends and strangers about which player is better on different occasions.
Analysts and coaches make comparisons to evaluate player and team
performance, analyze various circumstances, and make appropriate
adjustments in team make-up and strategy.

Our particular focus in this work is the comparison of shots taken in
basketball. When a player “shoots” the ball toward the basket hoping
that it goes through the hoop, this is called a “shot.” Obviously, whether
the shot is made or missed is the most important metric, but many other
accompanying variables exist for each shot. The second most important
variable is likely the position on the basketball court where the shot was
taken from. Additional variables include the type of shot (dunk, jumper,
hook, etc.), the time of game/possession it was taken, and which other
players were in the lineup at that time, among others.

e Yu Fu and John Stasko are with Georgia Institute of Technology. E-mail:
Sfuyu@gatech.edu, john.stasko@cc.gatech.edu

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

In general, this basketball scenario can be abstracted as a spatio-
temporal data analysis problem. The basketball court is our spatial
grounding, which we divide up into a series of contiguous smaller
regions for aggregation and convenience. Each region then has multiple
events (shots) occur within it, each event having multiple quantitative
and nominal variables. The primary variables that we focus on are
Jfrequency and efficiency. Frequency denotes how often shots are taken
from a certain region and can be measured as the number of shot
attempts or as a proportion of total attempts. Efficiency denotes how
accurate/effective a player/team is shooting the ball, i.e., the proportion
of shots taken that are made. Our goal is to support our primary user
group, sports analysts or other analytic-savvy stakeholders (e.g., fans,
journalists), examining the shot behaviors of two references, such as
two different players or one player in two different time periods, and to
compare the performance and patterns of the two selected references,
hopefully gaining insights from the comparison.

We have developed an interactive visualization technique and an
accompanying system called HoopInSight to compare and analyze
shooting patterns and performance in a way existing shot maps fail to
provide. Our approach revolves around a novel visual technique with
flexible interactions and a real-world data pipeline. More specifically,
the data pipeline and interactivity enable users to swiftly construct a
spectrum of comparative conditions/scenarios, e.g., Denver Nuggets’
shooting behaviors with or without their star player Nikola Jokic in
the game. Meanwhile, our proposed visual technique allows users to
rapidly compare multivariate spatio-temporal data across two chosen
scenarios and derive insights, such as determining the locations where
shots were taken more/less frequently and how much more/less efficient
those shots were, and ultimately infer the contrasting patterns.

2 RELATED WORK
2.1 Sports Visualization

Perin et al. [38] conducted a comprehensive state-of-the-art review and
identified two primary roles of visualization in sports: analytical and
narrative. Visualizations used to analyze sports data focus on under-
standing the ever-increasing amount of data and extracting insights
from it. These insights can lead to novel analytical storylines, help
scouts understand opponents’ tendencies and behaviors, and even as-
sist in strategy-making or team assembling. Narrative uses of sports
visualization tend to be more prevalent, targeting a broader audience
with more straightforward messages. Du and Yuan [11] focused on the
use of visual analytics in competitive sports and proposed a more nu-
anced categorization of competitive sports data. They also listed feature
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comparison as one of the three main tasks for competitive sports data
visualizations. Our work falls into that category and seeks to advance
the analytical use of visualization by incorporating multiple data types
revolving around spatio-temporal information about shots.

While many sports visualization practitioners have primarily focused
on using visualization for communication purposes, researchers also
have sought to address challenging analytical problems leveraging both
novel interactions and visual techniques (e.g., glyphs) [1, 10,25, 37,40,
44,49]. In the domain of basketball, projects such as GameFlow [7] and
BKViz [29] aim to demonstrate complex statistics about NBA games,
such as game trends, play sequences, and team rotations. Another
focus is the emerging notion of supporting sports journalists to cope
with increasingly advanced basketball data and analytics, aiming to
assist them in exploring such analytics and identifying novel insights
to build narratives [13, 52]. Other researchers have endeavored to
leverage tracking data and its derivatives to further advance the use
of visualization in sports analytics [42,48]. Recently, visualization
researchers have sought to integrate sports visualization with natural
language and VR/AR technology [8,9,27,28], thus broadening the roles
of sports visualization and benefiting more stakeholders. Reflecting
on their projects and collaborations with different user groups, Lin et
al. provide valuable insights into working with different stakeholder
experts and future research opportunities [26].

2.2 Visualization for Basketball Spatial Analytics

Our work aims to push the boundaries of basketball spatial analytics
through interactive visualization. The quest to understand basketball
shooting behaviors through spatial analysis dates back to the 1940s. Re-
search on this topic [21,39], however, was scattered, until Goldsberry’s
CourtVision technique paper [18] popularized the technology in both
academia and industry, with his signature shot map paving the way for
basketball spatial analytics. Ensuing research has emphasized develop-
ing and improving models [6,22,23,32] to either reduce dimension or
provide estimations/evaluations.

Although CourtVision was originally intended for spatial visual
analytics, its primary use has been in sports journalism, partly due to
Goldsberry’s long tenure as a journalist. To communicate sophisticated
insights to broader audiences, he recast his invention into a set of
variants, ranging from classic hexagonal bins to more recent contour
lines to aesthetically appealing shot charts featuring 3D animation and
embellished visual effects. Other practitioners have likewise explored
different forms to engage audiences and deliver compelling stories with
shot charts. For instance, Whitehead created a physical representation
of Stephen Curry’s career three-pointers using toy trays [33,45].

Despite the success in attracting audiences and driving narratives
(e.g., “the midrange is dead” [3,20,50]), the analytic value of shot charts
has seemingly been sacrificed in favor of storytelling and engagement.
During an invited talk at the 2018 IEEE VIS conference, Goldsberry
enumerated several reasons why NBA analytics departments have been
slow to adopt visualization. Yet we have observed a trend that NBA
teams and sports analysts have recently realized the importance of data
visualization, although their employment of visualization has primarily
focused on a mere showcase of their advanced metrics, with only a
few exceptions (e.g., Buckets [4]) that employ interactivity for analy-
sis. Based on our experience in the sports industry and visualization
research, we argue that the insufficient realization of Goldsberry’s orig-
inal vision is largely attributable to a lack of organic integration of
analytics, visual representation, and interactivity. This motivated us to
design and develop HooplInSight.

