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Abstract. Recent domain adaptation methods successfully learn cross-
domain transforms to map points between source and target domains.
Yet, these methods are either restricted to a single training domain, or
assume that the separation into source domains is known a priori. How-
ever, most available training data contains multiple unknown domains.
In this paper, we present both a novel domain transform mixture model
which outperforms a single transform model when multiple domains are
present, and a novel constrained clustering method that successfully dis-
covers latent domains. Our discovery method is based on a novel hier-
archical clustering technique that uses available object category infor-
mation to constrain the set of feasible domain separations. To illustrate
the effectiveness of our approach we present experiments on two com-
monly available image datasets with and without known domain labels:
in both cases our method outperforms baseline techniques which use no
domain adaptation or domain adaptation methods that presume a single
underlying domain shift.

1 Introduction

Despite efforts to the contrary, most image datasets exhibit a clear dataset bias:
supervised learning on a particular dataset nearly always leads to a significant
loss in accuracy when the models are tested in a new domain [1, 2]. Domain
Adaptation methods have been proposed as a solution to dataset bias and are be-
coming increasingly popular in computer vision. Especially attractive are recent
weakly-supervised methods that learn to transform features between domains
based on partially labeled data [1, 3, 4].

A major limitation of these methods is the assumption that the domain/dataset
label is provided for each training image. However, in practice, one often has ac-
cess to large amounts of object labeled data composed of multiple unknown
domains. For example, images found on the web can be thought of as a collec-
tion of many hidden domains. As shown in Figure 1, image search results for
“person” and “bicycle” consist of several types, such as close-up photos of a face,
photos of an entire human figure, group shots, line drawings of a person, etc.
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Fig. 1. Training images for object recognition may contain several unknown domains,
such as the line drawings, close-up photos and far-away shots returned by web image
search for person and bicycle.

Existing methods have not addressed the problem of separating such data into
latent domains for the purpose of domain adaptation.

Even when the separation into source domains is known, the above meth-
ods are limited to a single adaptive transform between source and target data,
computed by either simply pooling [1, 3] or averaging [4] multiple sources into
one source domain. Learning a single transform may be sub-optimal in approx-
imating multiple domain shifts. Consider a simple example: two source image
datasets, one with low-resolution, color images and one with high-resolution,
grayscale images. When mapping images from a novel high-resolution, color do-
main to each of these source domains, we would like a transform that either
discounts the high-resolution details or the color, but not both. Rather than
force a single transform to perform both mappings, a richer model with multiple
separate transforms is desirable.

The contribution of this paper is two-fold: First, we propose a method that
discovers latent domain labels in data which has heterogeneous but unknown
domain structure. We use a probabilistic framework to derive a hierarchical
constrained assignment algorithm that separates heterogeneous training data
into latent clusters, or domains. Our second contribution is an extension of the
feature-transform method in [3] to multi-domain adaptation that uses source
domain labels to define a mixture-transform model. Tests on standard datasets
with known domain labels confirm that our method is more accurate at discov-
ering domain structure than baseline clustering methods, and that our trans-
form mixture model outperforms a single transform approach. When domain
labels are unknown, we evaluate the end-to-end recognition performance with
no adaptation baseline, baseline adaptation, and transform-mixture adaptation
with discovered domain labels (our method). Our experiments on category data
from the Bing image search dataset confirm improved classification performance
using the inferred domains.

2 Related Work

Domain adaptation aims to compensate for covariate shift, i.e. a change in the
feature distribution from training to test time, which is a version of the more
general dataset shift problem [5].
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Several methods have been developed in the NLP community, e.g., struc-
tural correspondence learning was proposed for NLP tasks such as sentiment
classification [6]. Daume [7] introduced a feature replication method for domain
adaptation, which has been applied to both NLP and vision tasks. The basic idea
is: given a feature vector x, define the augmented feature vector x̃ = (x;x; 0)
for data points in the source and x̃ = (x; 0;x) for data points in the target.

