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Abstract We address the problem of visual domain adapta-
tion for transferring object models from one dataset or visual
domain to another. We introduce a unified flexible model for
both supervised and semi-supervised learning that allows us
to learn transformations between domains. Additionally, we
present two instantiations of the model, one for general fea-
ture adaptation/alignment, and one specifically designed for
classification. First, we show how to extend metric learning
methods for domain adaptation, allowing for learning met-
rics independent of the domain shift and the final classifier
used. Furthermore, we go beyond classical metric learning
by extending the method to asymmetric, category indepen-
dent transformations. Our framework can adapt features even
when the target domain does not have any labeled examples
for some categories, and when the target and source fea-
tures have different dimensions. Finally, we develop a joint
learning framework for adaptive classifiers, which outper-
forms competing methods in terms of multi-class accuracy
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and scalability. We demonstrate the ability of our approach to
adapt object recognition models under a variety of situations,
such as differing imaging conditions, feature types, and code-
books. The experiments show its strong performance com-
pared to previous approaches and its applicability to large-
scale scenarios.

Keywords Object recognition - Domain adaptation -
Transformation learning

1 Introduction

In many real-world applications of object recognition, the
image distribution used for training (source dataset, or
domain) is different from the image distribution used for
testing (target domain). This distribution shift is typically
caused by data collection bias (see Fig. 1 for three example
domains collected for the same set of object categories.) In
general, visual domains can differ in a combination of (often
unknown) factors, including scene, intra-category variation,
object location and pose, viewing angle, resolution, motion
blur, scene illumination, background clutter, camera char-
acteristics, etc. Recent studies have demonstrated a signifi-
cant degradation in the performance of state-of-the-art image
classifiers due to domain shift from pose changes (Farhadi
and Tabrizi 2008), a shift from commercial to consumer
video (Duan et al. 2009, 2012b), and, more generally, train-
ing datasets biased by the way in which they were collected
(Torralba and Efros 2011).

Methods for adapting to a target distribution have been
proposed, both in and outside of the vision community.
Some have focused on learning adapted classifier para-
meters, typically by minimizing classification error using
a small number of (category) labels in the target domain
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(c) robot-mounted
webcam

(b) amazon.com

Fig. 1 We address the problem of transfering object category mod-
els between visual domains, such as (a) high-resolution DSLR pho-
tographs of objects taken by a human, (b) images downloaded from
amazon.com, and (c) images captured by a robot-mounted webcam.
Each domain is characterized by a distinct feature distribution caused
by, e.g., background clutter in (a, ¢) versus uniform backgrounds in (b),
or fine-grained detail in (a, b) versus lack thereof in (¢) (as on the laptop
keyboard)

(Bergamo and Torresani 2010; Jiang et al. 2008; Yang et
al. 2007, etc.). Others use existing classifiers but learn a
transformation between the features in the various domains,
either by utilizing unlabeled but corresponding points across
domains, such as a scene captured simultaneously from mul-
tiple views (Farhadi and Tabrizi 2008), or by somehow align-
ing the domain distributions (Gopalan et al. 2011; Gong et
al. 2012).

In this paper, we introduce a novel domain adaptation tech-
nique that improves on and combines the above approaches.
We first propose a novel method of learning a domain-
invariant feature space, and later extend this formulation
to simultaneously adjust the decision boundary in the new
space, using all available labeled data.

The key idea behind our feature adaptation method is to
learn a regularized transformation that maps feature points
from one domain to another using cross-domain constraints.
The constraints are formed by requiring that the transfor-
mation maps points from the same category (but different
domain) near each other. Its advantages over previous fea-
ture adaptation methods are that (1) it can learn from cate-
gory labels, and not just from instance-level constraints, (2) it
can adapt models between heterogeneous spaces, including
those with different dimensions, via an asymmetric trans-
form, and (3) the learned transformation is category inde-
pendent and thus transferrable to unlabeled categories. This
method, which we call the Asymmetric Regularized Cross-
domain Transform (arc-t), is independent of the classifier
and allows us to encode domain invariance into the feature
representation of a broad range of classification methods,
from k-NN to SVM, as well as clustering methods.

Forcing all intra-class points to be similar can be ineffi-
cient when the end goal is to learn a decision boundary. We
extend the above to simultaneously learn the transformation
of features and the classifier parameters themselves, using
the same classification loss to jointly optimize both. This
method, referred to as Maximum Margin Domain Trans-
form (mmdt), provides a way to adapt max-margin classi-
fiers in a multi-class manner, by learning a shared component
of the domain shift as captured by the feature transformation.

Because it operates over the input features, mmdt can
generalize the learned shift in a way that parameter-based
methods cannot. On the other hand, it overcomes the limi-
tations of the arc-t method as applied to classification: by
optimizing the classification loss directly in the transform
learning framework, it can achieve higher accuracy; further-
more, its use of efficient hyperplane constraints significantly
reduces the training time of the algorithm, and learning a
transformation directly from target to source allows efficient
optimization in linear space.

The article builds on several conference publications. The
transform learning methods for domain adaptation have been
presented in Saenko et al. (2010) (for symmetric metrics) and
in Kulis et al. (2011) (asymmetric arc-t). The max-margin
formulation was introduced in Hoffman et al. (2013). This
work presents a unified framework for all three methods, and
further insights into their underlying connections. In addi-
tion, we present a comprehensive comparison of the methods
to each other, as well as to recent visual domain adaptation
approaches.

2 Related Work

Domain adaptation, or covariate shift, is a fundamental prob-
lem in machine learning and in related fields. It has attracted
a lot of attention in the natural language community (Blitzer
et al. 2007; Daume III 2007; Ben-david et al. 2007; Jiang
and Zhai 2007, etc.) and in computer vision (Bergamo and
Torresani 2010; Li and Zickler 2012; Jhuo et al. 2012; Gong
et al. 2012, etc.).

The problem statement of domain adaptation is related
to multi-task learning, but differs from it in the following
way: in domain adaptation problems, the distribution p(x)
over the features varies across tasks (domains), while the
output labels y remain the same; in multi-task learning or
knowledge transfer, p(x) stays the same across tasks (single
domain), while the output labels vary (see Jiang 2008 for
more details). In this article, we address multi-task learning
across domains; i.e., both p(x) and the output labels y can
change between domains.

In the following, we briefly review domain adaptation
methods that either focus on computer vision applications
or that are related to our approach. We present a detailed
comparison to several of these methods in Sect. 7. A
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comprehensive overview of multi-task learning and domain
adaptation is given in Jiang (2008).

