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Abstract. Recent years have seen tremendous progress in still-image segmenta-
tion; however the naı̈ve application of these state-of-the-art algorithms to every
video frame requires considerable computation and ignores the temporal conti-
nuity inherent in video. We propose a video recognition framework that relies on
two key observations: 1) while pixels may change rapidly from frame to frame,
the semantic content of a scene evolves more slowly, and 2) execution can be
viewed as an aspect of architecture, yielding purpose-fit computation schedules
for networks. We define a novel family of “clockwork” convnets driven by fixed
or adaptive clock signals that schedule the processing of different layers at dif-
ferent update rates according to their semantic stability. We design a pipeline
schedule to reduce latency for real-time recognition and a fixed-rate schedule to
reduce overall computation. Finally, we extend clockwork scheduling to adaptive
video processing by incorporating data-driven clocks that can be tuned on unla-
beled video. The accuracy and efficiency of clockwork convnets are evaluated on
the Youtube-Objects, NYUD, and Cityscapes video datasets.

1 Introduction

Semantic segmentation is a central visual recognition task. End-to-end convolutional
network approaches have made progress on the accuracy and execution time of still-
image semantic segmentation, but video semantic segmentation has received less at-
tention. Potential applications include UAV navigation, autonomous driving, archival
footage recognition, and wearable computing. The computational demands of video
processing are a challenge to the simple application of image methods on every frame,
while the temporal continuity of video offers an opportunity to reduce this computation.

Fully convolutional networks (FCNs) [1–3] have been shown to obtain remarkable
results, but the execution time of repeated per-frame processing limits application to
video. Adapting these networks to make use of the temporal continuity of video re-
duces inference computation while suffering minimal loss in recognition accuracy. The
temporal rate of change of features, or feature “velocity”, across frames varies from
layer to layer. In particular, deeper layers in the feature hierarchy change more slowly
than shallower layers over video sequences. We propose that network execution can be
viewed as an aspect of architecture and define the “clockwork” FCN (c.f. clockwork
recurrent networks [4]). Combining these two insights, we group the layers of the net-
work into stages, and set separate update rates for these levels of representation. The
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Fig. 1: Our adaptive clockwork method illustrated with the famous The Horse in Motion [9],
captured by Eadweard Muybridge in 1878 at the Palo Alto racetrack. The clock controls network
execution: past the first stage, computation is scheduled only at the time points indicated by the
clock symbol. During static scenes cached representations persist, while during dynamic scenes
new computations are scheduled and output is combined with cached representations.

execution of a stage on a given frame is determined by either a fixed clock rate (“fixed-
rate”) or data-driven (“adaptive”). The prediction for the current frame is then the fusion
(via the skip layer architecture of the FCN) of these computations on multiple frames,
thus exploiting the lower resolution and slower rate-of-change of deeper layers to share
information across frames.

We demonstrate the efficacy of the architecture for both fixed and adaptive sched-
ules. We show results on multiple datasets for a pipelining schedule designed to re-
duce latency for real-time recognition as well as a fixed-rate schedule designed to re-
duce computation and hence time and power. Next we learn the clock-rate adaptively
from the data, and demonstrate computational savings when little motion occurs in the
video without sacrificing recognition accuracy during dynamic scenes. We verify our
approach on synthetic frame sequences made from PASCAL VOC [5] and evaluate on
videos from the NYUDv2 [6], YouTube-Objects [7], and Cityscapes [8] datasets.

2 Related Work

We extend fully convolutional networks for image semantic segmentation to video se-
mantic segmentation. Convnets have been applied to video to learn spatiotemporal rep-
resentations for classification and detection but rarely for dense pixelwise, frame-by-
frame inference. Practicality requires network acceleration, but generic techniques do
not exploit the structure of video. There is a large body of work on video segmentation,
but the focus has not been on semantic segmentation, nor are methods computationally
feasible beyond short video shots.