2.3 Visual Comparison for Information Visualization

Gleicher et al. [17] surveyed visualizations designed to support com-
parative tasks and proposed a general taxonomy of visual comparison.
They classified visual comparison designs into three general categories:
Juxtaposition, which displays different objects separately; superpo-
sition, which overlays objects within the same space; and explicit
encoding of the differences/relationships [16, 17]. Based on his frame-
work [16], the targets we try to compare are the shooting performances

of two entities (i.e., players/teams). The challenge lies in the complex-
ity of individual items (multivariate spatial data) and their relationships.
The strategy we adopt falls under the Summarize Somehow category —
we compute the difference of each variable for each spatial unit. Our
main visual technique for spatial comparison falls under the third cate-
gory — explicit encoding of the relationships between two objects (i.e.,
shot maps). However, to combat decontextualization, we also include
two reference objects in the system, making our system a combination
of explicit encoding and juxtaposition.

3 UNDERSTANDING THE PROBLEM
3.1 Design As Domain Experts

As characterized by Sedlmair et al. [41], design studies in visualiza-
tion research are projects that analyze “a specific real-world problem
faced by domain experts” and “support solving this problem” with a
visualization system. Collaboration between visualization researchers
and domain experts is considered a “fundamental and mandatory part”
of the framework. However, there are occasions when visualization
designers/researchers are also well-versed in the domain for which they
are designing visualization solutions. Our case fell into this territory
where “the same person holds both roles” (visualization expert and do-
main expert), which Seldmair et al. opted not to address in their design
methodology article [41]. We characterize this distinctive design study
method as Designing as Domain Experts (DaDE). In this project, after
careful consideration, we ultimately decided to embrace and capitalize
on DaDE for the following reasons:

(i) The first author is a domain expert in basketball journalism/ana-
lytics and a visualization researcher, and he has a comprehensive
understanding of domain tasks and real-world data. The second
author also has considerable experience in visualization research
and is an enthusiastic and knowledgeable sports fan.

(ii) The data we use are available through public APIs, thus, no
necessity to collaborate with “data providers” exists.
Potential stakeholders come from a variety of backgrounds, rang-
ing from professional team management to sports analysts/jour-
nalists, as well as avid or casual fans who may or may not possess
domain/data/visual literacy.

3.2 Basketball Shot Data and Shot Maps

The fundamental unit of data we are exploring is a shot taken by a
player. Each shot is either made or missed, and we can aggregate these
shots temporally (e.g., minute, game, season) and spatially (coordinates
on the court). Within a particular spatial region and temporal window,
two primary metrics will drive the analysis: frequency and efficiency.
Our objective is to visually compare these and other metrics between
two different situations or scenarios. For example, we may want to
compare a player’s performance on shots from the “elbow” area [15]
in the previous season to those same type of shots taken during the
current season. More specifically, suppose he took 65 shots from that
area in 2022 and made 27 (42%), but in 2023 he took 73 shots and
made 28 (38%). The two important comparative metrics that we seek
to communicate are that he took 8 more shots in the current year but
his efficiency declined by 4%. Furthermore, we seek to do this for any
players, teams, regions of the court, and time periods.

To understand current approaches to presenting this type of data, we
collected and analyzed current shot map techniques and examples. Our
collection comes from various sources, including research literature,
renowned practitioners, and sports data websites.

Multiple methods for shot mapping exist, which differ in levels of
aggregation and granularity, visual encoding (e.g., color scale, shapes),
and filtering. Here we categorize these methods and explain how each
aligns with a specific style of matching conventional geographic maps.

Shot (Dot distribution maps): The Shot technique does not aggregate
data; rather, it shows the actual location where each shot was taken,
represented by a dot or other small glyph. Different colors or glyph
shapes differentiate the binary results, indicating whether a shot was
made or missed. A significant limitation of Shot is overplotting when a
large number of shots is present. Therefore, Shot is often employed to
show a small number of shots (e.g., shots taken in a single game). The
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basic Shot technique is often straightforward and easy to understand
for general audiences.

Cell (Proportional symbol maps): The Cell technique divides the
court into small, predefined cells. It then aggregates the shots by cell
and calculates different metrics on those aggregations. Cell typically
uses some symbol (e.g., circle, rectangle, hexagon) to represent cell
metrics, frequently employing symbol size to represent the shot fre-
quency and color (usually diverging scale) to represent efficiency.

Zone (Choropleth maps): The Zone technique is commonly seen
on data websites. It divides the court into larger, predefined zones,
usually of varying sizes and shapes. While these divisions may vary
across different websites, they typically follow domain conventions.
Zone usually presents the aggregated efficiency for shots contained
within each zone via the fill color of the region, but it does not represent
the frequency. Consequently, Zone is easier for the general public to
understand but holds less analytical value than Cell.

Others: Other less common shot map categories exist. For example,
Contour line uses contour lines to depict the frequency of shots as a
mountain landscape and Heatmap employs kernel density estimation
to achieve the same, but with color intensity. Both Contour line and
Heatmap usually present shot frequency but omit shot efficiency. They
often leverage existing contouring and/or kernel density algorithms
and can be aesthetically appealing. Such encodings are most useful in
surfacing the most common places where shots were taken but may
represent the data less precisely.

3.3 Task Analysis and Design Objectives

Since these different forms of shot charts have already become well-
established industry standards, our goal is not to invent new chart
variants but to focus on enhancing current capabilities and filling in
the gaps of missing capabilities. In particular, we aim to: (1) enable
more effective spatial comparisons, (2) support multiple analytical and
comparative perspectives, and (3) communicate comparison within the
context of original data.