Classifier adaptation Several classifier-centric approaches
have been presented for domain adaptation, most based on the
SVM. For example, Bergamo and Torresani (2010) propose
a weighted combination of source, target, and transductive
SVMs. One of the prominent approaches is given by Daume
IIT (2007), who introduces a feature replication method for
domain adaptation. The basic idea is to define augmented
feature vectors x’ = (x; x; 0) for data points x in the source
and X' = (¥;0; x) for data points ¥ in the target. Daume
also gives an overview of the relevant baselines, which we
employ in this work. In the linear case, feature replication
(Daume III 2007) can be shown to decompose the learned
hyperplane parameter into 6 = 0 + 0’, where 0 is shared by
all domains (Jiang et al. 2008). This is similar to Adaptive
SVMs (Yang et al. 2007; Li 2007), where the target classifier
£T (x) is adapted from the existing, auxiliary classifier f4 (x)
via the equation fT (x) = fA (x)+38f(x), where §f (x) is the
perturbation function. The PMT-SVM method of Aytar and
Zisserman (2011) is related but uses a different regularization
term that does not indirectly penalize the margin.

Domain transfer SVM (Duan et al. 2009) attempts to
reduce the mismatch in the domain distributions, measured
by the maximum mean discrepancy, while also learning a tar-
get decision function. A related method (Duan et al. 2012b)
utilizes adaptive multiple kernel learning to learn a kernel
function based on multiple base kernels.

The disadvantage of methods that only adapt the classifier

is their inability to transfer the learned domain shift to novel
categories, which is limiting in object recognition scenar-
ios, where the set of available category labels varies among
datasets.
Multi-view learning Multi-view learning (Sharma et al.
2012; Quadrianto and Lampert 2011; Farquhar et al. 2005;
Diethe et al. 2010, etc.) addresses the scenario where mul-
tiple sets of observations are available per labeled example,
resulting in multiple views of the data. The views could come
from different modalities or, in vision, different 3D pose of
the same object instance. For visual domain adaptation, such
methods have been applied in cases where multiple observa-
tions of the same instance are available (Farhadi and Tabrizi
2008; Dai et al. 2008; Li and Zickler 2012). For example,
Kan et al. (2012) use multi-view learning on multiple views
of the same face to perform face recognition across pose vari-
ation. In contrast to classifier adaptation described above,
such methods attempt to learn a perturbation over the feature
space, rather than a class-specific perturbation of the model
parameters, typically in the form of a transformation matrix
or modified kernel. In particular, Farhadi and Tabrizi (2008)
as well as Li and Zickler (2012) translate features between
camera views to transfer activity models, while Dai et al.
(2008) translated between text and image domains.

@ Springer

Our method can handle multiple views, i.e. data with
instance constraints, when available; however, unlike multi-
view learning, it can also handle the case of multiple object
category datasets that have no instances in common, and only
share the same category labels. To apply multi-view methods
in this scenario would require summarizing all instances of
a particular category (for example, the mean) and consider-
ing the per category feature from the source and target to be
multiple views of the same category. For completeness, we
did experiments with one such method (Sharma et al. 2012),
but found that performance was not comparable to methods
created for the category adaptation problem.

Hybrid supervised methods Instead of choosing either fea-
ture transformation or classifier adaptation, it is possible to
combine the two approaches, as we do in this paper with
mmdt. The approach most closely related to ours is the recent
Heterogeneous Feature Augmentation (HFA) method (Duan
et al. 2012a), which learns a feature transformation into a
common latent space, as well as the classifier parameters.
However, in contrast to mmdt, hfa is formulated to solve
a binary problem, so a new feature transformation must be
learned for each category. Therefore, unlike mmdt, hfa can-
not learn a representation that generalizes to novel target cat-
egories. Furthermore, our method has better computational
complexity.

Semi- and Un-supervised methods While we do not dis-
cuss in detail it here, in Donahue et al. (2013) we presented a
semi-supervised extension of our model, adding constraints
between unlabeled target points to the labeled constraints.
For example, we placed smoothness constraints on examples
that lay on a consistent motion path and could thus be hypoth-
esized to have the same, albeit unknown, label. Domain adap-
tation in a purely unsupervised setting (no labeled target
domain examples) has been considered by Gopalan et al.
(2011) and Gong et al. (2012). The main idea of both works is
to build subspaces for the source as well as the target domain
and to consider the path between them on the correspond-
ing manifold. A new feature representation is calculated by
concatenating intermediate subspaces on the path. Whereas,
Gopalan et al. (2011) samples a finite set of intermediate sub-
spaces, the Geodesic Flow Kernel (gfk) of Gong et al. (2012)
shows how to use all subspaces on the geodesic path by using
a kernel trick. This yields a symmetric kernel for source and
target points that can be used for example for nearest neighbor
classification. More recently, Chopra et al. (2013) extended
this framework to handle image features learned using deep
convolutional neural networks.

3 Category Invariant Feature Transformations

Our first approach is to learn a single transformation matrix
W which maps examples between the source and target
domains. The objective for the transformation is to diminish
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domain-induced differences so that examples can be com-
pared directly. This mapping step can then be followed by
standard distance-based learning.

We denote the source domain as X and the target domain
as Z. Similarly, we denote the source data points as X =
[xl, cel, an] € RIx*nx ith labels y = [yl, o ynX]
and the target data points as Z = [z, ...,2,, ]| € RI2*"2
with corresponding labels k = [hy, ..., hy|. The target
domain is assumed to have significantly fewer labeled exam-
ples than the source, i.e. nz < ny, and there may even be
some categories for which the target domain has no labeled
examples. We use whichever categories have labeled tar-
get examples to learn a transformation that is generalizable
across categories and so can be applied to all categories at
test time. Note that our algorithm allows the source and target
feature spaces to have different dimensions (dy # dz).

To learn such a transformation we will define a matrix
regularizer, (W) and a loss, L(W, X, Z, y, h), which are
computed as some function of the category labeled source
and target data.! With these two terms defined we solve the
following general optimization problem:

W= argmin (W) + 2. LW, X,Z,y.,h) 1)

We present multiple learning algorithms that arise from using
different regularizers and loss functions within the frame-
work of Eq. (1).

