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An Empirical Evaluation of the GPT-4 Multimodal Language Model
on Visualization Literacy Tasks

Alexander Bendeck and John Stasko

Abstract—Large Language Models (LLMs) like GPT-4 which support multimodal input (i.e., prompts containing images in addition to
text) have immense potential to advance visualization research. However, many questions exist about the visual capabilities of such
models, including how well they can read and interpret visually represented data. In our work, we address this question by evaluating
the GPT-4 multimodal LLM using a suite of task sets meant to assess the model’s visualization literacy. The task sets are based on
existing work in the visualization community addressing both automated chart question answering and human visualization literacy
across multiple settings. Our assessment finds that GPT-4 can perform tasks such as recognizing trends and extreme values, and also
demonstrates some understanding of visualization design best-practices. By contrast, GPT-4 struggles with simple value retrieval when
not provided with the original dataset, lacks the ability to reliably distinguish between colors in charts, and occasionally suffers from
hallucination and inconsistency. We conclude by reflecting on the model’s strengths and weaknesses as well as the potential utility of
models like GPT-4 for future visualization research. We also release all code, stimuli, and results for the task sets at the following link:
https://doi.org/10.17605/OSF.IO/F39J6

Index Terms—Visualization Literacy, Large Language Models, Natural Language.

1 INTRODUCTION

Over the past few years, advances in the field of Natural Language
Processing (NLP) have led to the wide commercial availability of Large
Language Models (LLMs). LLMs have been shown to be both powerful
and practical aids for completing a wide variety of tasks related to
text generation [19, 48]. Among the most well-known and widely-
used models are those in the Generative Pre-trained Transfomer (GPT)
series, such as GPT-3.5 and GPT-4. Such models have demonstrated
great utility in fields including education, healthcare, and more [48],
with visualization research being no exception. Existing work has
already assessed the ability of LLMs to generate code for creating
visualizations [21, 50], help users author data-driven articles [68], and
complete various other visualization and data analysis tasks [14].

The most recent versions of some LLMs, including GPT-4 [1], have
begun to support multimodal input, enabling users to prompt such
models with images in addition to textual questions or instructions.
For visualization researchers, the potential applications of multimodal
LLMs seem endless. For instance, such models could accelerate ex-
isting lines of research by being incorporated into systems for chart
question answering [28] or into browser extensions for helping users
read charts or detect deceptive and misinformation-laden visualizations
online [31]. With sufficient knowledge about visualization design prin-
ciples, multimodal LLMs could even critique visualization designs or
serve as education aids [14] for students learning about visualization.

However, given the novel and fast-changing nature of these models,
it is difficult to proceed in an informed and responsible manner without
understanding the ability of LLMs to read and interpret visualizations –
that is, such models’ visualization literacy. While standard visualization
literacy assessments have been developed and deployed for humans
(e.g., the VLAT [40]), no such evaluation has yet been published for
multimodal LLMs. Thus, the goal of this paper is to evaluate the state-
of-the-art GPT-4 model with vision (also known as GPT-4V) on a set
of visualization literacy tasks to understand the model’s capabilities
and establish a baseline level of performance for multimodal LLMs.

As we curated task sets for our evaluation, we sought to leverage
existing materials and experiments in the visualization literature to
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emphasize the relevance and applicability of vision-capable LLMs for
work familiar to our research community. In Section 4, we utilize the
VLAT [40], a visualization literacy assessment test originally designed
for non-expert consumers of data visualizations, to compare GPT-4’s
visualization literacy to that of humans. In Section 5, we assess GPT-4
on the task of chart question answering (CQA) using an existing sys-
tem [32] and its released dataset as a point of comparison. In Section 6,
we replicate and extend an analysis of common deceptive visualization
design techniques [58] to investigate GPT-4’s susceptibility to being
fooled by such designs. In Section 7, we consolidate experimental
conditions across two past studies investigating human responses to
visualizations with misaligned titles [34,35] to see if GPT-4 can discern
title-visualization discrepancies, such as titles which are selective or
contradictory based on the presented data.

Overall, we find that GPT-4 can perform several tasks when read-
ing and interpreting charts, including recognizing high-level trends,
identifying extreme values, and making comparisons between data
points. When provided a visualization along with the underlying data,
the model can complete and explain complex, multi-step computations
with relative ease. The model can also critique visualizations while
referencing basic best-practices and potential pitfalls in visualization
design, as well as assess the interplay between charts and their titles. On
the other hand, GPT-4 struggles with some tasks that are quite easy for
humans, including simple value retrieval when not provided the dataset
used to produce a visualization. GPT-4 also lacks the ability to reliably
distinguish between colors in charts, especially for visualizations like
stacked bar charts when many colors may be present at once. The
model is susceptible to visual deception using some techniques (e.g.,
inverting axes) that are effective at fooling humans. Finally, GPT-4’s
well-documented hallucination and inconsistency issues [2, 12, 39, 80]
extend to its vision capabilities [27, 79], though the model seems more
prone to such problems on certain tasks compared to others.

In summary, the main contributions of this work are as follows:

• We curate a suite of task sets for evaluating the visualization
literacy of multimodal LLMs like GPT-4, drawing from existing
work in the visualization community.

• We evaluate GPT-4’s visualization literacy using our task sets to
understand the state of the art in vision-capable LLM performance
on these tasks.

• We release the code, stimuli, and results for our task sets as
supplemental material to encourage replication, adaptation, and
augmentation of our work on both current and future LLMs.
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• We reflect on this work and outline promising directions for future
research, including additional evaluative tasks of potential value
and novel applications of LLMs in visualization.

2 RELATED WORK

2.1 Visualization Literacy
As data and data visualizations proliferate, especially online, citizens’
ability to read and interpret visualizations – that is, visualization lit-
eracy – is being noted as an important skill [7, 26, 51]. Over the past
decade, visualization researchers have proposed approaches to both as-
sess [7, 8, 40] and improve [36, 61] human visualization literacy. Much
of this work builds upon older fundamental studies on graph compre-
hension [10], including in education research [18, 25, 70]. Among the
most well-known and widely-used tools for measuring visualization
literacy is the VLAT [40], a Visualization Literacy Assessment Test
consisting of 53 multiple-choice questions across 12 common visu-
alization types. The VLAT’s questions cover a set of analysis tasks
previously identified as common in data visualization [3, 9].

The authors of the VLAT also provide a concise definition of visual-
ization literacy which is helpful for our use case: “Visualization literacy
is the ability and skill to read and interpret visually represented data in
and to extract information from data visualizations.” [40] Given this
definition, we take a broad view of visualization literacy to also include
other lines of work which have studied the impact of various visual-
ization design choices on human interpretation. These design choices
include deceptive encodings or axes [37,56,58], misaligned or mislead-
ing titles [34, 35], and visual embellishments or “chart junk” [4, 42].

While research has demonstrated that LLMs can compose and com-
prehend text, we have little understanding of multimodal LLMs’ vi-
sualization literacy. In this work, we build upon existing research –
including the VLAT and other studies mentioned above – to create a
suite of LLM visualization literacy task sets and utilize it to assess the
vision-capable GPT-4 model.

2.2 Chart Question Answering
Chart question answering (CQA) is a line of research which provides
perhaps the closest analog to visualization literacy for systems. A recent
EuroVis STAR report on the topic [28] reviews the capabilities of many
recent works and defines the overarching problem as follows: “The
goal of a chart question answering system is to automatically answer a
natural language question about a chart to facilitate visual data analysis.”
Comparing this definition to that of visualization literacy above, it is
not difficult to argue that a capable CQA system could feasibly be
considered to have good visualization literacy.

While a handful of CQA systems have been developed over the past
half-decade [11, 30, 32, 52, 65], in this work we particularly leverage
the dataset and pipeline from Kim et al. [32] as a point of reference for
assessing GPT-4 on the task of CQA, for several reasons. First, their
work is one of only two which utilizes and publicly releases a high-
quality set of human-generated questions [28]. Second, their system
is again one of only two which supports “open-vocabulary” responses
– that is, it can generate responses which do not rigidly follow a pre-
defined vocabulary or template set, and which can provide responses
consisting of numbers, words, or sentences [28]. Finally, the researchers
who published this work are from the visualization research community,
rather than other communities like computer vision, making their work
likely more familiar and digestible for this audience.

2.3 LLMs in Visualization Research
Research at the intersection of large language models and visualiza-
tion can be roughly divided into two types: visualization for LLMs,
and LLMs for visualization [75]. The former refers to research where
visualization is employed to help users understand and better utilize
LLMs. Such work includes using visualization to explain the inner
workings of models [20, 43, 44, 76], aid in effective prompt engi-
neering [23, 67, 73, 74], and understand and evaluate model perfor-
mance [16, 17, 45, 71, 78]. Meanwhile, the second category refers to
visualization researchers using LLMs as powerful tools to advance the
state of the art in our community. Such work has already employed

LLMs to help users create visualizations by generating code [21, 50],
charts [41, 77], or titles [46]; implement more flexible and powerful
visual analytics systems [53,60,62,64]; and edit and author data-driven
stories or videos [13,63, 68, 69]. We consider our work to be in support
of this second umbrella of “LLMs for visualization”. By demonstrating
the current abilities and limitations of multimodal LLMs and providing
a way to assess these models as they improve, we hope to elucidate
their potential utility in future visualization research projects.

2.4 LLM Assessments on Domain-Specific Tasks
LLMs have been assessed on a variety of benchmark tasks in different
domains. Studies have demonstrated that models like GPT-3 and GPT-4
perform reasonably well on standardized tests in higher education and
processional licensing [54], including the Law School Admission Test
(LSAT) [15], Medical College Admission Test (MCAT) [6], and U.S.
Medical Licensing Examination [55]. Along these lines, visualization
researchers recently found that GPT-4 could score 80% on quizzes and
homework from Harvard’s CS171 data visualization course [14].

Given their relative novelty, multimodal LLMs have not been as-
sessed as thoroughly. While some prior work has assessed such models’
caption generation capabilities [29], the existing work closest to ours
is likely HalluisonBench [27], which introduces a diagnostic suite of
tasks and stimuli for vision-capable language models. Although some
HallusionBench stimuli are charts, both the chart types (dominated by
bar charts) and question types (all yes/no) are quite limited. Hallusion-
Bench also has no concept of visualization literacy; the focus is instead
on inducing LLM hallucinations by modifying factual charts. We craft
our suite of task sets to specifically assess visualization literacy on a
broader set of tasks and stimuli relevant for our research community.

3 OVERALL EVALUATION APPROACH

Results for all experiments were collected by running the task sets
using the OpenAI API1 accessed using the official Python library. In
particular, we used the gpt-4-1106-vision-preview model, which
was OpenAI’s most advanced vision-capable model that was commer-
cially available during the time period between January 15, 2024 and
February 15, 2024 when we ran the task sets. To configure our API
calls to achieve as consistent and deterministic behavior as possible,
we always set the temperature parameter to be 0. However, given
the propensity of models like GPT-4 to provide non-deterministic re-
sponses in spite of a 0 temperature, each task set was run three times
(as in similar prior work [27]). Finally, to ensure task independence
and avoid per-minute API rate limits, each task was provided to the
LLM individually (as opposed to one large request), and each task’s
prompt was prepended with any instructions that applied to its task set.

We next discuss the task sets and results for the VLAT (Section 4),
Chart Question Answering task set (Section 5), Deceptive Visualiza-
tions task set (Section 6), and Visualizations with Misaligned Titles
task set (Section 7). In each section, details about the specific prompts
and scoring for the corresponding task set are provided as appropriate.
Throughout our evaluation, we conducted as little specialized prompt
engineering as possible; see Section 8 for more prompting details.

4 VISUALIZATION LITERACY ASSESSMENT TEST (VLAT)
4.1 Setup
Our motivation for evaluating GPT-4 using the VLAT was to compare
the visualization literacy of GPT-4 to that of humans, while also get-
ting an understanding of the model’s performance across a variety of
common tasks. To set up the test, we constructed our prompts to the
LLM as follows. Each question was provided to the LLM individually,
with the answer choices appended at the end and separated by semi-
colons. Each question was also prepended with adapted preliminary
instructions from the real VLAT, specifying basic information like that
we are asking a multiple-choice question based on the accompanying
image. As in the original test, we stated that the model should skip
questions (i.e., answer “Omit”) rather than guess. (All prompts, along
with stimuli and results, are released as supplemental material.)

1https://platform.openai.com/docs/introduction
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For scoring the results, we sought to penalize inconsistent responses.
We therefore only consider GPT-4 to answer a question correctly if its
response is correct on all three runs. We also only consider GPT-4 to
omit a question if it responds “Omit” on all three runs. In all other
cases, we score the overall response for a question as incorrect. This
is an important detail because the VLAT scoring scheme penalizes
incorrect answers more harshly than omissions.

Tasks. We utilized the final version of the VLAT, consisting of 53
multiple-choice test items which cover 8 task types (see Table 2) and
12 visualization types (see Table 3).