Enable more effective spatial comparisons

Enable multivariate spatial comparison: The most notable analytical
value of current shot maps lies in their ability to display two key metrics
(Frequency and Efficiency) within a spatial context. We must similarly
support exploration of these two key variables with respect to different
spatial locations (i.e., positions on the court) for two different scenarios.
We must support individual analysis of each scenario, as well as a
comparison of differences and changes between the two scenarios.
Ideally, viewers should be able to rapidly and clearly determine trends
and patterns of the two variables across spatial locations.

Explicitly encode the differences: As reviewed earlier, Gleicher et
al. [16, 17] categorize visual designs for comparison into three types:
juxtaposition, superposition, and explicit encoding. People currently
compare shot charts and similar sports data primarily by juxtaposing
them as small multiples (e.g., [1,4]) beside each other and visually scan-
ning back and forth. While this method is scalable, it can be cognitively
challenging to compare multiple 2-D shot charts. The combination of
many regions to examine and multiple variables to understand makes
repetitive visual scanning to ascertain the differences quite difficult. We
believe that explicitly encoding shot differences between two scenarios,
that is, providing additional view(s) that only represent the delta/differ-
ence, can furnish deeper and more direct analytical insights, which are
difficult to uncover by simply scanning between individual shot maps.

The above goals lead us to the first design requirement:

DR1 — Design explicit visual encodings that facilitate pre-
attentive multivariate spatial comparison

This can be broken down into four sub-requirements. First, the loca-
tions from which shots are taken are often associated with players’ skill
sets and teams’ game strategies. Therefore, we prioritize displaying
areas where the number of shots has increased or decreased across
scenarios (DR1a), as well as the specific increased/decreased quantities
at each location (DR1b). Furthermore, the system should assist in
detecting spatial patterns and trends in the data, which often signify
a shift in team strategy or playing style (DR1c). Finally, although

changes in efficiency may be inconsistent across neighboring locations,
they can provide insights into a player/team’s shot-making ability, i.e.,
whether or not they improve their shooting performance from certain
areas. Thus, the system also must visualize values and patterns of
quantitative efficiency (DR1d).

Support multiple analytical and comparative perspectives

Current shot maps mainly provide two types of insights: where shots are
taken and how efficient a player/team is at shooting. Together, they can
disclose information swuch as whether a player/team took more shots in
highly efficient areas. Comparison, however, can further lead to a wider
range of analytical insights based on different references and scenarios.
For example, by comparing a player before and after he was traded to
another team, one can analyze the change in his roles. Comparing two
players directly can yield insights into their different play styles. To
support multiple analytical and comparative perspectives, the system
must enable users to create different comparison scenarios, which leads
to the second design requirement:

DR2 — Enable users to create different comparison scenarios

We can model the different types of comparisons via a comparison
cross-table (entity x scenario). In this context, entity refers to players,
teams, and opponents, while scenario involves lineups, shot types,
time windows, and other variables. This can be simply described
as “comparing entities under different scenarios.” For instance, one
could compare Michael Jordan’s (entity) shooting performance with
and without Scottie Pippen on the court (lineup scenarios), or compare
Jordan’s (entity) shooting pattern in his early career vs. later years
(temporal scenarios). This design requirement can be divided into two
sub-requirements: 1) obtain necessary data and structure the data to
allow such filtering activities (DR2a); 2) design interactions to afford
different entity selection and comparison scenario creation (DR2b).

Communicate comparison within the context of original data

An earlier goal emphasized the desire to explicitly encode comparison
data. Only presenting an explicit comparison encoding (i.e., without the
two source data views) can lead to decontextualization [17], however.
Ideally, we seek to display comparison information as well as the origi-
nal data from the two scenarios being compared. This consideration
leads to the third design requirement:

DR3 — Present the two reference data sources (shot maps being
compared) concurrently with comparison views to provide context
and serve as devices for direct manipulation

We divide this requirement into three sub-requirements. First, the
system should combine explicit encoding with juxtaposition and in-
teractive connections to guide users’ attention and simplify analysis
(DR3a). Second, the system should incorporate more visualizations to
provide further context and additional metrics (DR3b). The insights
extracted from these supplementary views can stand alone, but more
importantly, they should assist users in identifying interesting subsets
of the data or provide extensive insights. Finally, we aim to allow
users to reconfigure comparison scenarios by directly manipulating
supplementary views (DR3c).

4 HOOPINSIGHT

Our basketball shot visualization system is called HoopInSight and
is driven by multiple raw datasets that we retrieved from the NBA
API [36]. We merged and transformed the collected data into shot
datasets grouped by players, teams, and seasons. Each data item (an
individual shot event) contains 31 attributes, including the court coordi-
nates (spatial), the result (numeric), the type (categorical) of each shot,
team rotation data (textual), a video link connecting to the specific shot,
and metadata. The data is updated on a daily basis. We also fetched
supplemental data, such as player/team information. This data pipeline
(retrieval, aggregation, and partition) helps us fulfill DR2a.

Within the system, users can select to examine a particular NBA
player’s or team’s data and which season to display. We also support
a special third focus entity (Opponents) that aggregates all opponents’
shooting data from games played against the selected team. This
is a novel addition that enables users to analyze a team’s defensive
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Fig. 2: The four visual encodings for a shot map (Stephen Curry 2022-23 season): (A) Shots, (B) Cell, (C) Zone, (D) Region

capabilities from the “shots allowed” perspective. Together, these
capabilities partially fulfill DR2b (i.e., entity selection).

HooplInSight normalizes shot frequency by dividing the number of
shots taken in a specific area by the total number of shots taken during
the specified time period. We adopt the statistic, eFG% - Effective
Field Goal Percentage [2,34] to measure efficiency. eFG% adjusts for
the fact that a 3-point field goal (shot made) is worth 50% more than
a 2-point field goal. For example, if a player makes 4 out of 10 of his
3-point attempts, the traditional FG% (field goal percentage) is 40%
while eFG% is 60%.