4 Category Invariant Feature Transformations Through
Similarity Constraints

Learning a transformation can be also viewed as learn-
ing a similarity function between source and target points,
sim(W,x,z) = x! Wz. This perspective allows us to use
metric learning techniques (Davis et al. 2007) and to extend
them towards a domain adaptation scenario. Intuitively, a
desirable property of this similarity function is that it should
have a high value when the source and target points are of the
same category and a low value when the source and target
points are of different categories.

This intuitive goal can be formulated by constructing a
constraint for each pair ({x, y}, {z, h}) of labeled source and
target points:

sim(W,x,z) >u y=h

sim(W,x,z) <l y#h’ 2

c(W,x,z,y,h) : = [
for some constants, u, [ € R.

! Note that in general we could equally optimize a second loss func-
tion between the source and target data which considers instance level
constraints. However, to distinguish ourselves from prior work which
focused on learning a metric requiring instance constraints, we present
our algorithms assuming only category level information to demonstrate
the effectiveness of using only this coarser level of supervision.

If optimized, the constraints specified in Eq. (2) guarantee
that source and target points with the same label have high
similarity and that source and target points with different
labels have low similarity.

In general, we do not need each pairwise constraint to be
satisfied to learn a good similarity function, therefore, we
optimize soft constraints in the form of the following loss
function:

max (0, sim(W,x,z) —u)
ify=nh

max (0, — sim(W, x, z))
ify=#h

Finally, we define a loss for all labeled data points as the
squared sum over each pairwise loss:

LW, x,z,y,h) = 3)

LW, X,Z,y, h) =D [6W,xi,2),yi, hj)I . )
iJ

Using this loss function in the general framework of Eq. (1),
we seek to solve the following optimization problem:

W= argmvivn (W) + Z[Z(W, xi,2j, i, h DI . 5)
l’]

Constraints thus far have been defined for category level cor-
respondences, however, if additional paired instance corre-
spondence is available for some data, this auxiliary infor-
mation could be incorporated using the same similarity con-
straint technique. In Donahue et al. (2013), we also showed
that constraints between labeled and unlabeled target points
can help learning in a semi-supervised fashion.

An important second part of the objective function as
defined in Sect. 3 is the regularizer of the transformation
matrix. This term contains our prior knowledge about the
transformation and has to be chosen carefully. We present
two types of very flexible regularization terms in the follow-
ing sections.

4.1 LogDet Regularizer for Symmetric Transforms

We will begin by considering the log determinant (LogDet)
regularizer:

F(W) = tr(W) — log det(W) (©)

for positive definite matrices W.

Using the LogDet regularizer causes the formulation in
Eq. (5) to become equivalent to that of Information-theoretic
Metric Learning (ITML), which indirectly learns a transfor-
mation matrix W corresponding to a linear transformation
between X and Z by optimizing the pairwise loss functions
given in Eq. (5).
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With this regularization term, the optimization function
is kernelizable and a final non-linear transformation can be
learned to map between the source and target points.

While this model is intuitively appealing for domain
adaptation, it requires a key simplifying assumption that
the source and target data have the same dimension; i.e.,
dy = dz. This follows from the fact that the matrix trace
and determinant are only defined for square matrices W. An
even stronger restriction on W made by the LogDet regular-
izer is that it is only defined over symmetric positive definite
matrices. Implicitly, if W is positive definite then W can
be decomposed into the product of two identical matrices -
W = RTR. Therefore, the similarity function learned can
be decomposed into:

sim(W, x,z) = x’ Wz = (Rx)” (Rz) (7

The observation here is that a symmetric positive definite
matrix corresponds to applying the same transformation to
the source and target domains.

Using the LogDet regularizer limits the applicability of
domain adaptation due to the restricted class of possible
transformation matrices W. Consider the scenario in Fig. 2,
where there is no symmetric transformation that can trans-
form between the source and target domains. In the next
section, we will mitigate this limitation.

4.2 Frobenius Regularizer for Asymmetric Transforms

In order to avoid the restrictions of the symmetric transfor-
mation model for adaptation, we seek an alternative regu-
larizer that allows the model to be applied to domains of
differing dimensionalities but that still retains the benefits

L iDi

m_H o
B0y ooo" D

(a) A symmetric transformation — the same rotation and
scaling applied to both domains (green and blue) — cannot
separate classes (circles and squares)

me “e
L -
tlleu o U*LL " ee,
o  “e Bug “e

(b) An asymmetric transformation — a rotation applied
only to blue domain — successfully compensates for
domain shift

Fig. 2 A conceptual illustration of how an asymmetric domain trans-

formation matrix corresponding to a linear transformation can be more
flexible than a symmetric one (Color figure online)

@ Springer

of kernelization. We choose the Frobenius norm regularizer,
which is defined for general matrices W in asymmetric trans-
formations (Fig. 2). We call this problem the Asymmetric
Regularized Cross-domain transformation problem with
similarity and dissimilarity constraints, or arc-t for short, in
the rest of the paper.

Using the loss function defined in Eq. (5), our new opti-
mization objective is given as follows:

min %HWH%+AZ[Z<W,xi,z,~,yl-,h,~>12 ®)
iJ

There are two main limitations of the transformation learning
problem (8) presented above. First, it is limited to linear trans-
formation matrices, which may not be sufficient for some
adaptation tasks. Second, the size of W grows as dy - dz,
which may be prohibitively large for some problems. In the
next section, we present a kernelization result that overcomes
both of these shortcomings.

4.3 Kernelization Analysis

In this section, we prove that (5) may be solved in kernel
space for a wide class of regularizers,* resulting in non-linear
transformation matrices whose complexity is independent
of the dimensions of the points in either domain. This ker-
nelization result is critical to obtaining good performance
for several domain adaptation tasks. Note that kernelization
has been proven for some metric learning formulations, such
as Kulis et al. (2009); in all these cases, the kernelization
results assume that W is symmetric positive definite, whereas
our results hold for arbitrary W. We also note connections to
the work of Argyriou et al. (2010), which derives represen-
ter theorems for various matrix learning problems. However,
they do not consider domain adaptation, and are mainly con-
cerned with theoretical results for matrix learning problems
such as collaborative filtering and multi-task learning.

The main idea behind the following result is to show that
(1) the learned similarity function resulting from solving
Eq. (5) can be computed only using inner products between
data points in the source domain and inner products between
data points in the target domain, and (2) Eq. (5) can be refor-
mulated as an optimization problem involving such inner
products and whose size is independent of the dimensions
dy and dz. Then we can replace standard inner products
with arbitrary kernel functions such as the Gaussian RBF

2 Note that we present this result for the specific case of using the
Frobenius norm regularizer, though in fact our analysis holds for the
class of regularizers r (W) that can be written in terms of the singular
values of W; thatis, if o1, ..., 0, are the singular values of W, then
r(W) is of the form Zle rj (o) for some scalar functions r;, which is
globally minimized by zero. For example, the squared Frobenius norm

r(W) = %||W||2F is a special case where r(0;) = %0/2
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kernel function, resulting in non-linear learned transforma-
tions between the input space of the source domain and the
input space of the target domain. In the following analysis, the
input kernel matrices over within-domain points are given as
Ky =X"X and K z = ZT Z. We begin with the first result
(proof in “Appendix”).

Lemma 1 Assume that K x and K z are strictly positive def-
inite.’

Then there exists an ny X nz matrix L such that
the optimal solution W* to (5) is of the form W* =

“1/24 p=1/207T
XK PLKZ'*ZT.

The above result demonstrates the existence of such a
matrix L, which is important to reformulate the optimiza-
tion problem in eq. (8) in terms of L in the following. Fur-
thermore, one important consequence of the above lemma is
that, given arbitrary points x and z, the function sim(W, x, z)
can be computed in kernel space—by replacing W with
XK;(I/ZLK;/ZZT, the expression x/ Wz can be written
purely in terms of inner products.

Additionally, if W was a square matrix, then an extended
analysis would also hold for regularizations of the form
[|W—A]| |2F, where A is some known matrix, for example the
identity matrix. Regularizations of this form may be useful if
there exists some prior knowledge about the domain shift or
if W is assumed to be close to the identity matrix, in which
case A issetto I.

Using the above lemma, we now show how to equivalently
rewrite the optimization (8) in terms of the kernel matrices
K y and K z to solve for L (proof in “Appendix”):

Theorem 1 Assume the conditions of Lemma 1 hold. If W*
is the optimal solution to (8) and L* is the optimal solution
to the following problem:

. 12 .12
minr(L) + £ (L. K{* K. y. h) ©)

then W* = XK ' *L*K;'*Z7.

To summarize, Theorem 1 demonstrates that, instead of
solving (8) for W directly, we can equivalently solve (9) for
L, and then implicitly construct W via W = XK ;(1/ ’LK ;/ 2
Z" . In particular, this form of W allows us to compute x” Wz
using only kernel functions. Though our analysis focuses on
one particular regularizer—the squared Frobenius norm—
one can imagine applying our analysis to other regularizers.
For example, the trace norm r (W) = tr(W) also falls under

our framework; because the trace norm as a regularizer is

3 The assumption that the kernel matrices are strictly positive definite
is not a severe limitation. For the Gaussian RBF kernel, strict positive
definiteness can always be assured and for other kernel functions, the
matrices can be regularized by adding a scaled identity matrix.

known to produce low-rank matrices W, it would be desirable
in kernel dimension-reduction settings. In showing kerneliza-
tion for this regularizer, we actually prove a much stronger
result, namely that kernelization holds for a large class of
regularizers that includes the squared Frobenius norm and
other regularizers, as discussed in Sect. 4.3.

Whether using the linear or kernelized version of the algo-
rithm, the general idea of using pairwise constraints to learn
W limits the ability of this learning algorithm to scale with
the number of labeled points in the source and target, since
the number of constraints generated is n y - n z. Additionally,
W is learned so as to place source and target points close if
they are of the same category and far if they are from different
categories. While this is an intuitive notion, it fails to directly
optimize the overall objective of correctly classifying target
points.

In the next section, we describe an alternate approach
which overcomes these limitation by jointly learning W and
classifier parameters.

4.4 Optimization

In this section, we briefly describe optimization techniques
that can be used to solve the objectives described.

When optimizing the objective with a LogDet norm reg-
ularizer, we use the standard ITML method as mentioned
in Sect. 4.1. To optimize the objective with the Frobenius
norm regularizer, we use one of two methods. First, note that
the problem can actually be reformulated as a quadratic pro-
gramming (QP) problem, after which any standard QP solver
can be used to optimize our objective. However, if the size
of W is too large, this is impractical. A separate approach is
to use the Bregman divergence method (Davis et al. 2007).
Both techniques yield similar performance, but have varying
convergence rates.

5 Category Invariant Feature Transformations Through
Optimizing Classification Objective

In this section, we present a different loss function that can be
used within the transform-based domain adaptation frame-
work defined in Eq. (1). The goal now is to directly optimize
a classification objective for the target points, while simulta-
neously presenting a learning algorithm that is more scalable
with the number of labeled source and target points (Fig. 3).

For our algorithm, we consider linear hyperplane classi-
fiers. For example, assume that a one-versus-all linear SVM
classifier has been trained on the labeled source data over
all K categories. Let 6 denote the normal to the hyperplane
associated with the k’th binary SVM problem. Similarly, let
by be the offset to the hyperplane associated with the k’th

@ Springer
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(a) SOURCE

(b) TARGET, no adaptation (€) TARGET, existing methods (d) TARGET, our method

254 b4
% 2% Af Ty
i
. [.s

Nabeled

Fig. 3 (a) Linear classifiers (shown as decision boundaries) learned
for a four-class problem on a fully labeled source domain. (b) Problem:
classifiers learned on the source domain do not fit the target domain
points shown here due to a change in feature distribution. (¢) Exist-

binary SVM problem. Finally, let 8, = [67 b;] be the full
affine hyperplane representation.

Intuitively, we seek to learn a transformation matrix W
such that once W is applied to the target points, they will
be classified accurately by the source SVM. We consider
learning an affine linear transformation matrix, which can
be easily done using homogeneous coordinates for our data
points: z = [z 1].

