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Abstract

Recognizing human object interactions (HOI) is an im-
portant part of distinguishing the rich variety of human ac-
tion in the visual world. While recent progress has been
made in improving HOI recognition in the fully supervised
setting, the space of possible human-object interactions is
large and it is impractical to obtain labeled training data
for all interactions of interest. In this work, we tackle the
challenge of scaling HOI recognition to the long tail of cate-
gories through a zero-shot learning approach. We introduce
a factorized model for HOI detection that disentangles rea-
soning on verbs and objects, and at test-time can therefore
produce detections for novel verb-object pairs. We present
experiments on the recently introduced large-scale HICO-
DET dataset, and show that our model is able to both per-
form comparably to state-of-the-art in fully-supervised HOI
detection, while simultaneously achieving effective zero-
shot detection of new HOI categories.

1. Introduction

Humans are a main focus in the visual world, and as such
a core challenge in computer vision is distinguishing the
rich variety of human actions. Key to this problem is rec-
ognizing human object interactions, since many action cate-
gories are defined by subtle differences between these inter-
actions. For example, “riding a bike” and “walking a bike”
are often distinct categories of interest despite their simi-
lar visual appearance. This has led to recent interest and
work addressing human-object interaction (HOI) recogni-
tion [26, 6, 19, 22, 7, 15, 5, 20, 27, 12], and datasets to sup-
port the task [17, 5, 27, 14]. In particular, the recent “Hu-
mans Interacting with Common Objects” dataset for clas-
sification (HICO) [5] and detection (HICO-DET) [27] rep-
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Figure 1: To scale to all combinations of human-object interac-
tions we use a multi-task approach. Each row shows example de-
tections for the same verb. Each column shows example detections
for the same object.

resents a challenging new HOI benchmark at substantially
larger scale.

When considering the problem of HOI understanding,
an important desideratum is the ability to scale recognition
to the long tail of HOI categories. Given the huge space
of possible human-object interactions, it is impractical to
obtain labeled training data for all interactions of interest.
Recent work in HOI understanding has focused primarily
on improving recognition performance through approaches
such as improved feature representations [6, 19, 5, 20, 27]
or modeling of spatial interaction and context [26, 7, 27].
However, these methods are all fully-supervised and limited
to recognition of classes for which labeled training data is
available.

A promising approach to address the problem of scaling
HOI recognition to the long tail of classes is zero-shot learn-
ing. In zero-shot learning, recognition of previously unseen
classes is accomplished through knowledge learned from



training data of other classes. Approaches for this include
metric learning, attribute recognition, and domain transfer-
based methods [3, 28, 8, 16, 1, 2, 25, 21]. These have been
successfully applied for tasks such as image and scene clas-
sification, and fine-grained bird classification. However,
zero-shot learning has not yet been investigated in the con-
text of human-object interaction recognition, where a struc-
tured relationship exists between humans and objects.

In this work, we address the challenge of scaling human-
object interaction recognition by introducing an approach
for zero-shot learning that reasons on the decomposition of
HOIs as verbs and objects. Specifically, we tackle the prob-
lem of HOI detection, and introduce a factorized model con-
sisting of both shared neural network layers as well as in-
dependent verb and object networks. The entire model is
trained jointly in a multi-task fashion, but produces disen-
tangled verb and object networks that can be used at test
time to recognize novel verb-object pairs based on previ-
ously seen instances of the verb or object. We perform ex-
periments on the HICO-DET dataset, and demonstrate that
our factorized model is able to perform both comparably to
state-of-the-art in fully-supervised HOI detection, as well
as effectively detect novel HOI categories.

2. Related work

Human-Object Interaction. There has been a recent
body of work on modeling human-object interactions (HOI)
in images [26, 6, 19, 22, 7, 15, 5, 20, 27]. Yao et al. [26]
uses a random field model to encode mutual context of hu-
man pose and objects. Delaitre et al. [6] introduces interac-
tion features to model spatial relationships of humans and
objects, while Hu et al. [15] takes an exemplar-based ap-
proach. Maji et al. [19] and Desai et al. [7] learn distributed
representations of human and object in the form of pose-
lets [19] and relational phraselets [7]. More recently, Chao
et al. [5] introduced a new benchmark, “Humans Inter-
acting with Common Objects” (HICO), for HOI recogni-
tion, which was expanded for detection in HICO-DET [27].
This is the first large scale dataset for HOI recognition, with
150K instances of 600 HOI categories. [20] extracts CNN-
based appearance features from human and object detec-
tions to obtain state-of-the-art results on recognition, while
[27] also uses a human and object detector-based approach,
combined with spatial relationship features, for detection.