4.1

The user interface of HoopInSight (Figure 1) consists of three columns
of views. Each column contains multiple visualizations. The two
columns on the left and right of the interface are called a Selection
View (Figure 1 ). Each Selection View centers around a relatively
standard Shot Chart (Figure 1EJ@IIZE]#7]) that represents all the original
shots taken by the selected entity under the specified scenarios. For
example, Shot Chart 1 may show all of a player’s shots from the
previous season, while Shot Chart 2 shows all the shots from this
season. In between the Selection Views (Figure 1{€), in the center, is
the Comparison View that employs two stacked sub-views to represent
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a comparison of the two Shot Charts, i.e., the difference/delta.

Shot Chart (Figure 1F@IFPEI@2)): Fundamentally, this chart dis-
plays all shots taken by the selection, using one of four potential visual
encodings that we implemented following the shot map typology cate-
gorized earlier in Section 3.2. The first, called the Shots encoding (Fig-
ure 2A), is a map of half the basketball court with a small point at each
spot where a shot was taken. The color of the point indicates whether
the shot was made (green) or missed (red). For the second encoding,
Cell (Figure 2B), we divide the basketball half-court into 272 contigu-
ous square cells (17 columns and 16 rows), each about 3ft (0.91m)
wide and tall. We then aggregate all the shots taken within each cell
and calculate the frequency and efficiency for that cell. We use circles
to represent each cell, positioned at its center, with the size of the circle
indicating the corresponding shot frequency and its color indicating
the shot efficiency for that cell via a diverging color scale from orange
(high efficiency) to blue (low efficiency). The third encoding, called
Zone (Figure 2C), divides the half-court into meaningful zones known
to basketball experts (e.g., left corner three, above the break 3, etc.).
These zones are much larger than an individual cell of the Cell encoding
and provide a chart roughly resembling a choropleth map. Again, all
shots within a zone are aggregated. In this view, however, no circles are
drawn. Instead, the fill color of the cell encodes the efficiency of shots



Fig. 3: Alternative comparison encodings we explored but did not choose.
Designs A and B employ one consolidated view with different types of glyphs.
Designs C and D employ two sub-views with the top showing cells of frequency
increase and the lower cells of frequency decrease.

via the same diverging color scale as in the Cell encoding. The Zone
encoding does not represent frequency. Finally, the fourth encoding,
Region (Figure 2D), is a hybrid of the Cell and Zone encoding. It
contains the same cell circles as the Cell encoding, with circle size
indicating frequency. Each circle’s color, however, is assigned based
on the color of the zone its cell falls within. In other words, we use the
zones as spatial filters to create smoother circle colors.

These four visual encodings provide insights at different levels of
granularity: the Shots encoding allows users to see specific shots and
their textual descriptions, as well as access a corresponding video clip.
The Cell encoding offers visual representations of aggregated statistics
in terms of efficiency and frequency. It also provides the basis for us
to compare two selected targets. The Zone encoding allows viewers to
focus only on efficiency — a simpler analytical task that fans tend to
be more familiar with. The Region encoding provides a more balanced
approach between Cell and Zone by still displaying frequency but with
a smoother color encoding, as the efficiency tends to be more volatile
across the cells. HoopInSight allows any of these four encodings to be
used for the left and right Selection Views.

Comparison View (Figure 1[&): The central Comparison View
provides a visual comparison of the two displayed Shot Charts with a
primary goal of communicating the differences (A) between the two
selections, thus fulfilling design goals (DR1). As we sought to display
the changes in both frequency and efficiency, we chose to compare the
cells from the Cell shot encoding, and thus the Comparison View uses
the same cell units. For each corresponding comparison cell, we use the
data for S1 (D1) and the data for S2 (D2) to calculate the A (data for the
comparison cell). The resulting A has three main attributes: its index
on the court A; ), the difference in frequency Ar, and the difference
in efficiency Ag. A(; ;) translates to the [x,y] position on the court, and
the Ag and Ar are two quantitative variables we encode for each cell.

Our first challenge was to design a visual encoding that would be
placed at each cell to represent the difference between the two corre-
sponding original shot aggregations for that position. We experimented
with using glyphs of one or more graphical shapes, and we conducted
multiple rounds of “brainstorming” feedback sessions with our lo-
cal visualization research group. During the first round, the authors
introduced the motivations and analytical tasks and presented initial
designs to elicit feedback. Other researchers provided suggestions
on visual encodings or low-fidelity sketches. Multiple candidate vi-
sual encodings emerged, and we selected six and implemented each
through a high-fidelity visualization prototype. We presented these can-
didates (Figure 3 & Figure 4b) again to our local group and gathered
second-round feedback. One design (Figure 3A) used one consolidated
view with two different shapes: circles denoted cells where frequency
increased from Shot Chart 1 to Shot Chart 2, and diamonds denoted
cells where the frequency decreased. The size of the glyph denoted
the amount of frequency change and its color represented the change
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(b) The two chosen designs for representing comparisons in HoopInSight.

Fig. 4: Visual encodings used in the Comparison View

in efficiency between the two scenarios. A second design placed a
four-quadrant axis on each cell, with a sector’s appearance indicating
one of the four results (increasing/decreasing x Ag/Ar) and the radius
indicating the quantity. With both of these designs, viewers felt that
each glyph was comprehensible, but it was relatively difficult to discern
trends and patterns across the entire view of glyphs showing all cells
(DR1c).

A third design (Figure 3C) employed two sub-views, one (upper)
with glyphs for cells with increasing frequency between the scenarios,
and the other (lower) for cells with decreasing frequency. The design
used circles for the glyphs with size and color encoding deltas in fre-
quency and efficiency, respectively. Viewers felt that this design was
too similar to the circles in the Shot Charts, however, which caused
confusion. Another design (Figure 3D) substituted “slopes”, i.e., tilted
lines, for the circles with angles of the line representing frequency dif-
ferences. Although this design helped to show group patterns (DR1c),
viewers felt it was too difficult to understand and decode the angles
representing frequency differences DR1b. We also experimented with
animations to denote the difference between two corresponding cells
but found the animations unsuitable for analytical reasoning.

Ultimately, feedback helped us to narrow down to two promising
visual encodings, which we now include in HoopInSight and allow
users to select. We call the two designs that emerged and

(Figure 4). In each, a single glyph (a triangle or a sloped line,
respectively) is drawn at each cell to encode the delta between the two
selections. The first variable Ar, the change in frequency, is encoded
in the Arrowhead via the height of each triangle, with taller triangles
indicating larger changes in frequency. The width of each triangle’s
base represents the average of the two frequencies, thus showing wider
triangles in regions where the player tends to take more shots. For
example, in one cell, the number of shots taken in the two Shot Charts
may have increased from 70 to 80, while in another, the shots increased
from 10 to 20. Both of the corresponding triangles will have the same
height because the delta between the two selections is +10 in both



cases. However, the triangle in the first case will be wider and larger
overall, helping to indicate that this is a region where the player shoots
frequently. The change in efficiency between the two regions, Ag, is
denoted by the color of the triangle. We employ a diverging color scale,
with a greener fill color indicating increased efficiency from selection 1
to 2 and a redder one signifying decreased efficiency.

In the Needle glyph technique, the length of the sloped line denotes
the change in shot frequency at the location and the thickness of the line
denotes the average of the two frequencies, with thicker lines indicating
regions where the player takes more shots. The color of each line
encodes the difference in efficiency between the two cells.

Both designs also employ the idea of two sub-views, as was done in
the earlier alternative designs shown in Figure 3C&D above. The top
sub-view indicates all cells where the shot frequency increased from
the first to the second selection, while the bottom sub-view indicates
cells where the shot frequency decreased. Additionally, triangles in
the upper Arrowhead sub-view (frequency increase from Selection
View 1 to 2) are drawn pointing upwards, while those in the lower
sub-view (frequency decrease) point downwards. Similarly, lines in
the upper Needle sub-view slope to the upper-right, while those in the
lower sub-view slope to the upper-left. We feel that this separated view
makes the frequency and efficiency differences between the two periods
more pre-attentively clear, enabling rapid determination of areas of shot
increases (glyph locations on the court in the upper view) versus shot
decreases (glyph locations in the bottom view), fulfilling one of our
primary design goals (DR1a).

Supplementary Views: The two Selection Views also include multi-
ple other visualizations that help to encode more variables about the
shots in the two selections and serve as instruments for users to interact
with and perform informed filtering, thus fulfilling DR3b&ec.

On the top and right edges of the two Shot Charts are histograms
showing aggregated statistics of the relevant row or column of regions
on the half-court. The height of each bar represents the frequency, and
color encodes the efficiency for the respective row or column.

To the left of each Shot Chart is a zoomable treemap, Shot Tree (Fig-
ure 1 [EEFPEN), that displays the frequency and efficiency statistics
for various shot types (such as pull-up jump shots, floaters, and layups)
and different shot zones (such as the left corner three-pointer, midrange,
and restricted area). Below each Shot Chart is a traditional statistics
table (Figure 1 [MIP4®)) that presents a higher-level statistical sum-
mary of the treemap. Below the table is Season Trend Chart (Figure 1
EENIEREW) displaying aggregated game-based statistics over the course
of the selected season with time moving from left to right. The upper
line chart shows efficiency throughout the season, while the lower bar
chart shows the number of shot attempts in each game.

4.2

HooplnSight supports rich interactions that enable users to explore
and create different comparison scenarios. Below we list some of the
different styles of interaction [51] provided by the system.

Filter: The most prominent interaction in HooplInSight is filtering.
Above the Shot Chart views are filter panels (Figure 5a) that enable
users to filter shots (and thus make a selection) based on the opponent
team, team lineups, and opponent lineups. For instance, users can apply
filters to generate visualizations that represent one team’s shot map
with or without a particular player, an opponent’s shooting patterns
with or without a particular defensive player on the floor, or an individ-
ual player’s shooting pattern when he plays against a particular team.
The treemaps to the left of each Shot Chart also serve as categorical
filters (Figure 5b) that support selection by shot actions and shot zones.
For example, users can view the shot map of a particular player’s “step-
back” jump shots. The Season Trend charts below the Shot Charts also
serve as a temporal filter (Figure 5c) using brushing, allowing users to
select any portion of a season that interests them.

Another important filtering operation provided by the system is
Jfreehand/lasso selection (Figure 8a). When using the Shots encoding
in a Shot Chart, users can freehand draw a polygon to select an area
of interest. HoopInSight aggregates the shots within the polygon and
calculates corresponding statistics. The background of the selected area
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(c) The Temporal Filter for selecting games during a season

Fig. 5: Primary filtering interactions supported by HoopInSight. (a) filtering
by the opponent team and lineups for both teams. (b) filtering by different
shot types (action type & zone type); the example here selects only Harden’s
step-back jump shots. (c) filtering by a portion of a season; the example here
selects only the games late in the season.

transitions into a color reflecting the shot efficiency within it. Hovering
over the selected area brings out an on-demand view that includes a
shot action treemap, a sunburst chart for an assist breakdown of the
selected shots (i.e., which players assisted the made shots taken from
the selected area), and a statistical summary of shot actions. When the
focus is on team shooting performance, this view additionally displays
the top 5 players who took the most shots in the selected area, along
with their statistical summaries. The filtering interactions fulfill the
design goals to facilitate scenario creation (DR2&DG3c).

Select & Elaborate: HoopInSight generally provides details on
demand through hovering. For instance, hovering over each cell in the
Comparison View displays a tooltip that shows corresponding statistics
regarding frequency and efficiency.

Connect: HoopInSight provides a connect style interaction to link
related cells and zones. Hovering over cells/zones in one view will
simultaneously highlight the identical areas in other views (DR3a).

Encode: HoopInSight allows users to toggle between the four visual
encodings for the Shot Charts and the two visual encodings for the
Comparison Views. Also, hovering over legends in the Comparison
Views can highlight the cells where efficiency increased/decreased.

In summary, the visual technique enables users to “see the differ-
ences” between two scenarios, whereas the role of interactivity lies in
expediting the construction of various analytical scenarios and access-
ing contextual information and corresponding details on demand.

5 CASE STUDIES

This section presents two case studies to illustrate the analytic capabili-
ties of HoopInSight.

5.1 Analyzing Nikola Jokic’s Offensive Impact

Nikola Jokic is the star player of the Denver Nuggets and has been
named the NBA’s Most Valuable Player (MVP) twice. Recently, bas-
ketball analysts/journalists and thousands of fans have been engaged in
a heated debate about whether he should win a third consecutive MVP
award. While most model-derived advanced metrics point towards yet
another historic performance from him, many traditional analysts/jour-
nalists have expressed skepticism toward such advanced metrics that
often lack explainability and interpretability.
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Fig. 6: Perspective I: Jokic’s individual shooting performance. Note: We add
external annotations using white text and arrows on the figures in this section to
aid explanation. These annotations are not part of the system.

Perspective I: Individual shooting performance — Jokic is ex-
tremely efficient and consistent; he is also versatile on offense

To understand Jokic’s impact on offense, HoopInSight first supports
analyzing his individual shooting performance. After selecting Jokic’s
shooting profile from the current season, the Selection View displays the
pertinent metrics (Figure 6). Illustrated by all the orange in the views, it
becomes apparent that Jokic is an extremely efficient scorer. The Shot
Map (Figure 6A) provides insights into Jokic’s most frequent shots
— they are from all over the box, with a moderate number of three-
pointers from above the break. The Treemap (Figure 6B) reveals that
as a center, Jokic rarely ends the offense with a dunk but instead takes
many floaters and old-fashioned hook shots, implying that Jokic relies
heavily on his excellent touch rather than athleticism. The Season Trend
Chart (Figure 6C) shows that Jokic is consistently efficient throughout
the season, with the exception of a few games.

Perspective II: Comparing Jokic with his counterparts — Differ-
ent styles and efficiency

Another angle to analyze Jokic’s individual shooting performance
is to directly compare him to his counterparts in the current MVP
race — Giannis Antetokounmpo and Joel Embiid. Again, the Selection
Views allow us to examine their overall efficiency throughout the season
and their individual shooting performances. But it is the Comparison
View that makes their distinctive shooting patterns extremely clear —
Antetokounmpo is more dominant in the restricted area, where he shoots
more frequently just under the rim and is even more efficient than Jokic,
who shoots more frequently elsewhere and is significantly better away
from the basket (Figure 7A). Jokic is also a better three-pointer shooter,
especially from above the break. Compared to Embiid (Figure 7B),
Jokic is not as dominant under the basket but is almost more dominant
anywhere else in the box. While Embiid enjoys taking mid-range shots
near the free-throw line, he surprisingly is not as accurate as Jokic.

Perspective III: Comparing on/off team shooting pattern — Jo-
kic’s team is taking more efficient shots when he is on the court

Jokic has been lauded as one of the best “team players” for his ability
to create opportunities for his teammates. It is no secret that Jokic is
an excellent passer — his average assists number speaks to that. Hoop-
InSight supports an in-depth analysis of how exactly Jokic influences
his team’s offense. By applying the lasso filters to the Denver Nuggets’
team shooting profile, the on-demand views (Figure 8a) illustrate that
Jokic has the highest assist rate in almost every area. Furthermore,
HoopInSight allows users to directly compare the Nuggets’ shooting
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Fig. 7: Perspective II: Compare Jokic with counterparts. A - Jokic (S2 on right)
compared to Antetokounmpo (S1 on left). B - Jokic (S2) compared to Embiid
(SDH

pattern with and without Jokic on the court. The green upward trian-
gles, pointed out in Figure 8b, reveal that the Nuggets are taking more
high-efficiency shots in the restricted area (Ar : 29.7% " 36.1%) with
higher efficiency (Ag : 65% ,” 72%) with Jokic on the court.

Perspective IV: Comparing teammate’s shooting pattern: how
Jokic has transformed Aaron Gordon’s game

HoopInSight can also be used to analyze Jokic’s impact on spe-
cific teammates. Consider Aaron Gordon, a player who was traded
to Denver two years ago and has thrived this season. The light green
triangles (Figure 8c left) immediately reveal that Gordon has taken
more shots in the restricted area with easy layups and dunks this year
than he did two years ago with the Orlando Magic, indicating he has
much better opportunities to score. One reason for this might be that
Gordon has simply improved. To explore that notion, one can compare
Gordon’s same-season performance and filter the data based on whether
Jokic is on the court. The large green upward triangles (Figure 8c right)
quickly reveal that Gordon shoots more near the rim while playing
alongside Jokic — the frequency of his dunks has doubled, largely due
to Jokic’s ability to create opportunities for him. This double-confirms
Jokic’s positive impact on Aaron Gordon’s offensive metamorphosis.

5.2 Compare Big Men’s Defensive Influence

One area of analysis that existing shot maps rarely support is defense.
Measuring the defensive impact of an individual player is notoriously
difficult. Although advanced statistics and analytics can provide helpful
aggregated information, they rarely allow for in-depth analysis, let alone
insights into the intricate defensive schemes professional teams employ.

Although HooplnSight does not provide a direct answer, it can
offer insights from the “shots allowed” perspective and enable analysts
and coaches to test their hypotheses or ask insightful questions. One
usage scenario is to compare opponents’ shooting performance/patterns
when a player is on the court versus when he is off the court. In this
case (Figure 9), we compare the differences between teams’ opponents
when a big man (center position) is on or off the court. Here we select
four different scenarios.

Figure 9A represents the difference in shots taken against the Utah
Jazz during the 2020-2021 season with and without their Defensive
Player of the Year award winner, Rudy Gobert, on the court. In this
example, Selection 1 represents when Gobert was off the court and
Selection 2 represents when he was on the court. Figure 9B-D follow
the same procedure, but the focus teams are the Hawks, the Bucks, and
the Mavericks from the current season, and the focus players are Clint



Nikeladokic
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Fig. 8: Perspective III & Perspective IV: Further exploration of Jokic’s impact

Capela, Brook Lopez, and Christian Wood, respectively. The first three
players are well-known rim protectors, while the fourth player, Wood,
is arguably the opposite. The top four sub-views show where their
opponents took more shots, while the bottom ones illustrate where their
opponents took fewer shots. HoopInSight visually provides insights
into how their presence changed opponents’ shooting behaviors.

: When the first three players were on the court, their oppo-
nents took more mid-range shots and fewer and also less-efficient shots
near the rim, as evidenced by the red, downward triangles. However,
when Wood was on the court, opponents were seemingly encouraged to
attack the rim. Additionally, when Capela was present, opponents took
fewer shots from the two corners, suggesting that limiting penetration
was effective. Conversely, when Wood was present, the Mavericks’
opponents took more 3-pointers and fewer mid-range shots.

: While the first three players’ presence led to more oppo-
nents’ attempts in the midrange area, HoopInSight could reveal more
nuanced insights. For example, the efficiency of the midrange shots
Utah Jazz gave up decreased (red triangles), suggesting those shots
were “forced” by Utah’s defense with Gobert anchoring it. The green
triangles in B, indicating that the Hawks’ opponents had better oppor-
tunities in the mid-range area, raise questions about their other players’
abilities to get through screens and contest the mid-range jump shots
after their opponents’ pick & roll actions [24].

6 REFLECTION AND DISCUSSION

6.1 Design Considerations For Spatial Comparison

Consideration I: Different comparison granularities
Drawing from Gleicher’s insight that "comparison is more than just
finding differences" [16], we argue that in our case, spatial comparison

More 3pts and near
fim attempts

-More mid-range
attempts
More mid-range lower-
efficient attempts

More mid-range higher-
efficient attempts

Rig

Fewer rim shots

Farfewerrim shots - and corner 3pts

Fewer rim shots

Fewer mid-range
attempts

Jazz (2020’ opponents when
Gobert is on vs. off the court

Bucks’ opponents when
B.Lopez is on vs. off the court

Hawks' opponents when
Capelais on vs. off the court

Mav’s opponents when Wood
is on vs. off the court

Fig. 9: How big men change their opponents’ shooting behaviors. All four cases
compare opponents’ shooting behaviors with selected players on the court (S2 -
right) vs. these players off the court (S1 - left)

is more than just finding individual spatial differences. Endert
et al. [12] discussed three levels of visual aggregations (i.e., glyph
level, multiple glyphs merge, and the aggregation of multiple glyphs
into a field) on large displays and how different encodings would
impact such aggregations. For HoopInSight’s comparison view, our
goal was to facilitate recognition of group trends and patterns, while
still maintaining the interpretability of the two variables associated with
individual cells.

This goal fundamentally determined how we chose glyphs. Super-
imposing glyphs on a map is a common way to visualize multivariate
spatial data. [30,46]. Some of our initial visual encoding designs, as
well as later suggestions from colleagues, used more complex glyphs
to encode more variables. For example, while the four-quadrant axis
design we used (Figure 3B) can display individual differences and
encode more variables in one cell, identifying group patterns can be
problematic due to visual clutter. Similarly, using multiple color scales
to encode different variables can also be visually confusing and impede
our perception of group patterns.

We recommend that designers consider the granularity of insights
they want to convey and the priority of different levels. In our case,
if the primary goal was to compare the multiple variables between
individual cells, complex glyphs would likely be more effective. Con-
versely, if our primary goal was to communicate group patterns without
worrying about individual interpretability, it would be reasonable to use
a metric that aggregates individual cells and employ more perceptually
dominant encodings (e.g., colors) to illustrate the patterns.

Consideration II: Neighboring spatial data characteristics

Design choices also depend on the strength of the connections be-
tween the data associated with individual cells and their adjacent cells.
These connections may be based on factors such as whether the cells
in a neighborhood exhibit roughly similar values or whether the delta
follows a certain pattern. A strong connection indicates the existence
of a “flow” — the data itself is inherently spatially dependent (such as
wind maps or ocean current maps).

Using U.S. election maps as an example [5, 14, 31], the voting
behavior of a county tends to be strongly connected to the ones of
its neighbors. The glyphs representing such data tend to merge together
and form a group pattern. In such cases, occlusions are less likely to
occur and less troubling. In fact, visualization designers can utilize
this congruence to amplify patterns and even create affective influence,
as demonstrated by The Washington Post’s political wind map [31].
However, when the data is less consistent between neighbors, using
the same visual encoding may result in greater occlusion, making it
challenging to reveal patterns. It might be more appropriate to apply
less occlusion-prone encodings or adopt our approach — using two
separated sub-views for increases and decreases, respectively.

6.2 Scalability and Transferability

By combining shot location data with further relevant information,
HooplnSight can easily extend to provide more cutting-edge analytical
insights. For instance, coupling data about team strategies, either of-



Fig. 10: A filter for passing-shooting spatial network analysis. Left: the entire
spatial network. Right: a spatial filter is applied (via mouse hover) to view only
the passes James made when he was inside the selected hexagon.

fensive or defensive ones, to existing datasets would lend HoopInSight
the ability to provide insights into shooting performance/patterns with
respect to such strategies (e.g., zone defense vs. man-to-man defense).
By combining more temporal information about shots, including when
they were taken during an offensive possession, HoopInSight could
compare the shooting behaviors between early offense and late-clock
shots in terms of spatial distribution and efficiency.