The key idea is now to use constraints based on linear clas-
sifiers instead of single instances. In particular, we require
that transformed target points are correctly classified in the
source domain:

(W, 0,3, h):=1(h = k) (é[wz) > 1, (10)

where [Lis the signed indicator function, withI(z) = 1 when z
istrue and [(z) = —1 in the other case. If Eq. (10) is fulfilled,
all transformed target points would be correctly classified by
the source linear classifier. However, this is only possible for
separable cases, so instead we optimize the soft constraints
in form of the hinge loss:

W, 0y, ;. h;) = max (0, | —T(h; = k) - é,fwz,-) (11)

Similarly, if we use @ = [51 .0 K] to denote all hyper-

plane parameters of the one-versus-all classifier, the loss over
all target points and all categories is given as:

LW.O.Z.h)=> ((W.0c.2. h)
k,i

12)

Because the target points are transformed into the source
domain space with W, we simply define the source data term
in our loss function as standard SVM hinge loss summed
over all categories:

~T
L@®O.X,y) = max (0, 1 - I(y; :k)~0kx,~) (13)
ki

@ Springer

ing SVM-based methods only adapt the features of classes with labels
(crosses and triangles). (d) Our method adapts all points, including those
from classes without labels, by transforming all target features to a new
domain-invariant representation

Once the transformation matrix W has been learned, we can
also use it to transform linear classifiers 6 to the target
domain that had been learned with source data only. This
is a huge advantage of modelling the domain shift as being
category-invariant, because we only need a few categories
present in both target and source training data and are able to
transfer all available category models in the source domain
to the target domain. For regularization of W, we use the
Frobenius norm regularizer for this optimization problem.
Optimizing this objective in Eq. (1) using the loss in Eq. (11)
and the Frobenius norm regularizer leads to a category invari-
ant and asymmetric transformation matrix, which considers
classifier constraints in the source domain. Additionally, the
learning algorithm no longer has a linear dependency on the
number of source training examples and instead scales with
the number of categories and the number of labeled target
points, K - nz.

6 Jointly Optimizing Classifier and Transformation

Our goal in this section is to jointly learn (1) affine hyper-
planes that separate the categories in the common domain
consisting of the source domain and target points projected to
the source and (2) the new feature representation of the target
domain determined by the transformation matrix W mapping
points from the target domain into the source domain.

The algorithm and the change of constraints presented in
the previous section is especially useful when linear classi-
fiers are already learned in the source domain. However, we
can also formulate a joint learning problem for the transfor-
mation matrix and the classifier parameters; i.e., the hyper-
plane parameters and thus the decision boundary are also
affected by the additional training data provided from the
target domain.

The transformation matrix should have the property that
it projects the target points onto the correct side of each
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source hyperplane and the joint optimization also maxi-
mizes the margin between two classes. Therefore, we refer
to this method as Maximum Margin Domain Transform,
or mmdt.

The joint optimization problem can be formulated by
adding a regularizer on ©.

1 1

in —|W|%+=|@|%>+ArAL(W,O,Z, h 14

$}3 2|| IIF+2|| lF + X L( ) (14)
+ix L(O,X,y)

In contrast to the previous optimization problems, the prob-
lem in Eq. (14) is no longer convex. For this reason, we
perform coordinate gradient descent by alternating between
optimizing with respect to W and @:

1. Initialize ®° using a 1-vs-all SVM trained on the source
data only.

2. Learn W' assuming fixed @'.

Learn ©'*! assuming fixed W'.

4. Tterate between (2)-(3), until convergence.

hed

Note that step (2) is equivalent to solving the optimization
problem presented in Sect. 5. Additionally, note that step
(3) is equivalent to solving a multi-category SVM problem
defined over source and transformed target data points. This
can again be solved using K 1-vs-all binary SVM classifiers.

An important property of the alternating optimization is
that we can indeed prove convergence by exploiting the con-
vexity of both sub-problems.

Lemma 2 Steps (2) and (3) will never increase the complete
Jjoint objective function.

Proof Let J(W, @) denote the value of the joint objective
function.

Claim 1 J(W',@") = J(W't! @)

Jwtt e') = min J (W, ') < J(W', ')
Claim2 J(W'*!, @') = J(w't!, @'t

Jwt et = min J(wte) <s(wt e

The key here is that steps (2) and (3) of our algorithm are
convex optimization problems and so we know that each
objective will never increase as the new variable values are
learned.

Theorem 2 The joint objective function for Eq. (14) will
converge.

Proof Using Lemma (2), we can directly show that the joint
objective function will not increase from one iteration to the
next:

J(Wt, @l‘) > J (Wl-‘rl’ @t) > J (WH—I, @t+l)
Additionally, since the joint objective is lower bounded by
zero, this proves that the joint objective will converge for

a sufficiently small step size if optimizing using gradient
descent. O

It is important to note that since both steps of our itera-
tive algorithm can be solved using standard QP solvers, the
algorithm can be easily implemented. Furthermore, we also
developed a fast optimization technique based on dual coor-
dinate descent and exploiting an implicit rank contraint of W
in Rodner et al. (2013). The method allows using the MMDT
algorithm even in large-scale scenarios with tens of thousands
of examples and high-dimensional features, because not all
of the entries of W have to be optimized.

7 Analysis

We now analyze and compare the proposed algorithms
against each other and the previous feature transform meth-
ods hfa (Duan et al. 2012a) and gfk (Gong et al. 2012).
Comparisons are summarized in Table 1.

The arc-t formulation, of Sect. 4, has two distinct lim-
itations. First, it must solve ny - nz constraints, whereas
mmdt, of Sect. 6, only needs to solve K - nz constraints,
for a K category problem. In general, mmdt scales to much
larger source domains than arc-t. The second benefit of the
mmdt learning approach is that the transformation matrix
learned using the max-margin constraints is learned jointly
with the classifier, and explicitly seeks to optimize the final
SVM classifier objective. While arc-t’s similarity-based con-
straints seek to map points of the same category arbitrarily
close to one another, followed by a separate classifier learn-
ing step, mmdt seeks simply to project the target points onto
the correct side of the learned hyperplane, leading to better
classification performance.

The hfa formulation (Duan et al. 2012a) also takes advan-
tage of the max-margin framework to directly optimize the
classification objective while learning transformation matri-
ces. hfa learns the classifier and transformations to acommon
latent feature representation between the source and target.
However, hfa is formulated to solve a binary problem so a
new feature transformation must be learned for each category.
Therefore, unlike mmdt, hfa cannot learn a representation
that generalizes to novel target categories. Additionally, due
to the difficulty of defining the dimension of the latent feature
representation directly, the authors optimize with respect to
a larger combined transformation matrix and a relaxed con-
straint. This transformation matrix becomes too large when
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Table 1 Unlike previous methods (hfa by Duan et al. 2012a and gfk by
Gong et al. 2012), our final approach using max-margin constraints and
frobenius norm regularizer is able to simultaneously learn muti-category

representations that can transfer to novel classes, scale to large training
datasets, and handle different feature dimensionalities

hfa efk symm arc-t mmdt
Multi-class No Yes Yes Yes Yes
Large datasets No Yes No No Yes
Heterogeneous features Yes No No Yes Yes
Optimize max-margin objective Yes No no no Yes

the feature dimensions in source and target are large, so the
hfa problem must usually be solved in kernel space. This
can make the method slow and cause it to scale poorly with
the number of training examples. In contrast, mmdt can be
efficiently solved in linear feature space which makes it fast
and potentially more scalable.

Finally, gfk (Gong et al. 2012) formulates a kernelized
representation of the data that is equivalent to computing the
dot product in infinitely many subspaces along the geodesic
flow between the source and target domain subspaces. The
kernel is defined to be symmetric, so it cannot handle source
and target domains of different initial dimension. Addition-
ally, gfk does not directly optimize a classification objective.
In contrast, mmdt can handle source and target domains of
different feature dimensions via an asymmetric W, as well
as directly optimizing the classification objective.

8 Domain Adaptation Datasets

We begin by introducing the data on which we will evaluate
our algorithms.

8.1 Office Database

In most of our experiments, we consider the Office database
firstintroduced by Saenko et al. (2010), which has become the
de facto standard for benchmarking visual domain adaptation
methods. This database allows researchers to study, evaluate
and compare solutions to the domain shift problem by estab-
lishing a multiple-domain labeled dataset and benchmark.
In addition to the domain shift aspects, this database also
proposes a challenging office environment category learning
task which reflects the difficulty of real-world indoor robotic
object recognition. It contains images originating from the
following three domains:

Images from the web: The first domain, amazon, con-
sists of images downloaded from online merchants (www.
amazon.com). These images are of products shot at medium
resolution typically taken in an environment with studio
lighting conditions. The amazon domain contains 31 cate-
gories with an average of 90 images each. The images cap-
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ture the large intra-class variation of these categories, but
typically show the objects only from a canonical viewpoint.

Images from a digital SLR camera: The second domain,
dslr, consists of images that are captured with a digital SLR
camera in realistic environments with natural lighting condi-
tions. The images have high resolution (4,288 x 2,848) and
low noise. dsir has images of the 31 object categories, with
five different objects for each, in an office environment. Each
object was captured with on average three images taken from
different viewpoints, for a total of 423 images.

Images from a webcam: The third domain, webcam, con-
sists of images of the 31 categories recorded with a simple
webcam. The images are of low resolution (640 x 480) and
show significant noise and color as well as white balance
artifacts. Many current imagers on robotic platforms share a
similarly-sized sensor, and therefore also possess these sens-
ing characteristics. The resulting webcam dataset contains
the same 5 objects per category as in dslr, for a total of 795
images.

The database represents several interesting visual domain
shifts. It allows us to investigate the adaptation of category
models learned on the web to SLR and webcam images,
which can be thought of as in situ observations on a robotic
platform in a realistic office or home environment. Fur-
thermore, domain transfer between the high-quality DSLR
images to low-resolution webcam images allows for a very
controlled investigation of category model adaptation, as the
same objects were recorded in both domains.

The Office dataset images are available together with
SURF BoW features that are vector quantized to 800 dimen-
sions. We use these features in all experiments except where
explicitly indicated otherwise.

We also use a version of the Office dataset, available from
Gong et al. (2012), which consists of the 10 categories from
the Office dataset that also appear in Caltech256. The same
SURF BoW 800-dimensional features are available for the
Caltech256 images.

8.2 Large-scale Database

We also demonstrate the efficiency of our domain adaptation
methods in a large-scale setting (Sect. 9.4). For this purpose,
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we consider two domains. The source domain, the Bing
dataset (Bergamo and Torresani 2010), consists of images
obtained using the Bing search engine. In our experiments,
we train on 50 source domain examples per category. The
target domain is a subset of the images in the Caltech-256
benchmark dataset. We vary the number of target domain
examples from 5 to 20.

Note that we use the original features (Classeme 2625
dimensional) and train/test splits introduced by Bergamo and
Torresani (2010).

9 Experiments

In the following, we evaluate our methods on the datasets
described in the previous section and compare the results
to state-of-the-art supervised domain adaptation methods in
different domain adaptation scenarios. In particular, we com-
pare against the following methods in the experiments where
applicable:

svm; A support vector machine using source training
data.

svm; A support vector machine using target training data.
hfa A max-margin transform approach that learns a latent
common space between source and target as well as a
classifier that can be applied to points in that common
space (Duan et al. 2012a).

gfk The geodesic flow kernel proposed by Gong et al.
(2012) applied to all source and target data (including test

data). Following Gong et al. (2012), we use a 1-nearest
neighbor classifier with the geodesic flow kernel.

9.1 Standard Supervised Domain Adaptation

In our first set of experiments, we use the 10 category subset
of the Office database, together with the same 10 categories
available from the Caltech dataset, to evaluate multi-class
accuracy in the standard domain adaptation setting where a
few labeled examples are available for all categories in the
target domain. We follow the setup of Saenko et al. (2010)
and Gong et al. (2012): 20 training examples for amazon
source (8 for other source domains) and 3 labeled examples
per category for the target domain. We created 20 random
train/test splits and averaged the results across them.

The multi-class accuracy for each domain pair is shown
in Table 2. Our mmdt method is the top performing over-
all, achieving 52.5 % accuracy averaged over the 12 domain
shifts we explored. This result may be somewhat surprising,
because mmdt encodes no knowledge of the feature repre-
sentation, but on shifts where features are homogeneous, still
outperforms methods like gfk and symm which assume fea-
ture homogeneity. This demonstrates the strength of mmdt
as a generic domain adaptation approach.

Looking at individual domain shifts, we see that mmdt
outperforms all other methods in 6 out of the 12 domain
shifts. Of the results on the Office dataset only (the first 6
rows of Table 2), mmdt performs the best when either the
source or target domain is amazon. Because the shift between
amazon and either of the other two Office domains (dslr and

Table 2 Multi-class accuracy for the standard supervised domain adaptation setting