4.2 Results
Overall performance. Using the VLAT scoring scheme from the
original paper [40] (which includes a guessing penalty), GPT-4 achieved
a score of 19.67. Considering that the human score distribution on the
VLAT had a mean of 28.82 and a standard deviation of 8.16, this means
that GPT-4 scored quite poorly – just outside of one standard deviation
below the human mean. This puts GPT-4’s visualization literacy around
the 16th percentile of humans. GPT-4 also tended to struggle more with
questions that were empirically found to be difficult for humans by the
original VLAT authors, as shown in Table 1.

Table 1: VLAT results broken down by question difficulty (as classified in
the original VLAT paper), ordered by increasing difficulty.

Difficulty correct omit incorrect % correct
Easy 12 1 4 70.6
Moderate 10 3 6 52.6
Hard 6 5 6 35.3

Breakdown by task type. As mentioned above, the questions in the
VLAT were each associated with an analytic task type taken from exist-
ing task taxonomies in information visualization [3, 9]. A breakdown
of GPT-4’s performance based on the task type associated with each
question, provided in Table 2, reveals divergent performance between
different task types. While GPT-4 can consistently find trends and can
more often than not correctly make comparisons and find extrema, it
struggles to retrieve precise values.

Table 2: VLAT results broken down by task type, ordered in decreasing
order by percent correct.

Task type correct omit incorrect % correct
Identify hierarchy 1 0 0 100.0
Find trends 4 0 1 80.0
Make comparisons 9 1 3 69.2
Find extremum 8 2 2 66.7
Find anomalies 1 0 1 50.0
Determine range 2 0 3 40.0
Find clusters 1 0 2 33.3
Retrieve value 3 6 4 23.1

Breakdown by chart type. The VLAT contains 12 different chart
types. While task types are not equally distributed among all charts
types, charts generally have some baseline overlap in the types of
questions asked (e.g., almost all chart types contained at least one
“Retrieve value” question and “Find extremum” question each). A
breakdown of GPT-4’s performance based on the chart associated with
each question is provided in Table 3. Of note is the fact that out of the 9
questions with omitted responses, 8 of these occurred on visualizations
which utilized multiple colors to encode the data (stacked bar, 100%
stacked bar, stacked area, and pie).

4.3 Discussion
Based on the limitations of GPT-4’s vision capabilities which are out-
lined by OpenAI (as of March 2024) [57], the identified failure cases
are not altogether surprising. OpenAI states that the model may strug-
gle with both “graphs or text where colors or styles like solid, dashed,

or dotted lines vary” and “tasks requiring precise spatial localization”.
The combination of these limitations reasonably makes it quite difficult
for GPT-4 to retrieve exact values (note from Table 2 that 6 out of 9
omitted responses are for “Retrieve value” questions) and successfully
answer questions on visualizations where color is a key encoding (see
Table 3). We will see more examples of where misinterpretations of
color and poor spatial localization impede GPT-4’s ability to correctly
answer questions in the next section on chart question answering.

Fig. 1: Questions and GPT-4’s responses for two items on the VLAT.
Bottom-left: Incorrect answer to a value retrieval question which humans
found easy. Bottom-right: Correct answer to an empirically more difficult
question requiring multiple comparisons.

However, it may be somewhat unintuitive that in spite of such limi-
tations, GPT-4 can consistently answer some questions correctly which
require multiple steps and are arguably (and, based on the original
VLAT paper, empirically) more difficult than simple value retrieval.
For instance, consider the chart and two questions in Figure 1. Al-
though GPT-4 is unable to do a simple value retrieval based on the
height of Japan’s bar (Figure 1, bottom-left), it is able to correctly
count the number of bars which are shorter than Thailand’s (Figure
1, bottom-right). This indicates that in spite of GPT-4’s struggles at
retrieving exact values, it can perform decently at tasks requiring only
rough value retrieval or visual comparison; note again from Table 2 that
GPT-4 does much better at making comparisons and finding extrema
than retrieving values. In the next section, we present more data on
GPT-4’s performance across different analytic tasks, including when the
dataset underlying the visualization at hand is provided to the model.

Table 3: VLAT results broken down by chart type, ordered in decreasing
order by percent correct.

Chart type correct omit incorrect % correct
Treemap 3 0 0 100.0
Line 4 0 1 80.0
Stacked area 4 2 0 66.7
100% stacked bar 2 1 0 66.7
Pie 2 1 0 66.7
Bubble 4 0 3 57.1
Scatterplot 4 0 3 57.1
Bar 2 0 2 50.0
Histogram 1 1 1 33.3
Choropleth map 1 0 2 33.3
Area 1 0 3 25.0
Stacked bar 0 4 1 0.0
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5 CHART QUESTION ANSWERING

5.1 Setup
In this section, we compare GPT-4’s ability to answer questions about
visual charts with that of an existing chart question answering pipeline
– namely, that of Kim et al. [32]. In addition to the reasons for choosing
their work outlined in Section 2.2, the setup of their question answering
pipeline also affords utility for testing GPT-4’s capabilities. Specifically,
their pipeline has 3 stages: (1) data extraction, (2) question processing
and answering, and (3) explanation generation. We thus evaluate GPT-4
in two ways: as a replacement to the entire pipeline, and as a stand-
in for Stages 2 and 3 after data extraction. While we briefly discuss
GPT-4’s explanations in Section 5.3, this is not a main focus of our
work. We then compare the performance of GPT-4 when it is directly
provided the data underlying the charts to when it is not.

Before assessing GPT-4 on the released question set from Kim et al.,
we sought to recreate the question categorization outlined in their paper.
The paper describes each question as either “lookup” (single value
retrieval) or “compositional” (needing several operations), and as either
“visual” (referencing specific visual features of the chart such as color,
length, etc.) or “non-visual”. However, the released question set does
not contain these categorizations. We thus contacted the corresponding
author via email; while he was unable to find the precise labels for
each question, he did provide us with a more granular breakdown of
question category counts for each chart. We utilized this breakdown
as a guide to manually re-categorize all questions. While we were
unable to precisely match the categorization in the original paper, our
count differed only in that we counted three more “non-visual lookup”
questions and correspondingly three fewer “non-visual compositional”
questions. The deviation from the initial category counts is thus only
3, a very small percentage of the 629 total questions. The count of
questions according to our categorization is provided in Table 4.

Table 4: Breakdown of questions in our set based on categorization of
“lookup” vs. “compositional” and “visual” vs. “non-visual”.

# Questions
Lookup Compositional Total

Visual 52 (8%) 24 (4%) 76 (12%)
Non-Visual 141 (22%) 412 (66%) 553 (88%)
Total 193 (30%) 436 (70%) 629

To run the task set, we then constructed our prompts to the LLM as
follows. Each question was provided to the LLM individually. Each
question was also prepended with instructions specifying that we are
asking a question based on the accompanying image (and, in the data-
provided condition, the accompanying dataset) and to answer based
only on this information and not external knowledge. For the results,
we again only consider GPT-4 to have answered a question correctly
if its response was correct on all three runs. For questions with non-
numeric answers, responses needed to be exactly correct. For questions
with numeric answers, we considered responses to be correct if within
5% of the correct answer, as in prior work [52].

Tasks. The question set from Kim et al. consists of 629 questions
across 47 bar charts (32 simple, 8 grouped, 7 stacked) and 5 line charts.

5.2 Results
Overall performance and breakdown by question type. When pro-
vided the underlying data along with the visualization, GPT-4 is able
to achieve an accuracy of 87% on the CQA dataset from Kim et al.,
which outperforms their system quite significantly. However, when
not provided the underlying data, GPT-4’s performance degrades no-
tably to 31% overall, well below Kim et al.’s system. Figure 2 reveals
stark performance differences between the different question categories.
Among both categories of “compositional” questions, GPT-4 with data
is able to double the accuracy of prior work, and even GPT-4 without
data performs comparably to prior work. Recall from Table 4 that the
majority of questions in the set are “non-visual compositional”, and so

a large part of GPT-4’s better overall performance (when provided the
data) can be attributed to this category. On “visual lookup” questions,
GPT-4 with data still underperforms Kim et al.’s system, though its
performance is competitive. On “non-visual lookup” questions, GPT-4
achieves nearly perfect accuracy when provided the data, but posts a
poor 13% accuracy when it is not – echoing the model’s struggles with
value retrieval from the previous section.

Fig. 2: CQA accuracy of GPT-4 with and without data provided, compared
to the 3-stage pipeline from Kim et al.

Breakdown by task type. The questions from Kim et al. are not all
associated with a specific analytic task like the questions in the VLAT.
However, the more granular question breakdown provided to us by
the corresponding author did specify a few sub-categories of tasks for
“compositional” questions which allow for some high-level comparison
to the results from the VLAT. Table 5 shows the accuracy breakdown for
“lookup” tasks and for four “compositional” task types: compute derived
value, find extrema, make comparisons, and “multiple” (meaning some
combination of the former – e.g., computing the difference between
maximum and minimum values).

Table 5: CQA accuracy of GPT-4 with and without data on various tasks.

Task # Questions Accuracy
w/ data

Accuracy
w/o data

Compute derived value 125 96% 7%
Lookup 193 93% 23%
Find extrema 267 87% 52%
Make comparisons 25 84% 44%
Multiple 70 69% 37%

For the tasks with the highest accuracy given data – i.e., lookup
and computing derived values – the dropoff in accuracy when data is
no longer provided is quite significant. For the other tasks, however,
performance does not degrade so severely without data. Even questions
requiring “multiple” operations had a higher accuracy than lookup
when not provided data. For instance, further inspection revealed
that GPT-4 was sometimes still able to correctly make comparisons
between extreme values even without data. Note that the accuracy
without data for tasks which overlap with those from the VLAT looks
relatively similar to the previous section, with accuracy finding extrema
and making comparisons (which only require rough value retrieval)
outpacing performance on precise value lookup.

5.3 Discussion
Visual lookup and color. From Figure 2, “visual lookup” is the only
question category where Kim et al.’s system outperforms GPT-4 with
data. Inspection of failure cases revealed that a large proportion of these
occurred due to GPT-4’s inability to consistently interpret multiple
colors in charts. While on some occasions the model was confused by
very close color hues or simply hallucinated issues with chart legends,
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GPT-4 also showed a tendency to misread relatively unambiguous color
legends (see Figure 3). Such issues were consistently replicated across
all three runs, regardless of whether data was provided or not (since the
data does not contain this visual encoding information).

Fig. 3: GPT-4 consistently fails to correctly interpret the color legend on
this stacked bar chart. Relevant text bolded for emphasis.

We note that while Stage 1 of Kim et al.’s pipeline did include a
component to extract data encodings, we did not utilize this in any runs
on GPT-4. Based on our VLAT experiment, we already knew GPT-4’s
limitations with value retrieval, and so we utilized the data extraction
component of Kim et al.’s pipeline to compensate. However, we wanted
to observe the limitations of GPT-4 in other areas such as interpreting
visual encodings so we could judge the model’s visualization literacy
capabilities, as opposed to simply measuring its power as a question-
answering engine with all data and encodings provided cleanly as input.

Axes and titles. One particular strength of GPT-4 is in reading numeric
axes and titles of visualizations. The model correctly answered all 18
questions about axes and titles consistently across all runs. Figure 4
shows a failure case from Kim et al. which GPT-4 can correctly answer
with ease: interpreting the increments along the y-axis of a chart. As
opposed to color, meta-details about chart axes and titles which are
not included directly in the dataset appear to be relatively easy for the
model to understand.

Fig. 4: GPT-4 can easily succeed on some failure cases from Kim et al.,
especially those related to reading axes.

Generating (visual) explanations. Beyond just question answering, a
large part of Kim et al.’s paper focused on explanation generation – how
their system can reference specific visual features in the chart to explain
its answer. We explore this angle only briefly, since properly evaluating
GPT-4’s explanations would likely entail a more manual and subjective
analysis than we aim to undertake in this work. GPT-4’s explanations
for its answers occasionally made little to no reference to the chart at
all, simply answering in the form “Based on the data provided, the
answer is X”. Conducting a meaningful evaluation of GPT-4’s ability
to provide visual explanations when answering questions would likely
require somewhat extensive prompt engineering to nudge the model
towards producing the types of explanations that are desired.

However, it is worthwhile to note that GPT-4 did occasionally demon-
strate the potential to generate intuitive and meaningful explanations for
its answers during our experiments. Consider the chart and question in
Figure 5 along with the model’s visual explanation. In this case, GPT-4
is able to provide quite a good and easily verifiable explanation for its
answer to a simple extremum identification question. Future work can
consider testing the limits and common failure cases for LLMs gener-

ating visual explanations in a CQA setting and should take a cautious
approach given the potential for hallucination.

Fig. 5: GPT-4 shows promise in providing visual explanations when
answering questions about charts. Relevant text bolded for emphasis.

Additionally, recall from Figure 2 that GPT-4’s biggest performance
win over Kim et al. is on “compositional” questions requiring multiple
operations. For such questions, GPT-4 was generally able to provide
quite detailed and easy-to-follow steps to compute the correct answer,
even if these explanations rarely referenced visual chart features. This
ability of the model to walk a user through multi-step computations,
while already well-known [24], further increases the value of such
models as force multipliers in chart question answering research.