In contrast to these works, which focus on building
stronger recognition models for fully-supervised HOI pre-
diction, our work addresses the task of zero-shot learning
for HOI. To the best of our knowledge, we are the first to
introduce an approach for this problem, which enables scal-
ing recognition to the long-tail of HOI categories.

Object Detection. Our work focuses on HOI recog-
nition in the detection setting, which allows spatial lo-
calization of multiple HOIs per image. While this has

only recently been explored for HOI [27], a large body
of work has studied detection for objects in images. Re-
cently, [11, 9, 23] use region-based convolutional neural
network approaches to achieve state-of-the-art results in ob-
ject detection. Our approach for HOI detection leverages
the Faster R-CNN network [23] but incorporates it into a
factorized model for joint verb and object detection in im-
ages.

Zero-Shot Learning. A variety of approaches have been
introduced for zero-shot learning [3, 28, 8, 16, 13, 1, 2,
25, 21, 18], including metric learning, attribute recogni-
tion, and domain transfer-based methods. However, none
of these methods address the problem of human-object in-
teraction recognition, which involves multiple interacting
components. Our approach of learning a factorized model
of verbs and objects is most related to attribute-based meth-
ods [1, 16, 2]. Similar to these, we reason on new, unseen
classes based on semantic subcomponents; in contrast, we
model structured relationships between humans and inter-
acting objects.

3. Approach

We study the problem of human-object interaction (HOI)
detection in the zero-shot setting. In HOI detection, the in-
put is an image I, and the output is a set of possibly multiple
detected HOI categories and their spatial regions R;.

An HOI category is defined as an action (verb) and ob-
ject pair, {v;, 0;}. Let us denote the set of possible verbs as
Y and the set of possible objects of interaction as O. Direct
supervised learning to produce verb-object pairs would re-
quire annotations for |V| - |O| categories. However, such an
approach is actually unnecessarily redundant, since many
actions involve the same object of interaction, e.g. washing
or riding a bike, or the same human action, e.g. feeding a
horse or a dog.

Inspired by this observation, we introduce a factorized
model that is parametrized by human action (verb) predic-
tion and object prediction. By disentangling the two compo-
nents of reasoning, we remove the necessity of annotations
for all [V| - |O| categories, and instead enable full pairwise
prediction with annotations for only |V| + |O| categories.
Following, we describe our model architecture and training
in greater detail.

3.1. Model Architecture

Our model architecture (Fig. 2) consists of a common
trunk of visual feature extraction layers, followed by dis-
entangled verb detection and object detection networks. In
this way, we explicitly model and learn representations for
both verbs and objects, which can later be combined in dif-
ferent pairings for zero-shot learning. The full model is
trained end-to-end with a multi-task objective for the verb
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Figure 2: Overview of our model. We propose a multi-task learning framework for detection of human-object interactions (HOIs). By
independently expressing the verb and object learning objectives our model is able to produce novel human-object interaction predictions
at test time. The full joint model is trained end-to-end to produce predicted bounding boxes and scores for all verb and all object classes.
At test time we compute scores for all combinations of verb-object prediction pairs to produce the final HOI prediction where the verb and

object are tightly localized.

and object pathways. Our approach contrasts with previ-
ous deep learning-based approaches for reasoning indepen-
dently on humans and objects [5, 20, 27], where appear-
ance and pose-based features are simply aggregated over
pre-detected human and object regions and input into fur-
ther processing for direct HOI prediction.

The input to our model is an image containing potentially
multiple human-object interactions. The output is spatial
detections of human-object interactions consisting of verb-
object pairs and the respective bounding boxes of both verb
and object. Each input image is first passed through a com-
mon CNN feature extraction trunk consisting of 5 convo-
lution layers and ReL.U layers following the convolutional
structure of VGG-19 architecture [24]. This produces a set
of feature maps { F; }, which are then passed to the disentan-
gled verb prediction network (top stream) and object pre-
diction network (bottom stream). At training time (Fig. 2
(a)), a multi-task objective for verb prediction and object
prediction is used to jointly train the two streams of the
model. At test time (Fig. 2 (b)), the verb and object pre-
diction networks can be used independently for prediction
of both previously seen verb-object pairs (standard super-
vised recognition) as well as new verb-object combination

pairs (zero-shot recognition). Following, we describe the
verb and object prediction networks in more detail.