Baselines Our methods

svmy svm; hfa efk symm arc-t mmdt
a—>w 339+0.7 624+ 0.9 61.8 + 1.1 58.6 £ 1.0 510+ 14 55.7+09 64.6 +1.2
a—d 350+£0.8 55.9+0.8 52.7+0.9 50.7 £0.8 479+ 14 50.2 £ 0.7 56.7+1.3
w—a 357+04 45.6 +0.7 459 +0.7 44.1+04 43.7+0.7 434 +£0.5 477+ 0.9
w—d 66.6 £ 0.7 55.1£0.8 51.7+1.0 70.5 +0.7 69.8+ 1.0 71.3+0.8 67.0 £1.1
d—a 340+£03 45.7 £ 0.9 45.8+0.9 45.7 £ 0.6 42.74+0.5 425+0.5 46.9 + 1.0
d—>w 743 £ 0.5 62.1 £0.8 62.1 £0.7 76.5 £ 0.5 784+ 0.9 783 £0.5 74.1 £0.8
a—cC 35.1+£0.3 32.0+0.8 31.1 £06 36.0 £0.5 39.1+£0.5 37.0 £ 04 364 £0.8
w—C 313+ 04 304 £ 0.7 294 £ 0.6 31.1 £0.6 34.0 £ 0.5 319+£05 322+0.8
d—c¢ 314+£03 31.7+£0.6 31.0£ 05 329+£05 349+ 04 33.5+04 34.1+£0.8
c—a 359+04 453409 455+0.9 4474+ 0.8 43.8+0.6 44.1 £ 0.6 494+ 0.8
c—>w 308 £ 1.1 60.3 + 1.0 60.5 + 0.9 63.7 £ 0.8 50.5+ 1.6 559+1.0 63.8+1.1
c—d 35,6 £0.7 55.8£0.9 519+ 1.1 577 +1.1 48.6+ 1.1 50.6 £ 0.8 56.5+0.9
mean 40.0 £ 0.6 48.5+0.8 474 +0.8 51.0+07 48.7+0.9 49.5+ 0.6 525+ 1.0

All results are from our implementation. When averaged across all domain shifts the reported average value for gfk was 51.65 while our imple-
mentation had an average of 51.0 £ 0.7. Therefore, the result difference is well within the standard deviation over data splits. Bold indicates the
best result for each domain split. Italic indicates the group of results that are close to the best-performing result. The domain names are shortened

for space: a: amazon, w: webcam, d: dslr, c: caltech
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webcam) is much more significant than the shift between
dslr and webcam, as indicated by the large performance dis-
crepancy between amazon and non-amazon shifts with the
svimg method, this result indicates that mmdet is particularly
well-suited to handling larger domain shifts.

Our other methods, symm and are-t, have better perfor-
mance than mmdt (and all baselines) on the webcam and
dslr shifts. This demonstrates the utility of these methods
in learning smaller domain shifts. Their higher relative per-
formance on such tasks might be due to their cross-domain
pairwise constraints on individual examples, which may be
less meaningful in cases when the domain shift is larger and
individual pairs of examples from a particular category are
unlikely to correspond. The gfk baseline also performs well
on the webcam and dslr shifts. This fits with our intuition
since gfk is a 1-nearest neighbor approach and, as such, is
more suitable when the domains are initially similar.

In the caltech results (the last six rows of Table 2), we
see that the task overall is much easier when caltech is the
source domain than when it is the target domain, indicating
that the caltech data is more valuable for recognition in the
Office domains than the Office data is for recognition of the
caltech categories. When caltech is the target domain, the
more difficult of the two situations, our symm method out-
performs all others. On the other hand, when caltech is the
source domain, we see the best performance from our mmdt
method and the gfk baseline, with our arc-t method per-
forming somewhere in between in most cases. This seems to
indicate that mmdet is the best of the methods explored when
working with a very rich source domain (at least relative to
the target domains) like caltech, whereas symm is superior
when the source domain is more homogeneous like the Office
domains.

For completeness, we additionally experimented with
a multi-view baseline, Generalized Multiview Analysis
(GMA) (Sharma et al. 2012). To apply this method here we
computed the mean for each category in the source and target
datasets. Then, for each category k, we considered the mean
feature vector from the source and the mean feature vector
from the target to be multiple views of the category, k. Using
this technique we found that GMA had a mean classification
performance across all shifts of 45.8 %. We omit the per shift
results from Table 2 since it adds no additional insight. This
method is consistently better than using the source only svm,

but worse than all other adaptation methods. Note, GMA was
created for a multi-view scenario where you have instance
level constraints. Therefore, it is understandable that with
only category level constraints this method does not perform
as well as the other adaptation methods developed for use
with category only constraints.

9.2 Asymmetric Features

Next, we analyze the effectiveness of our asymmetric trans-
form learning methods by experimenting with the setting
when source and target have different feature dimensions.
We use the same experimental setup as previously, but use
the full 31 category Office dataset and an alternate repre-
sentation for the dslr domain, which is SURF BoW quan-
tized to 600 dimensions (denoted as dslr-600). We compare
our mmdt and arc-t methods against svm, and hfa. Note
that our symm method and some baseline methods (svmy,
gfk) are not suited for the asymmetric feature case, as they
assume a consistent feature representation across domains.
The results are shown in Table 3. Again, we find that our
mmdt method can effectively learn a feature representation
for the target domain that optimizes a classification objec-
tive. Our arc-t method has lower accuracy on this task than
mmdt, but these results show that it still effectively leverages
the source domain data by achieving much higher accuracy
than the svm; baseline which ignores the source domain.

9.3 Novel Categories

We next consider the setting of practical importance where
labeled target examples are not available for all objects.
Recall that this is a setting that many category specific adap-
tation methods cannot generalize to, including hfa (Duan
et al. 2012a) and our symm method. Therefore, we com-
pare results from our mmdt and are-t methods, which learn
category independent feature transforms, to the gfk method
of Gong et al. (2012), which learns a category independent
kernel to compare the domains. We use the full Office dataset
and allow 20 labeled examples per category in the source for
amazon and 10 labeled examples for the first 15 object cate-
gories in the target (dslr). For the webcam — dslr shift, we
use 8 labeled examples per category in the source for web-
cam and 4 labeled examples for the first 15 object categories
in the target dsir.

Table 3 Multi-class accuracy results on the standard supervised domain adaptation task with different feature dimensions in the source and target

source target svmy hfa arc-t mmdt
amazon dslr-600 529+ 0.7 57.8 £ 0.6 582+ 0.6 62.3+0.8
webcam dslr-600 51.8+0.6 60.0 + 0.6 582+£0.7 63.3+0.5

The target domain is dsir for both cases
Bold indicates the best performing result
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Table 4 Multi-class accuracy results on the Office dataset for the
domain shift of webcam — dslr for target test categories not seen at
training time

source svimg efk arc-t mmdt
amazon 10.3+£0.6 389+04 414+03 44.6 + 0.3
webcam  51.6£0.5 629+ 0.5 59.4+04 583+05

Bold indicates the best performing result

The experimental results for the domain shift of webcam
—> dslr are evaluated and shown in Table 4. mmdt outper-
forms the baselines for the amazon — dslr shift and offers
adaptive benefit over svmy for the shift from webcam —
dslr. As in the first set of experiments, both arc-t and gfk
use nearest neighbor classifiers on a learned kernel which
are more suitable to the webcam — dslr shift, as these two
domains are initially very similar.