Fully Convolutional Networks A fully convolutional network (FCN) is a model
designed for pixelwise prediction [1]. Every layer in an FCN computes a local op-
eration, such as convolution or pooling, on relative spatial coordinates. This locality
makes the network capable of handling inputs of any size while producing output of
corresponding dimensions. Efficiency is preserved by computing single, dense forward
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inference and backward learning passes. Current classification architectures – AlexNet
[10], GoogLeNet [11], and VGG [12] – can be cast into corresponding fully convolu-
tional forms. These networks are learned end-to-end, are fast at inference and learn-
ing time, and can be generalized with respect to different image-to-image tasks. FCNs
yield state-of-the-art results for semantic segmentation [1], boundary prediction [13],
and monocular depth estimation [2]. While these tasks process each image in isolation,
FCNs extend to video. As more and more visual data is captured as video, the baseline
efficiency of fully convolutional computation will not suffice.

Video Networks and Frame Selection Time can be incorporated into a network
by spatiotemporal filtering or recurrence. Spatiotemporal filtering, i.e. 3D convolution,
can capture motion for activity recognition [14, 15]. For video classification, networks
can integrate over time by early, late, or slow fusion of frame features [15]. Recurrence
can capture long-term dynamics and propagate state across time, as in the popular long
short-term memory (LSTM) [16]. Joint convolutional-recurrent networks filter within
frames and recur across frames: the long-term recurrent convolutional network [17]
fuses frame features by LSTM for activity recognition and captioning. Frame selec-
tion reduces computation by focusing computational resources on important frames
identified by the model: space-time interest points [18] are video keypoints engineered
for sparsity, and a whole frame selection and recognition policy can be learned end-
to-end for activity detection [19]. These video recognition approaches do not address
frame-by-frame, pixelwise output. For optical flow, an intrinsically temporal task, a
cross-frame FCN is state-of-the-art among fast methods [3].

Network Acceleration Although FCNs are fast, video demands computation that
is faster still, particularly for real-time inference. The spatially dense operation of the
FCN amortizes the computation of overlapping receptive fields common to contem-
porary architectures. However, the standard FCN does nothing to temporally amortize
the computation of sequential inputs. Computational concerns can drive architectural
choices. For instance, GoogLeNet requires less computation and memory than VGG,
although its segmentation accuracy is worse [1]. Careful but time-consuming model
search can improve networks within a fixed computational budget [20]. Methods to re-
duce computation and memory include reduced precision by weight quantization [21],
low-rank approximations with clustering, [22], low-rank approximations with end-to-
end tuning [23], and kernel approximation methods like the fast food transformation
[24]. None of these generic acceleration techniques harness the frame-to-frame struc-
ture of video. The proposed clockwork speed-up is orthogonal and compounds any
reductions in absolute inference time. Our clockwork insight holds for all layered ar-
chitectures whatever the speed/quality operating point chosen.

Semantic Segmentation Much work has been done to address the problem of seg-
mentation in video. However, the focus has not been on semantic segmentation. In-
stead research has addressed spatio-temporal “supervoxels” [25, 26], unsupervised and
motion-driven object segmentation [27–29], or weakly supervising the segmentation
of tagged videos [30–32]. These methods are not suitable for real-time or the com-
plex multi-class, multi-object scenes encountered in semantic segmentation settings.
Fast Object Segmentation in Unconstrained Videos [28] infers only figure-ground seg-
mentation at 0.5s/frame with offline computed optical flow and superpixels. Although
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its proposals have high recall, even when perfectly parallelized [29] this method takes
> 15s/frame and a separate recognition step is needed for semantic segmentation. In
contrast the standard FCN computes a full semantic segmentation in 0.1s/frame.

3 Fast Frames and Slow Semantics

Our approach is inspired by observing the time course of learned, hierarchical fea-
tures over video sequences. Drawing on the local-to-global idea of skip connections for
fusing global, deep layers with local, shallow layers, we reason that the semantic repre-
sentation of deep layers is relevant across frames whereas the shallow layers vary with
more local, volatile details. Persisting these features over time can be seen as a temporal
skip connection.

Measuring the relative difference of features across frames confirms the temporal
coherence of deeper layers. Consider a given score layer (a linear predictor of pixel class
from features), `, with outputs S` ∈ [K×H×W ], whereK is the number of categories
and H , W is the output dimensions for layer `. We can compute the difference at time
t with a score map distance function dsm, chosen to be the hamming distance of one hot
encodings.

dsm(S
t
`, S

t−1
` ) = dhamming(φ(S

t
`), φ(S

t−1
` ))

Table 1 reports the average of these temporal differences for the score layers, as
computed over all videos in the YouTube-Objects dataset [7]. It is perhaps unsurprising
that the deepest score layer changes an order of magnitude less than the shallower layers
on average. We therefore hypothesize that caching deeper layer scores from past frames
can inform the inference of the current frame with relatively little reduction in accuracy.

The slower rate of change of deep layers can be attributed to architectural and
learned invariances. More pooling affords more robustness to translation and noise, and
learned features may be tuned to the supervised classes instead of general appearance.

score layer temporal difference depth semantic accuracy

pixels .26 ± .18 0 -
pool3 .11 ± .06 9 9.6%
pool4 .11 ± .06 13 20.7%
fc7 .02 ± .02 19 65.5%

Table 1: The average temporal difference over all YouTube-Objects videos of the respective pix-
elwise class score outputs from a spectrum of network layers. The deeper layers are more stable
across frames – that is, we observe supervised convnet features to be “slow” features [33]. The
temporal difference is measured as the proportion of label changes in the output. The layer depth
counts the distance from the input in the number of parametric and non-linear layers. Semantic
accuracy is the intersection-over-union metric on PASCAL VOC of our frame processing network
fine-tuned for separate output predictions (Section 5).
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Fig. 2: The proportional difference between adjacent frames of semantic predictions from a mid-
level layer (pool4, green) and the deepest layer (fc7, blue) are shown for the first 75 frames of
two videos. We see that for a video with lots of motion (left) the difference values are large while
for a relatively static video (right) the difference values are small. In both cases, the differences
of the deeper fc7 are smaller than the differences of the shallower pool4. The “velocity” of
deep features is slow relative to shallow features and most of all the input. At the same time, the
differences between shallow and deep layers are dependent since the features are compositional;
this motivates our adaptive clock updates in Section 4.3

While deeper layers are more stable than shallower layers, for videos with enough
motion the score maps throughout the network may change substantially. For example,
in Figure 2 we show the differences for the first 75 frames of a video with large motion
(left) and with small motion (right). We would like our network to adaptively update
only when the deepest, most semantic layer (fc7) score map is likely to change. We
notice that though the intermediate layer (pool4) difference is always larger than the
deepest layer difference for any given frame, the pool4 differences are much larger
for the video with large motion than for the video with relatively small motion. This
observation forms the motivation for using the intermediate differences as an indicator
to determine the firing of an adaptive clock.

4 A Clockwork Network

We adapt the fully convolutional network (FCN) approach for image-to-image mapping
[1] to video frame processing. While it is straightforward to perform inference with a
still-image segmentation network on every video frame, this naı̈ve computation is inef-
ficient. Furthermore, disregarding the sequential nature of the input not only sacrifices
efficiency but discards potential temporal recognition cues. The temporal coherence of
video suggests the persistence of visual features from prior frames to inform inference
on the current frame. To this end we define the clockwork FCN, inspired by the clock-
work recurrent network [4], to carry temporal information across frames. A generalized
notion of clockwork relates both of these networks.

We consider both throughput and latency in the execution of deep networks across
video sequences. The inference time of the regular FCN-8s at ∼ 100ms per frame of
size 500×500 on a standard GPU can be too slow for video. We first define fixed clocks
then extend to adaptive and potentially learned clockwork to drive network processing.
Whatever the task, any video network can be accelerated by our clockwork technique.
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Fig. 3: The clockwork FCN with its stages and corresponding clocks.

A schematic of our clockwork FCN is shown in Figure 3.
There are several choice points in defining a clockwork architecture. We define a

novel, generalized clockwork framework, which can purposely schedule deeper lay-
ers more slowly than shallower layers. We form our modules by grouping the layers
of a convnet to span the feature hierarchy. Our networks persists both state and out-
put across time steps. The clockwork recurrent network of [4], designed for long-term
dependency modeling of time series, is an instance of our more general scheme for
clockwork computation. The differences in architecture and outputs over time between
clockwork recurrence and our clockwork are shown in Figure 4.