3.1.1 Verb Network

While region-based appearance features are effective
for many recognition tasks, human actions (verbs) are
often expressed in part through subtle differences in body
position. This subtlety is challenging, but also enables
leveraging structure through reasoning on relationships
between body joints (pose). We therefore base our verb
network (top branch of Fig. 2) on both appearance features
as well as human pose features.

Appearance Feature. We use the Region Proposal Net-
work (RPN) from [23] to determine human locations of
candidate verb region over which to pool appearance fea-
tures. The RPN proposes a collection of possible bounding
boxes {B;} from the full image, and then projects {B;}
onto appearance feature maps {F;} from the common
trunk to extract corresponding Regions of Interests (Rol)
{R(F;,B;)}. A Rol pooling layer pools over the Rols

to produce a feature representation {R(F;, B;)} per Rol.



These are passed through two fully-connected layers to
produce the verb-appearance feature.

Pose Feature. The pose feature is extracted from the
part affinity fields-based pose estimation network of [4],
pooled over the same Rols described above. The net-
work consists of 6 stages, where each stage consists of 7
convolutional layers and 6 ReLU layers. The output of
this network is a set of pose heatmaps {H;}, where each
heatmap is the probability distribution of a human joint’s
location in the image. In total, there are 18 heatmaps for
the set of joints J = {“nose”, “right shoulder”, “right
elbow”, “right wrist”, “left shoulder”, “left elbow”, “left
wrist”, “right hip”, “right knee”, “right ankle”, “left hip”,
“left knee”, “left ankle”, “left eye”, “right eye”, “left

ear”, “right ear”}. These heatmaps are then passed through
two fully-connected layers to produce the verb-pose feature.

__ Finally, the output of the verb network is the joint feature
Rjoint(i,j) = [R(F;, B;), R(H;, B;)], which is a concate-
nation of the verb-appearance and verb-pose features. This

provides a rich description of body movement.

3.1.2 Object Network

For the object network (bottom branch of Fig. 2), we lever-
age the framework of Faster R-CNN [23], which has shown
state-of-the-art performance on object detection tasks. As in
the verb network, we first use a Region Proposal Network
(RPN) to determine candidate object locations, and then use
a Rol layer to pool appearance features over these locations.
In this network, we use only appearance features, and the
object feature is produced through two fully-connected lay-
ers after the Rol layer. This feature is then used for the
object classifier.

3.2. Training

Our full model is trained jointly in an end-to-end fash-
ion using equally weighted multi-task learning objectives.
Our model optimizes six different objectives. Following the
Faster R-CNN model [23], we use a region proposal net-
work (RPN) which is trained to generically produce regions
likely to contain objects. The RPN has two direct loss ob-
jectives during training. First, the objectness loss is a stan-
dard softmax loss over two classes of whether the box con-
tains an object or not. We assign positive labels for all boxes
which overlap with either the ground truth object or verb
boxes by more than 0.7. Second, the Smooth L1 regression
loss for bounding box regression between the anchor box
and the ground truth box.

The verb and object branches of our model are each
trained with two independent objectives, shown in Fig. 2
(a). Independent sigmoid cross-entropy losses for both verb

or object categories, respectively, and a bounding box re-
gression loss. Only bounding boxes positive for the respec-
tive branch (verb or object) are considered for regression
training using the respective verb or object Smooth L1 loss.

We initialize our model using the released COCO-
VGG19 Faster R-CNN weights for the object and verb ap-
pearance networks. We initialize the pose feature network
with the released weights of [4] through to pose heatmaps
and randomly initialize the two additional fully connected
layers. All output layers are randomly initialized.

Our model is trained using stochastic gradient descent
with a fixed learning rate of 0.001 and momentum of 0.9.
Following the protocol introduced in Faster R-CNN [23] we
fix the first two convolutional layers of the trunk network.
Additionally, in our experiments we fix the parameters cor-
responding to the pose heatmap predictions as the HICO-
DET dataset lacks pose annotations. All other parameters
are learned simultaneously through joint fine-tuning.

3.3. Testing

At test time, our model produces zero-shot HOI detec-
tions in the following manner, illustrated in Fig. 2 (b). An
image is passed through the shared network layers, fol-
lowed by the disentangled verb and object networks. Due
to the training procedure, the outputs of these networks now
produce direct prediction probabilities of each of the verb
classes and object classes seen in at least one HOI verb-
object pair during training. These outputs are then linked to
produce a |V| x |O] matrix P of HOI predictions, where |V
is the number of verb classes seen during training and |O|
is the number of object classes seen during training. Each
element P; ; of P represents the linking of verb detection ¢
with object detection j, and HOI score P; ; is the average
of the verb detection score and object detection score.

To obtain the final HOI predictions for an image, we
keep only verb-object pairs that have spatially close rela-
tion. Specifically, we keep pairs where the verb and object
detections overlap on at least one axis. In this way, we are
able to learn and then re-purpose our verb and object detec-
tion networks to detect up to |V| x |O] HOI classes, despite
requiring training data for only |V| + |O] classes at mini-
mum.

4. Experiments

This section presents experiments on using our model for
zero-shot detection of human-object interactions, based on
the “Humans Interacting with Common Objects Detection”
(HICO-DET) dataset [27]. We train our model using a sub-
set of HOI classes, and evaluate on the remaining subset.
HICO-DET is the first large-scale HOI dataset that enables
the study of zero-shot HOI detection.

Following, we first describe the HICO-DET dataset. We
then present experiments for our model on fully supervised



HOI detection, and show comparable performance on this
task with state-of-the-art approaches designed for the set-
ting. Finally, we present quantitative and qualitative results
demonstrating the effectiveness of our method for zero-shot
detection.

4.1. HICO-DET Dataset

The “Humans Interacting with Common Objects”
(HICO) dataset [5] is a recently introduced dataset for
human-object interaction (HOI) that is the first large-scale
benchmark for this task. The HICO-DET dataset [27] is an
extension to HICO containing spatial annotations of the hu-
mans and objects that comprise each HOI, enabling work
on detection of possibly multiple HOIs in an image.

HICO-DET contains a total of 47,774 images with an-
notations of 600 HOI categories. HOI categories (e.g.
“ride-bike”, “walk-bike”, “ride-horse”) span 117 action cat-
egories (e.g. “ride”, “walk”) and 80 objects (e.g. “bike”,
“horse”). These describe diverse interactions per object cat-
egory, with an average of 6.5 action categories associated
with each object. Each image can contain possibly multiple
HOI annotations, with 150K annotations total. 38116 im-
ages (80%) are used for training, and 9958 images (20%)
are used for testing.

We note that HICO-DET detections are incomplete;
since it is extremely label intensive to label instances of
600 HOI categories, annotations are grouped into four
types: “verified positives”, “verified negatives”, “ambigu-
ous/uncertain”, and “unknown”, depending on whether an
HOI class is verified to be in the image, not in the image,
annotated with disagreement, or unknown. This highlights
the challenge of scaling HOI recognition and the benefits of
zero-shot learning.

4.2. Analysis under Fully-Supervised Setting

All prior work on HOI detection has targeted the fully-
supervised setting. While our model is designed for the
zero-shot setting, it can also be evaluated on fully super-
vised HOI detection. To do this, we use the same verb-
object linking procedure as in our zero-shot process to pro-
duce detections of training classes. We therefore first ana-
lyze results of our model under this setting to compare the
representation ability of our model and its components.

Overall Detection AP. Table 1 shows fully-supervised
detection mAP of our model compared to previous work.
Results are separated into mAP computed using all cate-
gories (“full”), rare categories with less than 10 training
images (“rare”), and non-rare categories with more than 10
training images (‘“non-rare”). We observe that overall, and
across all types of categories, our approach outperforms or
performs comparably with methods trained specifically for
fully-supervised detection. In particular, we outperform the
HO method [27], which detects humans and objects using a
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Figure 3: Sorted per-class detection AP in the fully-supervised
setting. Since certain objects or verbs are more prevalent even
across distinct HOI classes, we observe that per-class performance
also follows a long-tail distribution.

pre-trained R-CNN detector, pools local features over these
regions, and trains a binary classifier for each HOI class.
The only models ours does not outperform are the
HO+IPI - based models. These models augment the stan-
dard R-CNN architecture by inputting maps of computed
spatial interaction into the 600-way classification network.
This design of spatial modeling is orthogonal but comple-
mentary to work on zero-shot recognition and could be
combined in future work; however, we note that even with-
out this our model is able to perform comparably.
Ablation Studies. We analyze the effect of various com-
ponents of our model on detection performance. In partic-
ular, Table 1 shows detection results of our model without
pose component of the verb network, or without multi-task
training of the whole network. Our full model outperforms
the model without pose features, highlighting the value of
reasoning on structured pose information for distinguish-
ing subtle differences in how humans interact with objects.
Additionally, based on the model without multi-task perfor-
mance, multi-task training turns out to be critically impor-
tant to the overall performance of our method. This indi-
cates that information shared between the verb and object
models improves individual prediction performance.
Per-Class AP. We visualize the per HOI class average
precision performance in Fig. 3. Instance annotations are
available in a long tailed distribution. Since certain ob-
jects or verbs are more prevalent even across distinct HOI
classes, we observe that our per-class performance also fol-
lows a long-tail distribution. The 5 top performing classes
are “hose elephant”, “jump horse”, “inspect fire hydrant”,
“stand under stop sign”, and “milk cow”. These follow in-
tuition that classes with distinctive objects and human poses
are easiest to recognize. On the other hand, some of the
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lowest-performing classes are “cook carrot”, “control tv”,
99 [0

“wash sheep”, “tag person”, and “wash fork”, which again
make sense given the subtle interactions and small objects



Method ‘ Full Rare Non-Rare
Random 1.35 x 1073 572 x107* 1.62 x 1073
Fast-RCNN [10] (union) 1.75 0.58 2.10
Fast-RCNN [10] (score) 2.85 1.55 3.23
HO [27] 5.73 3.21 6.48
Ours - w/o multi-task training 3.38 3.19 3.44
Ours - w/o pose 5.62 4.37 6.00
Ours 6.46 4.24 7.12
HO+IPI (conv) [27] 7.30 4.68 8.08
HO+IPI (conv)+S [27] 7.81 5.37 8.54

Table 1: Comparison of HOI prediction mAP(%) across 600 HOI classes in HICO-DET dataset. Our method outperforms prior models
when comparing base architecture performance. The full HO+IPI [27] model incorporating additional logic to combine objects and verbs

into HOI predictions is orthogonal to the base model.
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Figure 4: Example detections from our full jointly trained model in the fully-supervised setting. In the first two rows we show diverse
examples for a shared object class (fop row) or a shared verb class (second row). In the bottom two rows we present randomly sampled
examples both where our model predicts the correct verb-object pair (third row) and incorrect verb-object pair (bottom row).

involved.

Qualitative Results. In Fig. 4 we present qualitative re-
sults of our model for the fully-supervised training setting.
In the first two rows we show diverse examples for a shared
object class (fop row) or a shared verb class (second row). In
the bottom two rows we present randomly sampled exam-
ples both where our model predicts the correct verb-object
pair (third row) and incorrectly predicts the verb-object pair
(bottom row). We find that our false positive detections tend

to be fairly reasonable. For example the detection in the bot-
tom right corner reports the verb “hold” which is incorrect
since the bird has technically taken flight. However, we can
understand why the model would predict this verb since the
man was likely just previously holding the bird and is still
holding his arms in a pose indicative of the “hold” verb.
Similarly the person in the bottom second from the left is
jumping with an outstretched arm so a prediction of “hit” is
a reasonable mistake.
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Figure 5: Sorted per-class detection AP in the zero-shot setting.
The distribution is similar to the fully-supervised setting and per-
formance is close overall.

4.3. Zero-Shot Recognition

In this section, we present results of our model for the
zero-shot recognition task. For this task, we split the 600
HOI categories in HICO-DET into 480 that we use for train-
ing, and 120 for testing. We randomly choose 120 cate-
gories, ensuring only that every verb or object within the
120 categories shows up at least once in the training cate-
gories. We train on the subset of HICO-DET training im-
ages which contains the 480 training classes in our experi-
ment. We evaluate on the HICO-DET test images, comput-
ing AP and mAP for the subset of 120 zero-shot classes not
seen during training.