Recently, several authors have developed approaches for vision tasks, and
the field is becoming increasingly aware of existing dataset bias [8]. These meth-
ods can be roughly categorized as classifier adaptation approaches and feature-
transform approaches. The former approach adapts the parameters of each per-
category binary classifier, typically a support vector machine, and includes meth-
ods like a weighted combination of source and target SVMs; transductive SVMs
applied to adaptation in [9]; Adaptive SVM [10], where the parameters are
adapted by adding a perturbation function; Domain Transfer SVM [11], which
learns a target decision function while reducing the mismatch in the domain
distributions; and a related method [12] which utilizes adaptive multiple ker-
nel learning to learn a kernel function based on multiple base kernels. Classifier
adaptation approaches are typically supervised, requiring labeled examples for
each category in both source and target.

On the other hand, feature transform approaches map or translate the input
features directly between domains, and then apply a classifier [1, 3, 4, 13, 14].
The advantage of these approaches over the classifier-based ones above is that
they are able to transfer the adaptive transformation to novel problems, and
even deal with new feature types and dimensionalities. For example, the asym-
metric nonlinear transform method [3] learns a domain-independent similarity
function between arbitrary feature sets based on class constraints. In this paper
we focus on transform learning, as it can be scaled up to many novel object
categories and heterogeneous features. Other work on feature-translation has in-
cluded translating features between camera views to transfer activity models [13],
and translating user preferences between text and image domains [14].

Some of the existing methods can accommodate multiple source domains,
if they are known. The feature replication method [7] can be easily extended
to multiple sources. In methods based on combinations of SVM classifiers, this
is done primarily by weighting the classifiers learned on each source domain,
either equally, or as in [15], using the maximum mean discrepancy (MMD) crite-
rion, which measures the distance between distributions. The A-MKL [12] learns
an optimal weighted combination of the pre-learned classifiers, however, in the
evaluation the classifiers came from the same source domain. The unsupervised
approach based on Grassman manifolds presented by Gopalan et al. [4] supports
multiple sources by first computing the Karcher mean of the sources and then
running the single source version of their algorithm.

None of the existing methods address the case of domain adaptation with
unknown domain labels, the main focus of our paper. We also present the first
multi-domain version of the asymmetric nonlinear transform [3], which so far
has been limited to the single domain case.
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Our domain discovery method is based on a constrained clustering method,
a topic of active research for several years. The most related work to our ap-
proach is based on constrained k-means. The method of Wagstaff et al. [16] is the
earliest constrained clustering method based on k-means; their algorithm greed-
ily assigns points to the closest cluster which does not violate any constraints.
Improvements to this basic algorithm were considered in [17, 18]. A variant of
constrained k-means was also used recently with soft constraints to learn more
discriminative codebooks [19]. In general, the constraints in these approaches are
incorporated as additional penalty terms to the k-means objective function (and
therefore are not guaranteed to be satisfied), and algorithms are developed to
minimize the penalized k-means objective. In contrast to existing work on con-
strained k-means, our algorithm is guaranteed to find a clustering that satisfies
the constraints and provably converges locally under certain assumptions. An
overview of recent semi-supervised clustering techniques, including techniques
not based on k-means, can be found in [20].

2.1 Single Transform Domain Adaptation

We review the single-transform method of Kulis et al. [3]. Suppose we have
a source domain A containing observations x1, ...,xnA . Similarly, let B be the
target domain, containing observations y1, ...,ynB . Suppose we are also given a
set of labels lA1 , ..., l

A
mA

for the source observations and a partial set of labels
lB1 , ..., l

B
mB

for the target observations, with mB < mA and l ∈ {1, ...,K}, where
K is the number of categories. The goal of domain transform learning is to
estimate a semantic similarity function sim(x,y) which outputs high similarity
values for pairs of source examples x and novel target examples y if they have
the same label, and low similarity values if they have different labels.

Following [3], consider a similarity function between source and target data
parametrized by a matrix W , i.e., simW (x,y) = φA(x)TWφB(y), where φA and
φB map examples from the source and target, respectively, into kernel space. In
general, mapping to kernel space makes it possible to learn non-linear similarity
mappings in the input space.

The transform W can be learned via a regularized optimization problem
with loss functions that depend on simW ; that is, by optimizing for a matrix
W which minimizes r(W ) + γ

∑C
i=1 ci(φA(X)TWφB(Y )), where r is a matrix

regularizer, C is the number of constraints, φA(X) is the matrix of source data
mapped to kernel space, φB(Y ) is the matrix of target data mapped to kernel
space, and ci are loss functions over the matrix φA(X)TWφB(Y ). Though the
model can incorporate various constraints/losses, it is customary to focus on
constraints that penalize small values of simW (x,y) when x and y share a class
label, and penalize large values of simW (x,y) when they have different labels.
For a particular class of regularizers r, this problem may be efficiently optimized
in kernel space; see [3].
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3 Multiple Transform Domain Adaptation

We first extend the single source feature transform method [3] to a multi-source
algorithm, considering the case of known domain labels, and then in Section 4
we present our main contribution: a method for discovering unknown domain
labels.

Transform-based domain adaptation captures category-independent domain
shift information, which can be generalized to a held-out category for which no
labels are available in a new domain. The single-transform method described in
Section 2.1 is sub-optimal when multiple domain shifts are present. We remedy
this by constructing a domain transform mixture model as follows.

Suppose we have a set of domainsA1, ...,AS containing observations x1, ...,xn
and labels {`A1 , ..., `An }. Let a = {a1, ..., an} specify the domain of each observa-
tion, such that ai ∈ {1, ..., S}.

We start by using the single source feature transform method to learn a
transformation Wk for each source k ∈ {1, . . . , S}. Each of the S different object
category classifiers outputs a multi-class probability for a given test point, y.
We denote the output probability over classes, c, of the classifier learned for the
kth domain as, p(c|d = k,y).

We classify a novel test point from a target domain by considering the domain
as a latent variable that is marginalized out as follows:

label(y) = arg max
c∈{1:K}

p(c|y) (1)

= arg max
c∈{1:K}

S∑

k=1

p(d = k|y)p(c|d = k,y) (2)

Where p(d|y) is the output of a domain label classifier and p(c|d,y) is the output
of a domain specific object model based on the learned transforms. For example,
if the domain specific classifier is (kernelized) nearest neighbors, as in our exper-
iments, and we let x∗k(y) be the most similar point in domain k to test point y,
then our domain specific object category probability can be expressed as:

p(c|d = k,y) =
φA(x∗k(y))TWjφB(y)

∑S
k′=1 φA(x∗k′(y))TWjφB(y)

(3)

Finally, to obtain p(d = k|y) we train an SVM classifier with probabilistic
outputs, using known domain labels and source training data. In summary, cate-
gory classification of a test point y amounts to a weighted sum of the probability
of a particular category given that the point is from a particular domain, where
the weights are the probability that the test point belongs to each domain.

4 Domain Clustering

For datasets which do not have domain labels, we must infer domain assignments
â that best approximate the true assignments, a. This task is difficult because,
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Fig. 2. An illustration of our approach for discovering latent domains: Given input
images with unknown domains types (A), we separate examples according to their
semantic category labels (B). Then, we cluster the data from each semantic category
group to produce local clusters (C), and, finally, use do-not-link constraints between
clusters of same category to produce the domain specific clusters (D). This example
shows separation of person and bicycle search results into two domains of line drawing
and natural images. Our algorithm iterates between steps (B-D) until convergence.

in many cases, the data is naturally separated according to semantic categories.
That is, a standard clustering method such as k-means or EM for mixtures of
Gaussians would tend to return clusters based on the semantic category labels,
which is clearly undesirable.

High-level Description: We propose a two-stage approach for domain discov-
ery (See Figure 2 for illustration of algorithm). The idea is as follows: if there
are K semantic categories and S domains in the data, we will group the data
points x1, ...,xn into J = K ·S local clusters—intuitively, each local cluster will
contain data points from one domain and one semantic category (step B-C in
Figure 2). In the second stage of clustering (domain clustering), we will cluster
the means of the local clusters, in order to find domains (step C-D in Figure 2).
The two stages are iterated to convergence. To make this approach consistent
with our goals, we add two crucial constraints to the clustering procedure: a) we
require that each local cluster only contains data points from a single category,
and b) we constrain each domain cluster to contain only one local cluster from
each object category.