While different, these nets can be expressed by generalized clockwork equations

y
(t)
H = fT

(
C

(t)
H � fH(y

(t−1)
H ) + C

(t)
I � fI(x

(t))
)

(1)

y
(t)
O = fO

(
C

(t)
O � fH(y

(t)
H )
)

(2)

with the state update defined by Equation 1 and the output defined by Equation 2. The
data x(t), hidden state y(t)H output y(t)O vary with time t. The functions fI , fH , fO, fT
define input, hidden state, output, and transition operations respectively and are fixed
across time. The input, hidden, and output clocks C(t)

I , C
(t)
H , C

(t)
O modulate network

operations by the elementwise product � with the corresponding function evaluations.
We recover the standard recurrent network (SRN), clockwork recurrent network (clock
RN), and our network (clock FCN) in this family of equations. The settings of functions
and clocks are collected in Table 2.

Inspired by the clockwork RN, we investigate persisting features and scheduling
layers to process video with a semantic segmentation convnet. Recalling the lessened
semantic rate of deeper layers observed in Section 3, the skip layers in FCNs originally
included to preserve resolution by fusing outputs are repurposed for this staged compu-
tation. We cache features and outputs over time at each step to harness the continuity of
video. In contrast, the clockwork RN persists state but output is only made according to
the clock, and each clockwork RN module is connected to itself and all slower modules
across time whereas a module in our network is only connected to itself across time.
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network fI fH fO fT CI CH CO

SRN WI WH TanH TanH 1 1 1

clock RN WI WH TanH TanH C C C

clock FCN ◦ I ReLU I C C 1

Table 2: The standard recurrent network (SRN), clockwork recurrent network (clock RN), and
our network (clock FCN) in generalized clockwork form. The recurrent networks have learned
hidden weights WH and non-linear transition functions fT , while clock FCN persists state by
the identity I . Both recurrent modules are flat with linear input weights WI , while clock FCN
modules have hierarchical features by layer composition ◦. The SRN has trivial constant, all-ones
1 clocks. The clock RN has a shared input, hidden, and output clock with exponential rates. Our
clock FCN has alternating input and hidden clocks C,C to compute or cache and has a constant,
all-ones 1 output clock to fuse output on every frame.

4.1 Execution as Architecture

Clockwork architectures partition a network into modules or stages that are executed
according to different schedules. In the standard view, the execution of an architecture is
an all-or-nothing operation that follows from the definition of the network. Relaxing the
strict identification of architecture and execution instead opens up a range of potential
schedules. These schedules can be encompassed by the introduction of one first-class
architectural element: the clock.

A clock defines a dynamic cut in the computation graph of a network. As clocks
mask state in the representation, as detailed in Equations 1 and 2, clocks likewise mask
execution in the computation. When a clock is on, its edges are intact and execution
traverses to the next nodes/modules. When a clock is off, its edges are cut and execution
is blocked. Alternatives such as computing the next stage or caching a past stage can be
scheduled by a paired clock C and counter-clock C with complementary sets of edges.
Any layer (or composition of layers) with binary output can serve as a clock. As a layer,
a clock can be fixed or learned. For instance, the following are simple clocks of the form
f(x, t) for features x and time t:

– 1 to always execute
– t ≡ 0 (mod 2) to execute every other time
– ‖xt − xt−1‖ > θ to execute for a difference threshold

4.2 Networks in Time

Having incorporated scheduling into the network with clocks, we can optimize the
schedule for various tasks by altering the clocks.

Pipelining To reduce latency for real-time recognition we pipeline the computation
of sequential frames analogously to instruction pipelining in processors. We instantiate
a three-stage pipeline, in which stage 1 reflects frame i, stage 2 frame i− 1, and stage 3
frame i− 2. The total time to process the frame is the time of the longest stage, stage 1
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Fig. 4: A comparison of the layer connectivity and time course of outputs in the clockwork recur-
rent network [4] and in our clockwork FCN. Module color marks the time step of evaluation, and
blank modules are disconnected from the network output. The clock RN is flat with respect to
the input while our network has a hierarchical feature representation. Each clock RN module is
temporally connected to itself and slower modules while in our network each module is only tem-
porally connected to itself. Features persist over time in both architectures, but in our architecture
they contribute to the network output at each step.

in our pipeline, plus the time for interpolating and fusing outputs. Our 3-stage pipeline
FCN reduces latency by 59%. A 2-stage variation further balances latency and accuracy.

Fixed-Rate To reduce overall computation we limit the execution rates of stages
and persist features across frames for skipped stages. Given the learned invariance and
slow semantics of deep layers observed in Section 3, the deeper layers can be executed
at a lower rate to save computation while other stages update. These clock rates are
free parameters in the schedule for exchanging inference speed and accuracy. We again
divide the network into three stages, and compare rates for the stages. The exponential
clockwork schedule is the natural choice of halving the rate at each stage for more
efficiency. The alternating clockwork schedule consolidates the earlier stages to execute
these on every frame and executes the last stage on every other frame for more accuracy.
These different sets of rates cover part of the accuracy/efficiency spectrum.

The current stages are divided into the original score paths of the FCN-8s archi-
tecture, but they need not be. One could prioritize latency, spatial refinement, or certain
output classes by rebalancing the computation. It is possible to partially compute a span
of layers and defer their full execution to a following stage; this can be accomplished
by sparse evaluation through dynamic striding and dilation [34]. In principle the stage
progression can be decided online in lieu of fixing a schedule for all inference. We turn
to adaptive clockwork for deciding execution.

4.3 Adaptive Clockwork

All of the clocks considered thus far have been fixed functions of time but not the data.
Setting these clocks gives rise to many schedules that can be tuned to a given task
or video, but this introduces a tedious dimension of model search. Much of the video
captured in the wild is static and dynamic in turn with a variable amount of motion and
semantic progression at any given time. Choosing many stages or a slow clock rate may
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reduce computation, but will likewise result in a steep decline in accuracy for dynamic
scenes. Conversely, faster update rates or fewer stages may capture transitory details
but will needlessly compute and re-compute stable scenes. Adaptive clocks fire based
on the input and network state, resulting in a responsive schedule that varies with the
dynamism of the scene. The clock can fire according to any function of the input and
network state. A difference clock can fire on the temporal difference of a feature across
frames. A confidence clock can fire on peaks in the score map for a single frame. This
approach extends inference from a pre-determined architecture to a set of architectures
to choose from for each frame, relying on the full FCN for high accuracy in dynamic
scenes while taking advantage of cached representations in more static scenes.

threshold clock ‖xt − xt−1‖ > θ learned clock fθ(xt, xt−1)

The simplest adaptive clock is a threshold, but adaptive clocks could likewise be learned
(for example as a temporal convolution across frames). The threshold can be optimized
for a specific tradeoff along the accuracy/efficiency curve. Given the hierarchical depen-
dencies of layers and the relative stability of deep features observed in Section 3, we
threshold differences at a shallower stage for adaptive scheduling of deeper stages. The
sensitivity of the adaptive clock can even be set on unannotated video by thresholding
the proportional temporal difference of output labels as in Table 1. Refer to Section 5.3
for the results of threshold-adaptive clockwork with regard to clock rate and accuracy.

5 Results

Our base network is FCN-8s, the fully convolutional network of [1]. The architecture is
adapted from the VGG16 architecture [12] and fine-tuned from ILSVRC pre-training.
The net is trained with batch size one, high momentum, and all skip layers at once.

In our experiments we report two common metrics for semantic segmentation that
measure the region intersection over union (IU):

– mean IU: (1/ncl)
∑
i nii/

(
ti +

∑
j nji − nii

)
– frequency weighted IU: (

∑
k tk)

−1∑
i tinii/

(
ti +

∑
j nji − nii

)
for nij the number of pixels of class i predicted to belong to class j, where there are ncl
different classes, and for ti =

∑
j nij the total number of pixels of class i.

We evaluate our clockwork FCN on four video semantic segmentation datasets.
Synthetic sequences of translated scenes We first validate our method by evaluat-

ing on synthetic videos of moving crops of PASCAL VOC images [5] in order to score
on a ground truth annotation at every frame. For source data, we select the 736 image
subset of the PASCAL VOC 2011 segmentation validation set used for FCN-8s valida-
tion in [1]. Video frames are generated by sliding a crop window across the image by
a predetermined number of pixels, and generated translations are vertical or horizontal
according to the portrait or landscape aspect of the chosen image. Each synthetic video
is six frames long. For each seed image, a “fast” and “slow” video is made with 32 pixel
and 16 pixel frame-to-frame displacements respectively.
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NYU-RGB clips The NYUDv2 dataset [6] collects short RGB-D clips and in-
cludes a segmentation benchmark with high-quality but temporally sparse pixel an-
notations (every tenth video frame is labeled). We run on video from the “raw” clips
subsampled 10X and evaluate on every labeled frame. We consider RGB input alone as
the depth frames of the full clips are noisy and uncurated. Our pipelined and fixed-rate
clockwork FCNs are run on the entire clips and accuracy is reported for those frames
included in the segmentation test set.