6 DECEPTIVE VISUALIZATIONS

6.1 Setup
In Section 4, we compared the ability of GPT-4 to answer questions
about visualizations to that of humans. However, the VLAT is not
designed to evaluate one’s ability to answer questions about deceptive
visualizations – that is, visualizations whose authors have made specific
design choices to deceive viewers. As mentioned above, prior work has
studied the effects of common distortions in visualizations and found a
large effect on readers’ takeaways [58]. In this section, we investigate
whether GPT-4 can be misled by similar design tactics which have been
shown successful at deceiving humans.

Our first step in curating this task set was to replicate the visual
stimuli used by Pandey et al. [58], as their study materials were not
released. We designed our stimuli to be as close as possible to those
depicted in their paper. We also augmented those stimuli with two
additional control-deceptive chart pairs, resulting in the following list:

• Truncated axis (Figure 6-A): The visualizations are bar charts
with two bars each. In the control condition, the y-axis starts at
0. In the deceptive condition, the y-axis starts at a much higher
values to exaggerate the differences between the bar heights.

• Truncated axis, with data labels (Figure 6-B): This chart pair is
equivalent to the first, except exact bar height values are written
on top of each bar for both conditions. Such a stimulus was not
evaluated in the original paper, but we decided to include it given
our observations about GPT-4’s poor value retrieval capabilities.

• Area as quantity (Figure 6-C): The visualizations are very sim-
ple “bubble charts” where two circles are shown with different
sizes and the numeric values shown inside each circle. In the
control condition, circle area encodes the value. In the deceptive
condition, circle radius encodes the value, exaggerating the size
difference.

• Aspect ratio (Figure 6-D): The visualizations are line charts.
Compared to the control condition, the deceptive condition shows
the same data, but extends the x-axis to adjust the chart aspect
ratio so that the slope of the line looks steeper.

• Inverted axis (Figure 6-E): The visualizations are area charts. In
the control condition, the y-axis increases as it goes up. In the
deceptive condition, the y-axis is inverted and increases as it goes
down, to make it look like the quantity being depicted is actually
decreasing.
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Fig. 6: Visualization stimuli for deceptive design task set. For each pair, the control condition is shown on the left and the deceptive condition on the
right. Underneath each pair is a simplified version of the main message question which was asked to see if GPT-4 could be “fooled”.

• Inverted color ramp (Figure 6-F): The visualizations are choro-
pleth maps. In the control condition, the map has a single-hue
color ramp where darker colors indicate higher values. In the
deceptive condition, the color ramp is inverted so lighter colors
indicate higher values. This type of deception was not evalu-
ated in the original paper, but we decided to include it given our
observations about GPT-4’s poor performance discerning colors.

Tasks. Like Pandey et al., we posed questions about the main message
for each of the 12 individual charts to gauge GPT-4’s judgement on
either the magnitude or the direction of the effect shown in the chart,
depending on the distortion type. Figure 6 shows a shortened (for the
figure) version of the question asked for each visualization type. The
actual questions were worded as similarly to those in the original paper
as possible. We were additionally interested in whether GPT-4 could
detect deceptive design choices when prompted to do so. To achieve
this, we added two additional question types. First, for each of the 12
charts, we asked “Are any misleading design tactics being used in this
chart?” Second, we presented each of the 6 chart pairs and asked, “Do
these two charts, displayed side by side, show the same data?”

6.2 Results
Truncated axis. When asked to rate the difference between the two
bars, GPT-4 was fooled by the truncated axis. The model consistently
rated the difference between the bars as a 1/5 for the control condition
and a 5/5 for the deceptive condition. In spite of this, the model was
able to detect the misleading design tactic in the deceptive condition,
describing it as follows: “Truncated Y-Axis: The y-axis starts at 81%
instead of 0%, which exaggerates the difference [...] between Willow-
town and Silvatown.” Likewise, when shown the two visualizations
side-by-side, GPT-4 identified the charts as equivalent and mentioned
the axis distortion on one of the charts.

Truncated axis with data labels. When asked to rate the difference
between the two bars with data labels, GPT-4 still appeared to be
influenced by the truncated axis, though not as strongly. The model
consistently rated the difference between the bars as a 1/5 for the

control condition as before, but now only rated a 2/5 for the deceptive
condition. The model was again able to detect the misleading design
tactic in the deceptive condition and identify the charts as equivalent
when side-by-side.

Area as quantity. GPT-4 was not influenced by the size distortion in
the bubble chart. The model rated the difference between them as a 4/5
or 5/5 interchangeably for both conditions across the repeated runs. The
model was wary of the pitfalls of this technique, noting that perception
of exaggerated differences “is a common issue when using circle sizes
to represent quantities”. However, it erroneously detected this distortion
in both the deceptive and control conditions. When shown the two
visualizations side-by-side, GPT-4 identified the charts as equivalent
and mentioned the size distortion. However, its assessment of the
difference between the charts was inconsistent, sometimes identifying
the the deceptive chart as being more accurate and once hallucinating
that the control condition showed two circles of the same size.

Aspect ratio. GPT-4 was not at all influenced by the aspect ratio
distortion. The model consistently rated the change in conditions over
time as a 2/5. The model did not detect the aspect ratio distortion when
asked to assess the deceptive condition for misleading tactics (though
it did mention the truncated axis). It correctly assessed the juxtaposed
charts as showing equivalent data and did not mention the aspect ratio
difference, but hallucinated that both charts had “the same time frame
on the x-axis (from 1995 to 2020)” even though the control condition
chart ends at 2010.

Inverted axis. Out of all the deceptive conditions, GPT-4 was most thor-
oughly fooled by the inverted axis distortion. The model consistently
stated that the data was increasing in the control condition and decreas-
ing in the deceptive condition. When prompted to assess the charts for
misleading tactics, the model mentioned the truncated y-axis for both
conditions, but ignored the axis inversion in the deceptive condition.
GPT-4 also assessed the charts as not equivalent when side-by-side,
stating the following: “The chart on the left shows an increasing trend
over time, while the chart on the right shows a decreasing trend over
the same time period.”
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Inverted color ramp. GPT-4 seemed generally not fooled by this dis-
tortion, consistently identifying the values in northern Africa as high in
the control condition and doing so 2 out of 3 times on the deceptive con-
dition (responding “uncertain” once). However, the model’s response to
the other two questions suggests quite severe hallucination when view-
ing these charts. The model made several critiques of the visualizations
when prompted, but did not identify the deceptive condition to have a
misleading color ramp, in fact stating that the deceptive visualization
had a color ramp with “darker shades indicating higher support”. Even
when shown the maps side-by-side, the model concluded that the “color
coding for each country is identical in both maps”.

6.3 Discussion
Overall, the results presented in this section indicate that GPT-4 can be
fooled, or at least confused, by some common deceptive visualization
techniques that have also been found misleading for humans (see Figure
7). GPT-4’s robustness to visual deception depends heavily on the task
at hand; for instance, although GPT-4 can detect a truncated axis in a
bar chart as misleading when prompted, it is also susceptible to being
misled when asked to draw conclusions the data being presented in
such a chart. The model also shows knowledge of visualization design
pitfalls such as encoding values using circle size, even if it is not always
able to reliably assess the problem when shown a visualization. Finally,
we see again that hallucination is a limitation of GPT-4 in its ability
to interpret visualizations, especially when color is utilized as a key
encoding like in the choropleth maps.

Fig. 7: Summary of results across deceptive design tactics. An asterisk
(*) indicates that the response(s) contained evidence of hallucination.

7 VISUALIZATIONS WITH MISALIGNED TITLES

7.1 Setup
Visualizations do not need to use deceptive visual encodings or axes
to mislead the viewer. Text that accompanies a visualization, whether
as a title, subtitle, or in an accompanying article or social media post,
can have a large impact on the reader’s takeaways [33, 66] and can
potentially be used to mislead. LLMs like GPT-4 could be powerful
tools to help detect misalignment between visualizations and accom-
panying text, given their demonstrated ability to evaluate and improve
text written by humans [19, 48]. In this section, we focus specifically
on deceptive visualization titles, assessing the ability of GPT-4 to detect
title-chart misalignment across several conditions previously studied
by Kong et al. [34, 35] and making use of the released experimental
materials from their work.

In curating the stimuli for these tasks, we consolidated conditions
from across two papers by Kong et al. which studied human assess-
ments of misaligned titles. Their first paper [34] focused on selective
titles, such as in the visualization shown in Figure 8, where multiple
phenomena are shown simultaneously in a chart but the title only makes
reference to one while ignoring the other. Their second paper [35] ex-
tended the first to additionally study charts with miscued titles, which
make reference to a visually de-emphasized phenomenon in the chart,
and contradictory titles, which do not correspond to the sole phe-
nomenon shown in the chart. We utilized these conditions, along with
a control condition where the title properly corresponds to the sole
phenomenon in the chart, in this experiment. Using the stimuli released
as supplemental material by Kong et al. and making any modifications
as necessary, we ended up with 4 visualizations for each condition (i.e.,
4 visualizations with control titles, 4 with selective titles, etc.).

Fig. 8: One example of a visualization where the title is selective, refer-
encing only the blue line. Keeping the title the same but slightly modifying
the visualization would create the other conditions. Without the orange
line, this would be a control condition; with the blue line grayed out and
dotted but still present, this would be a miscued condition; and without
the blue line, this would be a contradictory condition.

Tasks. For each of our 16 stimuli, we asked two questions taken from
the surveys completed by participants in Kong et al.’s second paper:
“Do you find the title appropriate for this visualization?” and “Does
the title tell the whole story?” We initially planned to only ask the first
question to compare GPT-4’s assessments with those of humans, most
of whom found titles appropriate even in the contradictory condition.
However, during the development of this experiment, we found mean-
ingful differences in the results based on the question wording which
highlight the importance of prompt engineering in utilizing LLMs to
interpret visualizations. Note that the results below outline our observa-
tions for each condition across all visualizations, but we will repeatedly
refer to Figure 8 as a running example.

7.2 Results
Control. We were somewhat surprised by the results of the control
condition. While our expectation was that the control visualizations
(Figure 8 without the orange line) would generally get a stamp of
approval from GPT-4, this was not the case. Both when we asked
whether the titles were “appropriate” and “told the whole story”, GPT-
4 consistently took issue with some aspect of the control titles. For
instance, in the control condition corresponding to Figure 8, the model
objected to the characterizing the decrease as “steady” given that “there
are periods of increase and fluctuation”. To test this sensitivity, we then
changed the word “steady” in the title to “general”, but this still did
not satisfy GPT-4. Finally, we prompted GPT-4 to write its own title
for the visualization and put this title (“Trends in Defense Spending
as a Percentage of GDP Over the Last 70 Years”) on top of the chart,
which earned approval from the model. Note that we did not keep these
modified titles, only using them briefly as a sensitivity test.

Selective. In the selective condition, we saw a notable difference in the
results depending on whether we asked if the title was “appropriate”
or told the “whole story”. When asked about appropriateness, GPT-4
would generally focus on similar minutiae as in the control condition
and miss the point of the title being selective. However, when we asked
whether selective titles told the whole story, the model almost always
identified the main issue with the title and provided a relevant explana-
tion. Consider the following part of a response for the visualization in
Figure 8: “[...] the chart shows two lines: one representing the defense
budget as a percentage of GDP (blue line), and the other showing the
defense budget in constant FY 2015 dollars (orange line). [...] the title
does not reflect the complexity shown in the chart, where the actual
defense budget in constant dollars does not always decrease.”

Miscued. The miscued condition produced extremely similar results to
the selective condition. GPT-4 still often missed the main point when
we asked about appropriateness, but identified it when we asked about
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telling the whole story. Indeed, regardless of the prompt, the model
showed little understanding of how the visual misdirection itself could
contribute to the title misalignment. Responses did not seem to indicate
that the miscued component of the visualization was being visually
called out or emphasized in any way – only that it was, for instance, a
“solid” line compared to a “dashed” line.

Contradictory. In the contradictory condition, the difference in re-
sponses between asking about appropriateness or telling the whole story
mostly disappeared. Although the model could still get distracted by
smaller issues, the absence of a second phenomenon in the data to fixate
on resulted in the assessments of appropriateness focusing more on the
contradiction between the title and the displayed data. For instance,
for the contradictory version of Figure 8 (without the blue line), the
model concludes that the title is not appropriate since the graph “shows
fluctuations in the defense budget in constant FY 2015 dollars”.

7.3 Discussion
Overall, GPT-4 appears much more sensitive to potentially inappropri-
ate titles than humans. Consider that in Kong et al.’s second paper, 79%
of survey responses for miscued conditions and even 60% of responses
for contradictory conditions considered the titles to be appropriate. By
contrast, GPT-4 even found control titles to be inappropriate due to
subtleties in wording. (We note that the model is much less sensitive to
the type of subtle visual manipulation employed in the miscued condi-
tions, never mentioning the clear visual emphasis placed on the data
which did not support the title.) In some sense, we can consider the
model’s flagging of inappropriate titles to have extremely high recall,
but relatively low precision. If there is even a small issue with a title,
it will likely be found, but identified issues may not be of extreme
interest or relevance. In particular, we saw that even with selective and
miscued titles, GPT-4 often explained that titles inappropriate without
mentioning the part of the visualization being ignored by the title.

