
Our goal: to separate a heterogeneous data 
source into multiple latent visual 
domains.  

Using multi-source domain adaptation 
techniques out-performs single domain 
adaptation for heterogeneous source. But, 
most datasets lack domain labels. 

MOTIVATION	
  

We model the domains as a hierarchical 
mixture model. There is a local mixture 
for each category in each domain. 

PROBLEM	
  FORMULATION	
  

1.  Separate the data according to 
category (B) 

2.  Learn optimal local clusters 
[blue] using per category 
datasets (C) 

3.  Learn optimal global clusters 
[yellow] from the local clusters 
[blue] that satisfy the do-not-
link constraints for local 
clusters from same category. 

4.  Repeat (2) and (3) until 
convergence. 

METHOD	
  

Our algorithm separated web search data into these three domains: (a) cartoon-like images 
(b) cluttered/natural scenes (c) product style images. 

DOMAIN	
  DISCOVERY	
  RESULTS	
  

CLASSIFICATION	
  RESULTS	
  

FUTURE	
  WORK	
  
• We plan to experiment with different 

mixture models.  
•   We plan to incorporate weak category 

labels into the domain discovery 
formulation. 
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Figure 1: Graphical model for domain discovery.
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The joint probability is a product of the conditional probabilities in the model.
LetZL = {zL
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We may think of this model in a generative manner as follows: for all local
clusters j = 1, ..., J = S · K, we determine its underlying domain via the πG

mixing weights. Given this domain, we generate µj , the mean for the local
cluster. Then, to generate the data points xi, we first determine which local
cluster j the data point belongs to using πL, and then we generate the point
from the corresponding µj .

At this point, we still need to add the constraints discussed above, namely
that the local clusters only contain data points from a single category and
that domain clusters contain only a single local cluster from each category.
Such constraints can be difficult to enforce in a probabilistic model, but are
considerably simpler in a hard clustering model. For instance, in semi-supervised
clustering there is considerable literature on adding constraints to the k-means
objective via constraints or penalties (cite papers by Sugato Basu). Thus, we
will utilize a standard asymptotic argument on our probabilistic model to create
a corresponding hard clustering model. In particular, if one takes a mixture of
Gaussian model with fixed σI covariances across clusters, and lets σ → 0, the
expected log joint likelihood approaches the k-means objective, and the EM
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ARC t: Single Transform
Ours: Supervised
Multisource
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i ∈ {0, 1} - assigns data to local clusters

• µj ∼
�

k

�
πG
k N (µk,σ)

�ZG
jk
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j ∈ {0, 1} - assigns local clusters to global clusters
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We solve the following optimization 
problem using an alternating minimization 
algorithm. 

Our multisource method beats single 
source when domain labels are known. 

We are able to improve classification 
results for a heterogeneous source 

dataset with no known domain labels. 

• Discovers domains 
more accurately than 
competing 
hierarchical method. 
• Performance drops 

when domains are 
very similar. 
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