Youtube-Objects The Youtube-Objects dataset [7] provides videos collected from
Youtube that contain objects from ten PASCAL classes. We restrict our attention to
a subset of the videos that have pixelwise annotations by [35] as the original annota-
tions include only initial frame bounding boxes. This subset was drawn from all object
classes, and contains 10,167 frames from 126 shots, for which every 10th frame is
human-annotated. We run on only annotated frames, effectively 10X subsampling the
video. We directly apply our networks derived from PASCAL VOC supervision and do
not fine-tune to the video annotations.

Cityscapes The Cityscapes dataset [8] collects frames from video recorded at 17hz
by a car-mounted camera while driving through German cities. While annotations are
temporally sparse, the preceding and following input frames are provided. Our network
is learned on the train split and then all schedules are evaluated on val.

5.1 Pipelining

16 pixel shift Time (% of full) Mean IU fwIU Mean IU-bdry fwIU-bdry

3-Stage Baseline 59% 9.2 52.6 6.1 9.4
3-Stage Pipeline 59% 56.0 76.5 44.6 42.9
2-Stage Baseline 77% 22.5 64.7 16.6 21.9
2-Stage Pipeline 77% 63.3 81.7 52.3 51.0

Frame Oracle 100% 65.9 83.6 57.0 56.3

32 pixel shift Time (% of full) Mean IU fwIU Mean IU-bdry fwIU-bdry

3-Stage Baseline 59% 9.2 52.6 6.0 9.4
3-Stage Pipeline 59% 45.5 67.4 37.7 36.0
2-Stage Baseline 77% 22.4 62.8 16.2 21.7
2-Stage Pipeline 77% 57.8 76.6 46.6 45.1

Frame Oracle 100% 65.6 82.6 55.8 55.3

Table 3: Pipelined segmentation of translated PASCAL sequences. Synthesized video of trans-
lating PASCAL scenes allows for assessment of the pipeline at every frame. The pipelined FCN
segments with higher accuracy in the same time envelope as the every-other-frame evaluation of
the full FCN. Metrics are computed on the standard masks and a 10-pixel band at boundaries.

Pipelined execution schedules reduce latency by producing an output each time the
first stage is computed. Later stages are persisted from previous frames and their outputs
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are fused with the output of the first stage computed on the current frame. The number
of stages is determined by the number of clocks. We consider a full 3-stage pipeline
and a condensed 2-stage pipeline where the stages are defined by the modules in Figure
3. In the pipelined schedule, all clock rates are set to 1, but clocks fire simultaneously
to update every stage in parallel. This is made possible by asynchrony in stage state, so
that a later stage is independent of the current frame but not past frames.

To assess our pipelined accuracy and speed, we compare to reference methods that
bound both recognition and time. A frame oracle evaluates the full FCN on every frame
to give the best achievable accuracy for the network independent of timing. As latency
baselines for our pipelines, we truncate the FCN to end at the given stage. Both of our
staged, pipelined schedules execute at lower latency than the oracle with better accuracy
for fixed latency than the baselines. We verify these results on synthetic PASCAL se-
quences as reported in Table 3. Results on PASCAL, NYUD, and YouTube are reported
in Table 4.

Our pipeline scheduled networks reduce latency with minimal accuracy loss relative
to the standard FCN run on each frame without time restriction. These quantitative
results demonstrate that the deeper layer representations from previous frames contain
useful information that can be effectively combined with low-level predictions for the
current frame.