9.4 Large-scale Data

With our last experiment, we show that our method not only
offers high accuracy performance; it also scales well with
an increasing dataset size. Specifically, the number of con-
straints our algorithm optimizes scales linearly with the num-
ber of training points. Conversely, the number of constraints
that need to be optimized for the arc-t baseline is quadratic
in the number of training points.

To demonstrate the effect that constraint set size has on
run-time performance, we perform experiments on the Bing
(source) and Caltech256 domains described in Sect. 8.2. The
left-hand plot in Fig. 4 presents multi-class accuracy for this
setup. Additionally, the training time of our method and that
of the baselines is shown on the right-hand plot.

Our mmdt method provides a considerable improvement
over arc-t and all the baselines in terms of multi-class accu-
racy. It is also considerably faster than all but the gfk method.
Note that hfa and gfk do not vary significantly as the num-
ber of target training points increases. However, for hfa the

Fig. 4 Left multi-class

Multiclass Accuracy vs #Target Example

main bottleneck time is consumed by a distance computation
between each pair of training points. Therefore, since there
are many more source training points than target, adding a
few more target points does not significantly increase the
overall time spent for this experiment, but would present a
problem as the size of the dataset grew in general.

10 Conclusion

We have presented a unified framework for learning a cate-
gory invariant transformation that has been proven effective
for visual domain adaptation. In particular, we derive two spe-
cific formulations from the general framework, one which
is most useful for learning a similarity function between a
source and target domain independent of the classifier, and
another which focuses on learning linear classifiers in a max-
margin framework.

We demonstrated the importance of using a domain adap-
tation method to boost overall performance for visual recog-
nition tasks, and analyze the scenarios in which a max-margin
objective and a transformation-based approach are most ben-
eficial. In our experiments, we provided an in-depth analysis
and comparison of the different algorithms we presented and
their connection to other state-of-the-art methods.

In the future, we would like to extend further to a multi-
domain scenario, where lots of labeled and heterogenous
source data can be exploited to help classification in a target
domain.

Additionally, in this paper, we addressed the problem of
adapting between source and target domains assuming a par-
ticular, fixed, image representation. Therefore, all approaches
we discuss may be applied regardless of the representation
choice. Many recent works have shown that strong image rep-
resentations can be learned using convolutional neural net-
works (Krizhevsky et al. 2012; Chopra et al. 2013; Donahue
et al. 2014). Our preliminary experiments demonstrate that
domain adaptation bias is still present even with the convo-

Time vs #Target Examples

accuracy on the Bing dataset 70 60 r
using 50 training examples in Q ﬁ\e
the source and varying the 9; 60
number of available labeled 3 = 40
examples in the target. Right 3 €
training time comparison g 50 °
@ =
@ btaal = 20f
S 40y
>
= ]
s 10 15 20 % 10 15 20

Number of Labeled Target Examples

Number of Labeled Target Examples

SVM - -SVM, G- arct ~o-hfa —+ gfk -&=mmdt (ours)
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lutional features. In the future, we would like to experiment
with domain adaptation algorithms using convolutional fea-
tures as well as a unified convolutional framework to learn
both features and adaptation simultaneously.

Appendix: Proofs

Proof of Lemma 1 Let W have singular value decomposition

~T ~
UXU . We can therefore write W as W = Zle ojujujr,
where p is the rank of W.

Claim: u; € C(X),u; € C(Z) such that there exists
vectors, v, vj where uj = Xv; and u; = Zv;.

Proof: Let us consider what would happen if this were
not true. By definition if a vector is not in the column
space of the matrix then it is in the left-null space of that
matrix. Namely, if u; ¢ C(X) then XTu j = 0 and sim-
ilarly if w; ¢ C(Z) then Z"u; = 0. Now, consider that
the constraints in the optimization problem we are solv-
ing only consider W in terms of the similarity function
sim(W,X,Z) = X" WZ = 37_ 0;X ujui;" Z. 1f either
uj ¢ C(X)oru; ¢ C(Z) then the corresponding element
in the sum would equal zero (since the global minimizer of
each r;(o;) is assumed to be zero) and the j th singular value
would be left unconstrained and hence automatically set to
zero by the regularizer. Therefore, if a singular value o # 0
then we know that the corresponding singular vectors are in
the column space of source and target data.

Following the above claim, let v, v~j be the vectors such
that u; = Xv; and u; = Zv;. Then we can re-write W as
follows:

t t
_ ) .~T_§ Xuv.9l7T
W_Zaju]uj = onvjij
j=1 j=I

t
= X(ZOjl)jT)?)ZT = XiZT,
j=1
where~I: = >i_iojv jf)JT. With the transformation L =
K ¥2LK 12/2, we can equivalently write

W =XK :Yl/ LK ;71 / ZZT, which proves the lemma and will

simplify the theorem proof.

Proof of Theorem I Denote V y = XK;KI/ 2 and V z =

7K g/ 2 Note that V x and V z are orthogonal matrices.
From the lemma, W = VXLVE,; let Vﬁ( and V% be the
orthogonal complements to Vy and Vz, and let Vy =
[Vy Viland Vz =[Vz V£]. Then

(o J55) (2 2])-rm o

= r(W) + const.

@ Springer

One can easily verify that, given two orthogonal matri-
ces V1 and V; and an arbitrary matrix M, r(V{MV,) =
Z/ rj(o;) if o; are the singular values of M. So

"(VX |:(I; 8i| ‘72) = er(o'j) + const = r(L) + const,
J

where o; are the singular values of L. Thus, r(W) = r(L) +
const.

Finally, rewrite the similarity values using the previously
derived kernel representation of the transformation matrix

XK\ gT
W =XK,’LKZ;'"*Z":

sim(W,X,Z) =X"WZ = KxyK'°LK;'*K =

12T .12

VLK =sim(L, K> K%

=K{LKY

The theorem follows by rewriting r and the constraints cw
using the above derivations in terms of L. Note that both
r(W) and the cw can be computed independently of the
dimension of W, so simple arguments show that the opti-
mization may be solved in polynomial time independent of
the dimension when the r; functions are convex.
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