The results for the selective and miscued conditions also showcase
the importance of prompt engineering in utilizing LLMs like GPT-4.
For both conditions, we consistently observed meaningful differences
in responses based on whether we asked if the title was “appropriate” or
if it told “the whole story”. When asked the former, GPT-4 would often
fixate on relatively small issues with the title and ignore the fact that
the title was ignoring half of the visualization. When asked the latter,
the model showed the ability to thoroughly and clearly explain the dis-
crepancy between the title and the visualization. The impact of prompt
engineering when utilizing LLMs is well-documented [23, 67, 73, 74],
and the results of this section further demonstrate the importance of
composing specific prompts that are highly tailored to the task at hand.

8 SENSITIVITY ANALYSIS

To ensure that our results are reasonably general and are not simply
artifacts of particular visual stimuli, questions, or prompts, here we
include a sensitivity analysis. It consists of two main parts: (1) a
replication study where we created similar stimuli to those used in the
original task sets to test the potential effects of GPT-4’s knowledge
base; and (2) a brief discussion of how our prompts were constructed,
as well as a few additional prompt variation tests to investigate the
effects of different prompts for each task (using the original stimuli).

Replication study. For the VLAT, we created 12 charts and 53 ques-
tions of the same types as the published test, but using original and
artificially generated data. Results indicated some sensitivity of GPT-4
to the particular multiple-choice responses given, especially for value
retrieval tasks. However, in general the model performed similarly
as on the real VLAT and struggled on the same types of questions as
reported earlier. For the CQA task, we created two charts with synthetic
data (one regular and one stacked bar) and wrote 40 questions across
the categories of lookup, finding extrema, making comparisons, and
computing derived values. The accuracy on these questions closely
mirrored that reported in Table 5. For the deceptive design task, we
re-created stimuli A through E from Figure 6 (as F was not in the origi-
nal work and thus could not be in GPT-4’s knowledge base) with new,
synthetic data. The results were almost identical to those reported in

Figure 7 except that the model was able to correctly detect the inverted
axis deceptive tactic on our chart. For the title misalignment task, we
created a new set of bar chart visualizations with control, selective,
miscued, and contradictory conditions. While there seemed to be a bit
more hallucination by the model in the test on our title misalignment
stimuli, the results were comparable to the main task. GPT-4 still some-
times objected to “correct” titles and was relatively sensitive to question
wording of whether the title was “appropriate” or “told the whole story”.
Overall, we found little evidence that GPT-4 had benefited from its
knowledge base during the main task sets as the model’s performance
was similar on our original stimuli with original, synthetic data. All
stimuli, questions, and results for the replication study are released as
supplemental material.

Prompt variations between task sets. For each task set, we had to
briefly iterate on the prompt format before we saw decent results. The
prompts for all task sets followed a similar pattern wherein a preface
was prepended to each question and associated image and then fine-
tuned for each task set. (Note that the questions themselves were not
engineered as they were taken verbatim from prior work.) The basic
preface template was: “I am about to show you an image and ask you
a question about that image. Answer as best you can based only on
the chart and not external knowledge.” While we did not find a major
difference between responses when we added the directive to answer
based only on the chart, we kept it as a precaution. We found that the
vanilla prompt preface worked well for the deceptive design and title
misalignment tasks. To achieve reasonable performance on the VLAT,
we had to add that the question would be multiple-choice and append
the instructions from the actual VLAT so the model would omit answers
when appropriate rather than guess. For the CQA task set, we had to
mention that a CSV or JSON dataset associated with the chart would
be included (when appropriate). We also asked the model to “provide
a visual explanation” for CQA answers as a test of its abilities. While
GPT-4 did not always provide visual explanations (and just referred to
the data), this wording generally produced good results.

Prompt variation tests. We conducted a brief series of follow-up
prompt variation tests across the task sets to determine the effect of
various changes on the responses. Several tests were not intended to
induce any changes in model behavior; these included switching the
order of the question and image in the prompt and changing delimiters
between answer choices (VLAT only). These changes seemed to have
little impact on the correctness of responses for each question, but
sometimes led to noticeable variations in the incorrect or hallucinatory
responses. Other tests involved giving the model an unreasonable or
ill-formed task, such as by providing a contradictory dataset and chart
(CQA only) or a question which referred to entities absent from the
chart or data. In these types of tests, GPT-4 usually noticed the incon-
sistency and refused to directly answer the question, though on rare
occasions it instead produced an erroneous or hallucinatory answer.

9 GENERAL DISCUSSION

9.1 Results Summary
Strengths of GPT-4. Even when not provided the data underlying a
visualization, GPT-4 was able to complete several common analytic
tasks, namely recognizing high-level trends, finding extrema, and mak-
ing comparisons between values. This was observed on both the VLAT
and the CQA question set, although the accuracy for such questions
was a bit lower on the CQA questions (without data), which may be
more indicative of the model’s abilities given the larger sample size.
When provided data on the CQA questions, GPT-4 showed remarkable
reliability at retrieving values as well as performing and explaining
computations, even ones which required multiple steps. Faced with
visualizations that utilized deceptive tactics, the model showed some
basic knowledge of visualization design best practices, including the
potential of truncated axes on charts to mislead viewers and the pitfalls
of using circle size as a quantitative variable encoding. When asked to
assess chart titles at varying levels of misalignment, GPT-4 also showed
the ability to make nuanced and subtle assessments of these titles and
their relationships with the charts (depending on the prompt).
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Weaknesses of GPT-4. A primary limitation of GPT-4’s visualization
literacy is its inability, or even occasional unwillingness to attempt, to
retrieve values from a chart when not given the underlying data. Precise
value retrieval is an understandably difficult task even for humans when
axis intervals are large. However, on several occasions GPT-4 could not
even provide ballpark values, or failed on exact value retrieval tasks that
would be reasonable for a human (recall Figure 1). This is exacerbated
by the model’s other main visual limitation: its inability to reliably
distinguish between colors (recall Figure 3). In addition to the VLAT
and CQA sections, issues with color also surfaced during the deceptive
design tasks, when the model hallucinated that two choropleth maps
with inverse color ramps were identical. However, we note that it is
difficult to completely isolate issues of value retrieval and even color
interpretation (e.g., reading a color legend) from the model’s observed
struggles with spatial reasoning more generally [72]. The deceptive
design evaluation further revealed that GPT-4 can be fooled by com-
mon distortions such as truncated and inverted axes – even though it
recognizes the former as a deceptive technique when prompted. In both
the deceptive design and title misalignment sections, although GPT-4
showed an ability to evaluate visualizations with a critical eye, it would
sometimes make nitpicky judgements or fixate on details that paled in
comparison to a more pressing design issue. Finally, across all task
sets, the model demonstrated hallucination and inconsistency issues.
These were most numerous during the CQA task set, and included but
were not limited to: providing different answers to almost identical
questions; answering questions with words or items that did not appear
in the visualization; erroneously noting discrepancies between the visu-
alization and the provided data; answering questions as though bars in
a chart were sorted in ascending or descending order, even though they
were not; and incorrectly reading color legends.

9.2 Limitations of Our Approach

Missing visualization types and task sets. While we aimed to cover
a reasonable set of visualizations, our task sets are by no means ex-
haustive. In particular, we do not include any geographic visualizations
besides a few choropleth maps, and we do not include any graph or net-
work visualizations (which have their own associated analytic tasks [38]
beyond those assessed here). In order to make reasonable comparisons
between our results and those of the prior studies on which we built our
evaluation, we also leaned towards choosing task sets from work which
either released much of their materials or utilized stimuli which were
easy to replicate. Regardless, we believe that our selected task sets
provide sufficient breadth and depth to constitute a useful contribution –
comparing GPT-4 to both human and machine question answering on
charts, and then measuring the model’s robustness in the face of both
visual and textual deception techniques.

GPT-4’s extensive knowledge base. The existing works upon which
we based this evaluation (e.g., the VLAT) and some real-world datasets
or phenomena which were visualized in the chart stimuli are several
years old. GPT-4 could thus feasibly know of these research works
and/or datasets and use such knowledge in completing our task sets. We
attempted to mitigate and detect any such issues along this vein through
our sensitivity analysis (Section 8), which showed little evidence of
GPT-4 benefiting from prior knowledge of the tasks or stimuli. Based
on these considerations, we ultimately judged that the benefits of being
able to compare GPT-4’s performance to humans and existing systems
by utilizing prior work outweighed the potential drawbacks.

LLMs as a moving target. LLMs like GPT-4 can be quite fickle and
inconsistent in their behavior [19, 48]. We aimed to avoid extensive
prompt engineering to keep the tasks as similarly worded as possible to
the original works which inspired them. However, to achieve reason-
able results, it was sometimes necessary to manipulate question choices
(e.g., to detect misaligned titles in Section 7) or prompts (see Section
8). Future work can further test the effects of prompt engineering and
follow-up prompting on LLM visualization literacy task performance.
Furthermore, despite setting the model temperature parameter to 0
in our API calls and running each task three times to maximize replica-
bility and reliability of our results, there are still inherent difficulties in

attempting to generally characterize the behavior of models like GPT-4.
Finally, GPT-4 is only one multimodal LLM, and we fully anticipate
that newer and more powerful models will soon succeed it. Although
this work only represents a snapshot of one model at this point in
time, we believe there is significant value in (1) assessing GPT-4’s
performance to better understand the current state of the art, and (2)
releasing the materials of our suite of task sets to facilitate the tracking
of vision-capable LLMs as they improve over the coming years.

9.3 Future Work

Evaluating visualization literacy of other LLMs. A clear direction
for future work is leveraging our released task sets to evaluate the visu-
alization literacy of multimodal LLMs besides GPT-4, including newer
GPT models. Other models including Google’s Gemini have already
been evaluated on some CQA tasks [59], but not on visualization liter-
acy tasks more broadly. We note that as proprietary models, the exact
training data input and internal parameters for GPT-4 and Gemini have
not been released. This makes it difficult to investigate the internal
workings of the models and determine why they behave the way they
do. For this reason, we especially advocate for future work to evaluate
models with architectures that are open-source, such as LLaVA [47] and
Fuyu-8B [5]. Using open-source models would allow researchers to
tinker with model parameters and training to assess the impact of such
changes on visualization literacy task performance. While these models
are often introduced and evaluated on more general visual question
answering tasks, their performance on visualization literacy tasks re-
mains unexplored. We encourage the creation of a visualization literacy
leaderboard for LLMs, akin to the MathVista mathematical reasoning
benchmark [49], to continue the systematic study of models’ capabil-
ities. This would also help establish an understanding of the relative
strengths and weaknesses between different models regarding visualiza-
tion literacy. Finally, although our evaluation and its released materials
may be incorporated into the knowledge bases of future LLMs, we
believe our methodology can provide a lasting roadmap to evaluate
such models for their use in visualization research.

Leveraging LLMs in visualization research. Based on the capabilities
of GPT-4 as observed throughout our evaluation, we have identified a
few potentially fruitful applications of LLMs in visualization research.
As we saw in Section 5, GPT-4 is powerful at answering many types
of questions about charts, especially compositional questions requiring
multiple steps. Given that Kim et al. [32] cite limitations with the
Sempre question answering engine they employed as a bottleneck on
the performance of their system, GPT-4 at a minimum provides a
powerful new backbone for CQA systems. We also found in Section 6
that GPT-4 has basic knowledge of visualization design best practices
and can detect when visualizations fail to adhere to these guidelines.
We believe that once LLMs’ tendency to hallucinate becomes less
frequent, they could be employed in web browser extensions [22],
design tools, or education aids [14] to help different users create and
consume visualizations. Finally, given GPT-4’s ability to generate and
assess visualization titles (Section 7), LLMs can be used to develop
automatic chart captioning and titling systems [46].

10 CONCLUSION

In this paper, we empirically evaluate the visualization literacy of the
GPT-4 multimodal large language model (LLM) on a suite of task sets
based on prior work in the visualization community. The suite includes
a basic visualization literacy assessment test, a chart question answering
task set, a section on assessing deceptively designed visualizations, and
a section on detecting title-chart misalignment. We find that GPT-4 per-
forms well at identifying trends and extreme values, and also has some
knowledge of visualization design best-practices, but struggles with
retrieving values and distinguishing colors, and occasionally suffers
from inconsistency and hallucination. We believe that by showcasing
the current abilities and limitations GPT-4 and releasing our task sets
to provide an assessment mechanism for multimodal LLMs moving
forward, we have paved the way for visualization researchers to utilize
these models in a more confident, informed, and responsible manner.
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SUPPLEMENTAL MATERIALS

Supplemental materials are available online at https://doi.org/
10.17605/OSF.IO/F39J6 and additionally submitted along with this
paper. In particular, they include all code, stimuli, and results for the
main task sets and replication study.
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