Formal Definition: Let us now specify this model more formally. Define a
local latent variable zLij ∈ {0, 1} to indicate whether observation xi should be

assigned to local cluster j. Let the domain latent variable zGjk ∈ {0, 1} indicate
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Figure 1: Graphical model for domain discovery.

p(zG
j | πG) =

S∏

k=1

(πG
j )zG

jk

p(µj | zG
j , m) =

S∏

k=1

N (µj | mk, σI)zG
jk

p(xi | zL
i , µ) =

J∏

j=1

N (xi | µj , σI)zL
ij .

The joint probability is a product of the conditional probabilities in the model.
Let ZL = {zL

i }, ZG = {zG
j }, and X = [x1, ...,xn]. Then p(ZG, ZL, X | m, µ, πG, πL) =

n∏

i=1

J∏

j=1

S∏

k=1

(πG
j )zG

jk(πL
k )zL

ij N (µj | mk, σI)zG
jkN (xi | µj , σI)zL

ij .

We may think of this model in a generative manner as follows: for all local
clusters j = 1, ..., J = S · K, we determine its underlying domain via the πG

mixing weights. Given this domain, we generate µj , the mean for the local
cluster. Then, to generate the data points xi, we first determine which local
cluster j the data point belongs to using πL, and then we generate the point
from the corresponding µj .

At this point, we still need to add the constraints discussed above, namely
that the local clusters only contain data points from a single category and
that domain clusters contain only a single local cluster from each category.
Such constraints can be difficult to enforce in a probabilistic model, but are
considerably simpler in a hard clustering model. For instance, in semi-supervised
clustering there is considerable literature on adding constraints to the k-means
objective via constraints or penalties (cite papers by Sugato Basu). Thus, we
will utilize a standard asymptotic argument on our probabilistic model to create
a corresponding hard clustering model. In particular, if one takes a mixture of
Gaussian model with fixed σI covariances across clusters, and lets σ → 0, the
expected log joint likelihood approaches the k-means objective, and the EM

2

Fig. 3. Graphical model for domain discovery. The data points xi are generated from
category specific local mixtures, whose means are assumed to be drawn from a latent
global (domain) mixture.

whether local cluster j is assigned to domain k. Further, let µj be the mean
of the observations in local cluster j and mk be the mean of domain cluster
k. Finally, let the mixing weights for the global clusters be given by πGk , for
k = 1, ..., S, and let the mixing weights for the local clusters be given by πLj
for j = 1, ..., J . See Figure 3 for a graphical depiction of our model. Note that,
unlike a standard Gaussian mixture model, each cluster mean µj is itself a data
point within a mixture model. For simplicity, we are assuming that all clusters
have a global covariance of σI—one could easily extend the model to learn the
covariances. The conditional probabilities in our graphical model are defined as:

p(zLi | πL) =

J∏

j=1

(πLj )z
L
ij p(zGj | πG) =

S∏

k=1

(πGk )z
G
jk (4)

p(xi | zLi ,µ) =

J∏

j=1

N (xi | µj , σI)z
L
ij (5)

p(µj | zGj ,m) =

S∏

k=1

N (µj | mk, σI)z
G
jk (6)

We may think of this model in a generative manner as follows: for each local
cluster j = 1, ..., J = S · K, we determine its underlying domain via the πG

mixing weights. Given this domain, we generate µj , the mean for the local
cluster. Then, to generate the data points xi, we first determine which local
cluster j the data point belongs to using πL, and then we generate the point
from the corresponding µj .

At this point, we still need to add the constraints discussed above, namely
that the local clusters only contain data points from a single category and that
domain clusters contain only a single local cluster from each category. Such con-
straints can be difficult to enforce in a probabilistic model, but are considerably
simpler in a hard clustering model. For instance, in semi-supervised clustering
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there is ample literature on adding constraints to the k-means objective via
constraints or penalties [16, 18]. Thus, we will utilize a standard asymptotic ar-
gument on our probabilistic model to create a corresponding hard clustering
model. In particular, if one takes a mixture of Gaussian model with fixed σI co-
variances across clusters, and lets σ → 0, the expected log likelihood approaches
the k-means objective, and the EM algorithm approaches the k-means algorithm.
In an analogous manner, we will consider the log-likelihood of our model. Let
ZL = {zLi }, ZG = {zGj }, and X = [x1, ...,xn].

ln
[
p(ZG,ZL, X | m,µ)

]
= (7)

n∑

i=1

J∑

j=1

S∑

k=1

(
zGjk(lnπGk + lnN (µj | mk, σI)) + zLij(lnπ

L
j + lnN (xi | µj , σI))

)

If we have no prior knowledge about the domains, then we assume the mixing
weights πG and πL to be uniform. Then to create a hard clustering problem we
let σ tend to 0 and taking expectations with respect to ZG and ZL, we obtain
the following hard clustering objective:

min
ZG,ZL,µ,m

n∑

i=1

J∑

j=1

ZLij(xi − µj)2 +

J∑

j=1

S∑

k=1

ZGjk(µj −mk)2 (8)

subject to: ∀j, k : ZGjk ∈ {0, 1}, ∀i, j : ZLij ∈ {0, 1} (9)

∀j :

S∑

k=1

ZGjk = 1, ∀i :

J∑

j=1

ZLij = 1 (10)

(11)

The constraints above are standard hard assignment constraints, saying that
every observation must be assigned to one local cluster and every local cluster
must be assigned to only one global cluster. Now that we have transformed the
clustering problem into a hard clustering model, we can easily add constraints
on the ZG and ZL assignments, leading to our final model.

min
ZG,ZL,µ,m

n∑

i=1

J∑

j=1

ZLij(xi − µj)2 +

J∑

j=1

S∑

k=1

ZGjk(µj −mk)2 (12)

subject to: ∀j, k : ZGjk ∈ {0, 1}, ∀i, j : ZLij ∈ {0, 1} (13)

∀j :

S∑

k=1

ZGjk = 1, ∀i :

J∑

j=1

ZLij = 1 (14)

∀j :

n∑

i=1

δ(li 6= lj)Z
L
ij = 0 (15)

∀k :

K∑

c=1

J∑

j=1

δ(label(j) = c)ZGjk = 1 (16)
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Equation (15) says that all observations assigned to a single local cluster j must
contain the same object category label. Finally, we add the constraint in Equa-
tion (16), which says that each global cluster should only contain one local cluster
from each object category. Here, we define label(j) to mean the object category
label of the observations assigned to the local cluster j. Together the last two
constraints restrict the feasible global clustering solutions to be the solutions
that contain observations from every object category while placing observations
together that are close according to a Euclidean distance.

To solve this optimization problem we formulate an EM style iteration algo-
rithm. We first initialize ZG, µ,m and then perform the following updates until
convergence (or until the objective doesn’t change more than some threshold
between iterations):

ZLij: For each observation xi, set ZLij = 1 for the particular j that minimizes

(xi − µj)2.

µj: For each local cluster j, set µj =
∑

i Z
L
ijxi+

∑
k Z

G
jkmk∑

i Z
L
ij+

∑
k Z

G
jk

ZGjk: For each local cluster j, set ZGjk = 1 for the particular global cluster

that minimizes ZGjk(µj −mk)2 while satisfying Equation (16). For the case
where the number of latent domains is assumed small, we can try all possible
assignments of local to global clusters at this stage.

mk: For each global cluster k, set mk =
∑

j Z
G
jkµj∑

j Z
G
jk

Note, these updates correspond to constrained versions of the EM updates
from the probabilistic model as σ → 0. In general adding constraints to EM
updates can cause the objective to diverge. However, for our problem, when the
number of domains, S, is small (which is a practical assumption for many domain
adaptation tasks) these updates can be shown to provably converge locally (see
supplemental material). In Section 5 we show experimentally that even for large
heterogeneous data sources learning to separate into a small number of latent
domains is sufficient in practice.