Quantitative Analysis. Fig. 5 shows per-class AP of
our model on the 120 zero-shot classes. The overall mAP is
5.62. This is only slightly lower than the mAP for the fully-
supervised setting, indicating that our model has learned ro-
bust representations of decomposed verb and object that it
can effectively re-purpose to detect novel verb-object pairs.
From Fig. 5, we also observe that the highest-performing
classes achieve around 0.35 AP, and the distribution has
a similar shape to the fully-supervised setting, with just a
slight decrease in performance overall. If we evaluate our
model on the full set of test classes (including the 480 train-
ing classes as well as the 120 zero-shot classes), we achieve
a mAP of 6.26. This is only slightly lower than the 6.46
mAP of our fully-supervised model, showing that zero-shot
learning only slightly reduced performance and the predic-
tion ability is similar to if we had full annotations for all
classes.

Looking at individual class performance of the zero-shot
model, the top performing classes are “wash train”, “eat
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orange”, “wash knife”, “ride horse”, and “kiss elephant”,
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while the worst-performing classes are “hug suitcase”, “in-
spect sports ball”, “wash cat”, “inspect dog”, and “lick per-
son”. Many of these again follow intuition: obvious objects

and verbs such as train and horse, and riding and washing,
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Figure 6: Our zero-shot learning algorithm discovers novel verb-
object pairs at test time. These pairs are absent from the anno-
tated set available within the HICO-DET dataset. We present here
a handful of manually verified examples. For example, we previ-
ously learned the verb “herd” and to recognize elephants. Together
we are able to recognize the novel pairing of herding elephants.

are easier than subtle or rare classes such as inspecting a
dog or licking a person. However it is also interesting to
note that the zero-shot model actually performs better on
some rarer classes such as eating an orange or washing a
knife, since it does not overfit to the few labeled examples
present at training-time and instead uses only the more ro-
bust learned representations of the component verb and ob-
ject.

Qualitative Analysis. Fig. 7 shows qualitative exam-
ples of zero-shot detections from our model. We can see
that the model has learned to compose novel combinations
of objects and verbs as a result of our multi-task learning ar-
chitecture. For example, the model has learned the concept
of a hug from training examples and can apply this to detect
hugs of other known entities such as sheep and dog (“hug
sheep” and “hug dog” in the right-most images of the first
and second rows of Fig. 7. Other examples show that the
model has also learned the concepts of holding something,
washing something and watching something, and can trans-
fer this to known objects such as skateboards, surfboards,
airplanes, and cows.

Most impressively, our model even discovers new verb-
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Figure 7: Qualitative results for zero shot learning experiments. The above HOI categories are unseen in training data. Our model is
capable of composing novel combinations of verbs and objects as a result of our multi-task learning architecture. The model is able to learn
the concepts of verbs such as hugging, holding, feeding, watching and sitting on, and transfers them to known objects and entities such as

sheep, dogs, skateboards, boats, and airplanes.

object pairs which are absent from the HICO-DET labeled
set as shown in Fig. 6, demonstrating example detections of
new HOI categories beyond the entire labeled set. For ex-
ample, we detect results of “watch horse”, “herd elephant”
and “aalk surfboard”, respectively, while these classes are
never annotated or included in the 600 HOI categories com-
prising the HICO-DET dataset. These examples highlight
our model’s potential for scalable human-object interaction
recognition. More qualitative results for zero-shot detec-
tions are shown in the supplementary material.

5. Conclusion

In this work, we introduce a zero-shot learning approach
towards scaling human-object interaction recognition to the
long tail of categories. We present a model that factor-
izes HOI detection into disentangled verb and object net-

works with a shared early trunk, and train the model us-
ing a multi-task objective. We demonstrate that this model
is able to both perform comparably to the state-of-the-art
in fully-supervised HOI detection, while simultaneously
achieving effective zero-shot detection of previously unseen
verb-object pairs.

Future work includes extending the zero-shot learning
approach to be able to more explicitly leverage stronger in-
formation on the structured spatial relationships in HOI, as
well as to model temporal relationships in video data. Fi-
nally, we hope to extend this compositional framework be-
yond simple verb-object pairs to richer phrase and sentence
queries.
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