NYUD Youtube Pascal Shift 16

Schedule Time (% of full) Mean IU fwIU Mean IU fwIU Mean IU fwIU

3-Stage Baseline 59% 8.1 22.2 12.2 74.2 9.2 54.7
3-Stage Pipeline 59% 25.1 38.0 58.1 87.0 56.0 76.5
2-Stage Baseline 77% 16.5 32.1 21.5 7.8 22.5 64.7
2-Stage Pipeline 77% 26.4 39.5 64.0 89.2 63.3 81.7

Frame Oracle 100% 31.1 45.5 70.0 91.5 65.9 83.6

Table 4: Pipelined execution of semantic segmentation on three different datasets. Inference ap-
proaches include pipelines of different lengths and a full FCN frame oracle. We also show base-
lines with comparable latency to the pipeline architectures. Our pipelined network offers the best
accuracy of computationally comparable approaches running near frame rate. The loss in accu-
racy relative to the frame oracle is less than the relative speed-up.

We show a qualitative result for our pipelined FCN on a sequence from the YouTube-
Objects dataset [7]. Figure 5 shows one example where our pipeline FCN is particularly
useful. Our network quickly detects the occlusion of the car while the baseline lags and
does not immediately recognize the occlusion or reappearance.

5.2 Fixed-Rate

Fixed-rate clock schedules reduce overall computation relative to full, every frame eval-
uation by assigning different update rates to each stage such that later stages are exe-



12 E. Shelhamer∗, K. Rakelly∗, J. Hoffman∗, and T. Darrell

ou
rs

ba
se
lin
e

time

Fig. 5: Pipelined vs. standard FCN on YouTube video. Our method is able to detect the occlusion
of the car as it is happening unlike the lagging baseline computed on every other frame.

cuted less often. Rates can be set aggressively low for extreme efficiency or conserva-
tively high to maintain accuracy while sparing computation. The exponential clock-
work schedule executes the first stage on every frame then updates following stages
exponentially less often by halving with each stage. The alternating clockwork sched-
ule combines stages 2 and 3, executes the first stage on every frame, then schedules the
following combined stage every other frame.

A frame oracle that evaluates the full FCN on every frame is the reference model for
accuracy. Evaluating the full FCN on every other frame is the reference model for com-
putation. Due to the distribution of execution time over stages, this is faster than either
clockwork schedule, though clockwork offers higher accuracy. Alternating clockwork
achieves higher accuracy than the every other frame reference. See Table 5.

16 pixel shift Clock Rates Mean IU fwIU Mean IU-bdry fwIU-bdry

Skip Frame Baseline (2,2,2) 63.0 81.5 60.2 52.2
Exponential (1,2,4) 61.4 80.4 50.5 49.1
Alternating (1,1,2) 64.7 82.6 54.8 53.7

Frame Oracle (1,1,1) 65.9 83.6 57.0 56.3

32 pixel shift Clock Rates Mean IU fwIU Mean IU-bdry fwIU-bdry

Skip Frame Baseline (2,2,2) 59.5 77.9 49.4 48.2
Exponential (1,2,4) 55.5 74.7 46.3 44.8
Alternating (1,1,2) 61.9 79.6 51.7 50.6

Frame Oracle (1,1,1) 65.6 82.6 55.8 55.3

Table 5: Fixed-rate segmentation of translated PASCAL sequences. We evaluate the network on
synthesized video of translating PASCAL scenes to assess the effect of persisting layer features
across frames. Metrics are computed on the standard masks and a 10-pixel band at boundaries.

Exponential clockwork shows degraded accuracy yet takes 1.5× the computation
of evaluation on every other frame, so we discard this fixed schedule in favor of adap-
tive clockwork. Although exponential rates suffice for the time series modeled by the
clockwork recurrent network [4], these rates deliver unsatisfactory results for the task of
video semantic segmentation. See Table 6 for alternating clockwork results on NYUD,
YouTube-Objects, and Cityscapes.
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NYUD Youtube Cityscapes

Schedule Mean IU fwIU Mean IU fwIU Mean IU fwIU

Skip Frame Baseline 27.7 41.3 65.6 89.7 62.1 87.4
Alternating 28.5 42.4 67.0 90.3 64.4 88.6
Adaptive 28.9 43.3 68.5 91.0 61.8 87.6

Frame Oracle 31.1 45.5 70.0 91.4 65.9 83.6

Table 6: Fixed-rate and adaptive clockwork FCN evaluation. We score our network on three
datasets with an alternating schedule that executes the later stage every other frame and an adap-
tive schedule that executes according to a frame-by-frame threshold on the difference in output.
The adaptative threshold is tuned to execute the full network on 50% of frames to equalize com-
putation between the alternating and adaptive schedules.