We evaluate absolute domain discovery performance compared against a con-
strained hard HDP method [21] and a standard unconstrained k-means. The
hard HDP seeks to minimize the distance between data points and their local
mean plus data points to their assigned global mean, whereas we introduce an
intermediate latent variable for the local cluster means. That, combined with the
fact that constrained hard HDP can create new global clusters, causes the con-
strained hard HDP to degenerate to the case where each global cluster contains
only one local cluster. In Section 5 we present clustering accuracy experiments
that show our method does in fact provide significant benefit over the hard HDP
method and a standard k-means baseline.

5 Experiments

We present the following three experiments. First, we evaluate our multidomain
mixture model extension of [3] described in Section 3 for the case where the do-
main labels are known. We compare this to using the single-transform method in
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[3]. Next, we evaluate the ability of our constrained clustering method to recover
domains by mixing datasets and omitting the dataset labels, and compare to two
baseline clustering methods. Finally, we evaluate the end-to-end recognition per-
formance on a dataset with unknown domains, compared against methods with
no adaptation, baseline adaptation, and our multiple transform adaptation with
discovered domain labels.

Datasets: For our experiments we used two different data sets. First we used
the Office data set created by [1] specifically for object domain adaptation, which
we modified to artificially introduce more domains. We use the code provided by
the authors to extract features and to implement the single-domain asymmetric
transform method. Second, we evaluate on a subset of the Bing-Caltech256 data
set created by [9], using the authors’ original image features. The Bing dataset is
comprised of search results from object label keywords and therefore has many
sub-domains without any explicit labels.

The Office dataset contains three domains with 31 object categories: Amazon
(a), which contains images from amazon.com; Digital SLR (d), and Webcam
(w). Webcam and Digital SLR contain images of the same 5 instances for each
object category, but vary in pose, lighting, and camera. In addition to these
three domains, we also created two more domains which are artificially modified
versions of two the the original domains: Webcam-blur (Wb), which contains
the blurred version of all webcam data images (using a Gaussian filter of width
5), and Amazon-rotflip (Ar), which contains the result of rotating all amazon
images by 10-20 degrees and then creating their mirror image.

Object Classification using Office: For our first object classification ex-
periment, we follow the experimental procedure for semi-supervised learning
described in [1, 4]: we train the transforms on categories 1-15, with 10 instances
per category in each source domain and 5 instances per category in the target
domain, and test them using the classifier described in Section 3 on the rest of
the categories.

The experiment measures the accuracy of predicting the labels of target
data points with no examples of the correct label within the target domain,
representing the transform’s ability to capture general shifts rather than simply
the source shift’s effect on a particular object category.

We compared our method to the single-transform method of [3] and the
semi-supervised multi-domain version of [4]. The γ parameter of ours and [3]
was optimized for the single transform baseline in all experiments. We ran code
provided by the authors of [4]; we experimented with over 1000 combinations
of the four parameter settings within the ranges specified in the code from the
author’s website and the paper, but were unable to produce resulting accuracies
above the standard KNN with no adaptation baseline for any of the domain
shifts presented, and so we omit these results from the following figure.

Figure 4 shows the absolute improvement in accuracy of the supervised
multiple-domain method and a single transform method over the KNN clas-
sifier using Euclidean distance (i.e., no adaptation) for various domain shifts,
averaged over 10 train/test splits for each shift. Overall, the average accuracy
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Fig. 4. Classification Accuracy experiment on Office dataset with known domain la-
bels. The plot shows the average accuracy improvement of each method over a baseline
KNN. Each cluster of bars is the results for a different domain shift, where the do-
mains are indicated on the x-axis. For each of these cases the parameter, γ was set to
be the value that maximized the single transform method baseline. The average accu-
racy gained over KNN across all datasets was 3.27 for the single source baseline [3] and
5.45 for our multisource domain-supervised method. For some datasets our method
outperforms [3] significantly, achieving up to a 18.9% relative improvement over KNN.

gained over KNN was 3.27 for the single source baseline [3] and 5.45 for our
domain-supervised method. The average KNN classification accuracy was 28.9,
which means these absolute improvements correspond to an 11.3% and 18.9%
relative improvement over KNN for each method respectively.

We notice that shifts where the supervised method achieves the most gains
(up to 48% relative gain in accuracy) have higher separability of the source
domains via clustering reported below (in Figure 5.)