The system’s spatial filtering capability can also be transferred to
other scenarios, sports, or domains involving spatial analytics. Fig-
ure 10 showcases a variant of this technique — we developed a proto-
type using a limited experimental dataset that records LeBron James’
passes to three-pointer shooters. The coordinates where James passes
the ball were manually tracked and linked to the shots those passes led
to. Together, they form a spatial network. The left figure displays the
entire network, with white-outlined circles representing the passing
coordinates and colored circles representing the shooting coordinates.
The right figure showcases when a spatial filter is applied. The sizes of
hexagons are adjustable, allowing users to explore at different levels of
granularity. Although this is only a preliminary experiment, it has great
potential to help coaches understand their players’ passing patterns and
habits and thereby adjust their game plans accordingly. We believe this
interaction technique can benefit other sports and disciplines involv-
ing spatial data by enabling domain experts to create a spatial filter
leveraging their prior domain knowledge.

6.3 Reflection on Desighing as Domain Experts

Earlier, we outlined the reasons for adopting the Designing as Domain
Experts (DaDE) method, such as adequate domain knowledge and
available and accessible data. We believe that this method can yield
significant benefits, but it does also incur dangerous pitfalls. Here, we
further share our reflections on adopting DaDE.

Benefits

More manageable process: While a productive collaboration can bring
many benefits, in reality, managing external interactions with collab-
orators is rarely easy. Sedlmair et al. enumerate a dozen pitfalls that
may occur in the winnow and cast stage of a design study [41]. DaDE
can provide a faster design process by avoiding the significant time
external collaborations require. DaDE starkly contrasts our previous
collaboration with two sports data companies. First, the available and
accessible data allows for early idealization and data sketches. This is
similar to what Oppermann and Munzner described in [35]. Second,
collaborators, especially sports analytics companies, tend to care more
about “just visualizing my data” (engineering) than “what visualization
can do differently” (research). Adopting DaDE allows us to manage
data acquisition and problem formation and reduce communication
costs between multiple roles.

Focusing on novel solutions: In basketball, shot maps are a well-
established solution. As previously noted, innovations in this field are
mainly focused on two directions: the modeling approach that focuses
on developing novel metrics and the narrative approach that emphasizes
audience engagement. However, we believe that the addition of inter-
active features and new visual comparison techniques can foster more
in-depth and comprehensive analysis. It also possesses great potential

to be integrated with other approaches. We observed that the affor-
dance and capabilities of interactive visualization have yet to be fully
grasped by stakeholders. They also tend to exhibit conventional tool
attachment [47]. As such, a traditional design study involving stake-
holders tends to result in projects that facilitate existing tasks rather
than challenging the common approaches. DaDE enables us to focus
particularly on analytical tasks that are beyond existing approaches.
Synergy of domain knowledge and visualization expertise: Expert
designers can use their knowledge in both fields to advance domain
tasks through visualization solutions. In our case, our domain knowl-
edge includes an understanding of high-level domain problems (what
tasks are valuable to support) and a familiarity with the characteristics
and availability of underlying data (what tasks can be supported). It
lends us the flexibility to enter a design iteration from either data ab-
straction or task abstraction and rapidly match data and tasks. Our
expertise in visualization serves as a catalyst for connecting tasks with
data, creating a synergistic effect. It helps break down high-level do-
main goals into low-level tasks that can be supported by interactive
visualization, as well as extract feasible tasks from multiple datasets
and transform the data into a visualizable form. We feel such synergy
is valuable, especially when the goal is to expand existing task space.

Pitfalls

Narrow domain perspectives: The term domain expert can be hetero-
geneous in real life. Simply differentiating domain expert from casual
user or even visualization expert does not take adequate consideration
of the heterogeneity of domain experts. In our case, different types of
domain experts exist, such as sports journalists, sports analysts (data-
driven or traditional “eye-test”), coaches/scouts, etc. While they share
similar goals in analyzing shooting performance, their backgrounds
and interests can vary drastically, which may affect their perception
and adoption of such tools. Expert designers should be aware of their
own positional biases and avoid a narrow domain perspective.
Prioritizing experts over casual users: Although prioritizing domain
experts as end users may not necessarily be a pitfall, it is worth noting
that DaDE naturally caters to them if the aim is to solve complex
domain challenges. The resulting visualization interface will likely
be sophisticated. Furthermore, as evidenced by our case studies, the
insights provided by the visualization require strong domain knowledge
to perceive and interpret. For example, casual users who are less
familiar with the term “pick & roll” and different strategies to defend
against it are less likely to acquire insights from Figure 9.

Task/data explosion: Task/data explosion can occur when the domain
problem is unconstrained and the domain is data-rich. In such cases,
the iterative cycle of data and tasks may spin out of control. This means
that expert designers may keep pursuing additional tasks and data to
address the domain problem in a more exhaustive way. While this
may not necessarily be a pitfall, if the goal is to develop a functional
product to address the domain problem, researchers should be aware of
(visualization research) contribution saturation when new features are
mere engineering.

Although DaDE is not a common method for design study, we
believe our situation is not a lone case. Domain experts may play
varying roles in the visualization design study process. We advocate
for research to explore these benefits and pitfalls more systematically
and provide methodological guidance for successful design endeavors.

7 CONCLUSION

This work aimed to enhance and expand the analytical capabilities of
the shot chart, a well-known visual technique for basketball spatial
analytics. To achieve this goal, we utilized our expertise in both visual-
ization and basketball analytics and developed a novel visual technique
for spatial comparison, along with an interactive visualization system
called HooplInSight. The system supports a wide range of comparative
analyses by allowing convenient selection of comparison entities and
rapid creation of various comparison scenarios. Ultimately, we shared
our reflections on and discussion about design considerations for visual-
spatial comparison, the scalability and transferability of our approach,
and adopting designing as domain experts (DaDE) methodology.



SUPPLEMENTAL MATERIALS

Submitted supplemental materials for this paper include a document
with enlarged figures, a supplemental glossary explaining the domain
terms, and two videos: a main system introduction video with one
in-depth case study and a secondary video for more case studies. The
system is available at: https://hoopinsight.netlify.app/
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