5.3 Adaptive Clockwork

The best clock schedule can be data-dependent and unknown before segmenting a
video. Therefore, we next evaluate our adaptive clock rate as described in Section 4.3.
In this case the adaptive clock only fully processes a frame if the relative difference
in pool4 score is larger than some threshold θ. This threshold may be interpreted as
the the fraction of the score map that must switch labels before the clock updates the
upper layers of the network. See Table 6 for adaptive clockwork results on NYUD,
YouTube-Objects, and Cityscapes.

We experiment with varying thresholds on the Youtube-Objects dataset to measure
accuracy and efficiency. We pick thresholds in θ = [0.1, 0.5] as well as θ = 0.0 for
unconditionally updating on every frame.

θ = 0.10θ = 0.25

θ = 0.35
Method % Full Frames Mean IU

Adaptive [θ = 0.10] 93% 70.0
Adaptive [θ = 0.25] 52% 68.3
Adaptive [θ = 0.35] 21% 59.0

Frame Oracle 100% 70.0

Fig. 6: Adaptive Clockwork performance across the Youtube-Objects dataset. We examine vari-
ous adaptive difference thresholds θ and plot accuracy (mean IU) against the percentage of frames
that the adaptive clock chooses to fully compute. A few corresponding thresholds are indicated.

In Figure 6 (left) we report mean IU accuracy as a function of our adaptive clock
firing rate; that is, the percentage of frames the clock decides to fully process in the net-
work. The thresholds which correspond to a few points on this curve are indicated with
mean IU (right). Notice that our adaptive clockwork is able to fully process only 52%
of the frames while suffering a minimal loss in mean IU (θ = 0.25). This indicates that
our adaptive clockwork is capable of discovering semantically stationary scenes and
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saves significant computation by only updating when the output score map is predicted
to change.

Adaptive  Clock Updates

Pixel Diff  Clock Updates

Ground Truth

Adaptive Clock 

Adaptive  Clock Updates

Pixel Diff  Clock Updates

Ground Truth

Adaptive Clock 

Fig. 7: An illustrative example of our adaptive clockwork method on a video from Youtube-
Objects. On the left, we compare clock updates over time (shown in black) of our adaptive clock
as well as a clock based on pixel differences. Our adaptive clock updates the full network on only
26% of the frames, determined by the threshold θ = 0.25 on the proportional output label change
across frames, while scheduling updates based on pixel difference alone results in updating 90%
of the frames. On the right we show output segmentations from the adaptive clockwork network
as well as ground truth segments for select frames from dynamic parts of the scene (second and
third frames shown) and relatively static periods (first and second frames shown).

For a closer inspection, we study one Youtube video in more depth in Figure 7. We
first visualize the clock updates for our adaptive method (top left) and for a simple pixel
difference baseline (bottom left), where black indicates the clock is on and the corre-
sponding frame is fully computed. This video has significant change in certain sections
(ex: at frame ∼ 100 there is zoom and at ∼ 350 there is motion) with long periods
of relatively little motion (ex: frames 110 − 130). While the pixel difference metric is
susceptible to the changes in minor image statistics from frame to frame, resulting in
very frequent updates, our method only updates during periods of semantic change and
can cache deep features with minimal loss in segmentation accuracy: compare adaptive
clock segmentations to ground truth (right).

6 Conclusion

Generalized clockwork architectures encompass many kinds of temporal networks, and
incorporating execution into the architecture opens up many strategies for scheduling
computation. We define a clockwork fully convolutional network for video semantic
segmentation in this framework. Motivated by the stability of deep features across se-
quential frames, our network persists features across time in a temporal skip architec-
ture. By exploring fixed and adaptive schedules, we are able to tune processing for
latency, overall computation time, and recognition performance. With adaptive, data-
driven clock rates the network is scheduled online to segment dynamic and static scenes
alike while maintaining accuracy. In this way our adaptive clockwork network is a
bridge between convnets and event-driven vision architectures. The clockwork perspec-
tive on temporal networks suggests further architectural variations for spatiotemporal
video processing.
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