Clustering: We begin with an analysis of our clustering algorithm on all
pairs of the 5 domains in the Office dataset, for which we know the ground
truth source labels. Figure 5 plots the accuracy improvement over chance be-
tween the ground truth domain labels and the cluster labels learned using our
constrained clustering algorithm. The results are averaged over 10 runs with
different data splits for each run. As baselines, we implemented standard, un-
constrained, k-means, as well as, a hard HDP [21] with the same do-not-link
class based constraints presented in Section 4.

Our clustering method outperforms these baselines and in general has high
accuracy when compared with the ground truth domain labels. The one excep-
tion is when clustering the pair (Amazon-rotflip, Amazon). In this case, the
domains represented in our feature space are very similar and so there is no
adequate separation for the clustering algorithm to find. The last bar in Figure
5 shows the mean clustering accuracy across all domain shifts and shows the
significant improvement of using our method to cluster into domains.
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Fig. 5. Clustering quality, measured in terms of accuracy of cluster labels. Each cluster
of bars represents a mixed pair of domains from the Office dataset, see text. The
results are averaged over multiple data splits. Our method significantly outperforms
the baselines in 7 out of the 10 datasets.

Object Classification using Bing-Caltech256 : We show the results of
running our end-to-end algorithm on the Bing web search and Caltech256 dataset
created by [9]. Here we assume the Bing images contain sub-domains. We use the
first 30 categories from each of Bing and Caltech, and assume that all points in
Bing have strict class labels (in reality, the results of web search are only weakly
labeled.) There are no domain labels for the Bing source dataset so we present
qualitative clustering results in Figures 6(a-c). The clusters shown represent intu-
itive domain distinctions, justifying out method: 6(a) cartoon/drawing/synthetic
images with limited illumination, 6(b) product images with simple backgrounds
and some illumination, 6(c) natural or cluttered scenes.

After clustering, we train the transforms on the first 15 categories in the
Caltech256 domain and use categories 16 to 30 for testing, again testing the
prediction accuracy of transformed data points into new object categories. We
set S = 2 and use the SVM-based domain classifier described in Section 3 for
the mixture model.

Figure 6 plots the results of running our algorithm with 20 instances per cat-
egory in the source domain and 10 instances per category in the target domain.
Ideally we would cross-validate the learning parameter γ, but due to lack of
time we report results over varying γ on the test set. Our method obtains better
results for a larger range of γ. The best performance obtained by the baseline
is around 40% accuracy, while our method obtains 44% accuracy. This shows
the advantage of using our method instead of pooling the data to learn a single
transform, and that it is possible to learn domain clusters and to use them to
effectively produce a better-adapted object classifier.

6 Conclusion

In this paper we presented a novel constrained clustering algorithm to distinguish
unique domains from a large heterogeneous domain. Additionally, we proposed a
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Fig. 6. Results on the Bing-Caltech256 dataset. (a-c) show example images from clus-
tering the Bing dataset into three clusters. For each domain cluster the the three images
closest to the domain cluster mean are shown from the categories baseball bat, basket-
ball hoop, beer mug, bowling pin, and boxing glove are shown. The clusters represent
intuitive domain definitions: (a) cartoon/drawings/synthetic images with limited il-
lumination, (b) product images with simple backgrounds and some illumination, (c)
natural or cluttered scenes. (d) Shows average accuracy versus the log of the learning
parameter γ. Our unsupervised multi-domain method outperforms the use of a single
learned transform, which falls below the KNN baseline as more weight is put on the
constraints in the optimization problem.

simple multisource extension to the nonlinear transform-based ARC-t method of
[1, 3]. Our algorithm provides the ability to separate heterogeneous source data
and learn multiple transforms, which creates a more accurate mapping of the
source data onto the target domain than a single transform map. Our experi-
ments illustrate that the multiple transformations can be effectively applied to
new object categories at test time.

Thus far our experiments have focused on the case of multiple domains in
the source and only one domain in the target. In future work, we plan to test
our algorithm with multiple target domains. This should be a direct extension
by clustering the target domain using the method described in Section 4.
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