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We present here a proof that our clustering algorithm converges to a local
optimum under the assumption that S, the number of global clusters, is small.
We will do this by showing that after every iteration our objective function is
non-increasing, and since the objective function is lower bounded (by zero) this
proves that the algorithm will converge to a local optimum. Since each iteration
of our clustering algorithm has four parts, we will individually prove that each
part does not increase the objective function.

Let us define the objective of our clustering optimization in terms of our four
variables:

J(ZL, µ,ZG,m) =

n∑
i=1

J∑
j=1

ZL
ij(xi − µj)

2 +

J∑
j=1

S∑
k=1

ZG
jk(µj −mk)2 (1)

Similarly, we let the value of our four variables after iteration t be denoted as:
(ZL

ij)
(t), µj(t),Z

G
jk(t),mk(t).

Claim. 1J(ZL(t), µ(t),ZG(t),m(t)) ≥ J(ZL(t+1)
, µ(t),ZG(t),m(t))

Proof: To compute the local assignment variables during iteration t+ 1 we set

ZL
ij

(t+1)
=

{
1 if µj is the closest cluster center to point xi
0 otherwise

(2)

Therefore, we can say that
∑n
i=1

∑J
j=1 Z

L
ij(t)(xi−µj(t))2 ≥

∑n
i=1

∑J
j=1 Z

L
ij

(t+1)
(xi−

µj(t))
2, where equality only holds if all data points xi were already assigned to

their closest local cluster center µj . Since the second term of the objective func-
tion remains unchanged by this update, our claim is proven. �

Claim. 2J(ZL(t+1)
, µ(t),ZG(t)

,m(t)) ≥ J(ZL(t+1)
, µ(t+1),ZG(t)

,m(t))
Proof: In this second stage we want to show that updating the local means does
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not increase the total objective function. The local means update rule is derived
by setting the derivative of the objective function with respect to µ to zero.

d

dµj
J(ZL(t+1)

, µj ,Z
G(t)

,m(t)) =
d

dµj

n∑
i=1

J∑
j=1

ZL
ij

(t+1)
(xi − µj)

2 (3)

+

J∑
j=1

S∑
k=1

ZG
jk

(t)
(µj −m

(t)
k )2

= −2

n∑
i=1

ZL
ij

(t+1)
(xi − µj) (4)

+2

S∑
j=1

ZG
jk

(t)
(µj −mk)

= 0 (5)

Through this we derive the following update rule:

µ
(t+1)
j =

∑
i(Z

L
ij)

(t+1)xi +
∑
k Z

G(t)
jkmk∑

iZ
L(t+1)
ij +

∑
k Z

G(t)
jk

(6)

Additionally, since d2

dµ2
j
J(ZL(t+1)

, µj , (Z
G)(t),m(t)) ≥ 0 we know that this is

a convex function with respect to µ so using the value for µ
(t+1)
j written above

minimizes the objective function. Therefore the original claim is proven. �

Claim. 3J(ZL(t+1)
, µ(t+1),ZG(t)

,m(t)) ≥ J(ZL(t+1)
, µ(t+1),ZG(t+1)

,m(t))
Proof: Our update rule for ZG is as follows:

ZG
jk

(t+1)
=

1 if local cluster center µ
(t+1)
j is closest to global cluster center m

(t)
k

such that all constraints are satisfied
0 otherwise

Note that we can choose the best assignment of local clusters to global clusters
via exhaustive search for small S. Therefore, under that assumption this stage
will not increase the objective function, since local clusters are assigned to the
global clusters according to the matching with the lowest objective achievable
under the constraints. �

Claim. 4J(ZL(t+1)
, µ(t+1),ZG(t+1)

,m(t)) ≥ J(ZL(t+1)
, µ(t+1),ZG(t+1)

,m(t+1))
Proof: To derive our update equation for mk at time t+ 1 we set the derivative
of J with respect to m, set it to zero and solve for the new m value.

d

dmk
J(ZL(t+1)

, µ(t+1),ZG(t+1)
,m) = −2

J∑
j=1

ZG
jk

(t+1)
(µ

(t+1)
j −m)) = 0 (7)
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Solving this equation for m we derive our update rule:

m
(t+1)
k =

∑
j Z

G(t+1)
µ
(t+1)
j∑

j Z
G(t+1)

(8)

Since the second derivative of J with respect to m is positive we know that by
setting mk is this way we have minimized the function. Therefore the objective
is non-decreasing after updating m. �

Finally, combining our four claims we can now determine that:

J(ZL
(t)

, µ
(t)

,ZG
(t)

,m
(t)

) ≥ J(ZL(t+1)
, µ(t),ZG(t)

,m(t)) (9)

≥ J(ZL(t+1)
, µ(t+1),ZG(t)

,m(t)) (10)

≥ J(ZL(t+1)
, µ(t+1),ZG(t+1)

,m(t)) (11)

≥ J(ZL(t+1)
, µ(t+1),ZG(t+1)

,m(t+1)) (12)

Therefore, we have shown that the total objective function is non-increasing
after each iteration of the algorithm. �


